Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nvidia Tesla

From Wikipedia, the free encyclopedia
Nvidia's line of general purpose GPUs

This article is about GPGPU cards. For the GPU microarchitecture, seeTesla (microarchitecture).
"Tesla P100" redirects here. For the line of performance cars by Tesla Motors (P100D), seeTesla Model S andTesla Model X.

Nvidia Tesla
Nvidia Tesla M40 GPU
ManufacturerNvidia
IntroducedMay 2, 2007;
18 years ago
 (2007-05-02)
DiscontinuedThe Tesla branding was discontinued in May 2020; 5 years ago (2020-05)—now branded as Nvidia Data Center GPUs
TypeGeneral purposegraphics cards

Nvidia Tesla is the former name for a line of products developed byNvidia targeted atstream processing orgeneral-purpose graphics processing units (GPGPU), named after pioneering electrical engineerNikola Tesla. Its products began using GPUs from theG80 series, and have continued to accompany the release of new chips. They are programmable using theCUDA orOpenCLAPIs.

The Nvidia Tesla product line competed with AMD'sRadeon Instinct and IntelXeon Phi lines of deep learning and GPU cards.

Nvidia retired the Tesla brand in May 2020, reportedly because of potential confusion withthe brand of cars.[1] Its new GPUs are brandedNvidia Data Center GPUs[2] as in theAmpere-based A100 GPU.[3]

Nvidia DGX servers feature Nvidia GPGPUs.

Overview

[edit]
CSIRO data-center GPU cluster utilizing Tesla S1070

Offering computational power much greater than traditionalmicroprocessors, the Tesla products targeted thehigh-performance computing market.[4] As of 2012,[update] Nvidia Teslas power some of the world's fastestsupercomputers, includingSummit atOak Ridge National Laboratory andTianhe-1A, inTianjin,China.

Unlike Nvidia's consumerGeForce cards and professionalNvidia Quadro cards, Tesla cards were originally unable to output images to adisplay. However, the last Tesla C-class products included one Dual-Link DVI port.[5]

Applications

[edit]

Tesla products are primarily used in simulations and in large-scale calculations (especially floating-point calculations), and for high-end image generation for professional and scientific fields.[6]

In 2013, the defense industry accounted for less than one-sixth of Tesla sales, but Sumit Gupta predicted increasing sales to thegeospatial intelligence market.[7]

  • Two Nvidia Tesla M40 in a consumer-grade PC
    Two Nvidia Tesla M40 in a consumer-grade PC
  • Nvidia Tesla P100 die
    Nvidia Tesla P100 die
  • Servers utilizing an Nvidia Tesla GPU cluster
    Servers utilizing an Nvidia Tesla GPU cluster

Specifications

[edit]
ModelLaunchCoreCore clock
(MHz)
ShadersMemoryProcessing power (TFLOPS)[a]CUDA compute capability[b]TDP
(W)
Notes, form factor
Core config[c]Base clock (MHz)Max boost
clock (MHz)[d]
Bus typeBus width
(bit)
Size
(GB)
Clock
(MT/s)
Bandwidth
(GB/s)
Half precision
Tensor Core FP32 Accumulate
Single precision
(MAD orFMA)
Double precision
(FMA)
C870 GPU Computing Module[e]TeslaMay 2, 20071× G80600128:32 :24:0:0 (16)1350N/aGDDR33841.5160076.8No0.3456No1.0170.9Internal PCIe GPU (full-height, dual-slot)
D870 Deskside Computer[e]May 2, 20072× G806002× 128:32 :24:0:0 (16)1350N/aGDDR32× 3842× 1.516002× 76.8No0.6912No1.0520Deskside or 3Urack-mount external GPUs
S870 GPU Computing Server[e]May 2, 20074× G806004× 128:32 :24:0:0
(16)
1350N/aGDDR34× 3844× 1.516004× 76.8No1.382No1.01Urack-mount external GPUs, connect via 2× PCIe (×16)
C1060 GPU Computing Module[f]April 9, 20091× GT200602240:80 :32:0:0
(30)
1296[9]N/aGDDR351241600102.4No0.62210.077761.3187.8Internal PCIe GPU (full-height, dual-slot)
S1070 GPU Computing Server "400 configuration"[f]June 1, 20084× GT2006024× 240:80 :32:0:0
(30)
1296N/aGDDR34× 5124× 41538.44× 98.5No2.4880.3111.38001Urack-mount external GPUs, connect via 2× PCIe (×8 or ×16)
S1070 GPU Computing Server "500 configuration"[f]June 1, 20081440N/aNo2.7650.3456
S1075 GPU Computing Server[f][10]June 1, 20084× GT2006024× 240:80 :32:0:0
(30)
1440N/aGDDR34× 5124× 415384× 98.5No2.7650.34561.31Urack-mount external GPUs, connect via 1× PCIe (×8 or ×16)
Quadro Plex 2200 D2 Visual Computing System[g]July 25, 20082× GT200GL6482× 240:80 :32:0:0
(30)
1296N/aGDDR32× 5122× 416002× 102.4No1.2440.15551.3Deskside or 3Urack-mount external GPUs with 4 dual-link DVI outputs
Quadro Plex 2200 S4 Visual Computing System[g]July 25, 20084× GT200GL6484× 240:80 :32:0:0
(30)
1296N/aGDDR34× 5124× 416004× 102.4No2.4880.3111.312001Urack-mount external GPUs, connect via 2× PCIe (×8 or ×16)
C2050 GPU Computing Module[11]FermiJuly 25, 20111× GF100575448:56 :48:0:0
(14)
1150N/aGDDR53843[h]3000144No1.0300.51522.0247Internal PCIe GPU (full-height, dual-slot)
M2050 GPU Computing Module[12]July 25, 2011N/a3092148.4No225
C2070 GPU Computing Module[11]July 25, 20111× GF100575448:56 :48:0:0
(14)
1150N/aGDDR53846[h]3000144No1.0300.51522.0247Internal PCIe GPU (full-height, dual-slot)
C2075 GPU Computing Module[13]July 25, 2011N/a3000144No225
M2070/M2070Q GPU Computing Module[14]July 25, 2011N/a3132150.3No225
M2090 GPU Computing Module[15]July 25, 20111× GF110650512:64 :48:0:0
(16)
1300N/aGDDR53846[h]3700177.6No1.3310.66562.0225Internal PCIe GPU (full-height, dual-slot)
S2050 GPU Computing ServerJuly 25, 20114× GF1005754× 448:56 :48:0:0
(14)
1150N/aGDDR54× 3844× 3[h]30004× 148.4No4.1222.0612.09001Urack-mount external GPUs, connect via 2× PCIe (×8 or ×16)
S2070 GPU Computing ServerJuly 25, 2011N/a4× 6[h]No
K10 GPU accelerator[16]KeplerMay 1, 20122× GK104N/a2× 1536:138 :32:0:0
(8)
745?GDDR52× 2562× 450002× 160No4.5770.19073.0225Internal PCIe GPU (full-height, dual-slot)
K20 GPU accelerator[17][18]November 12, 20121× GK110N/a2496:208 :40:0:0
(13)
706758GDDR532055200208No3.5241.1753.5225Internal PCIe GPU (full-height, dual-slot)
K20X GPU accelerator[19]November 12, 20121× GK110N/a2688:224 :48:0:0
(14)
732?GDDR538465200250No3.9351.3123.5235Internal PCIe GPU (full-height, dual-slot)
K40 GPU accelerator[20]October 8, 20131× GK110BN/a2880:240 :48:0:0
(15)
745875GDDR538412[h]6000288No4.291–5.0401.430–1.6803.5235Internal PCIe GPU (full-height, dual-slot)
K80 GPU accelerator[21]November 17, 20142× GK210N/a2× 2496:208 :48:0:0
(13)
560875GDDR52× 3842× 1250002× 240No5.591–8.7361.864–2.9123.7300Internal PCIe GPU (full-height, dual-slot)
M4 GPU accelerator[22][23]MaxwellNovember 10, 20151× GM206N/a1024:64 :32:0:0
(8)
8721072GDDR51284550088No1.786–2.1950.05581–0.068615.250–75Internal PCIe GPU (half-height, single-slot)
M6 GPU accelerator[24]August 30, 20151× GM204-995-A1N/a1536:96 :64:0:0
(12)
7221051GDDR525684600147.2No2.218–3.2290.0693–0.10095.275–100Internal MXM GPU
M10 GPU accelerator[25]May 18, 20164× GM107N/a4× 640:40 :16:0:0
(5)
1033?GDDR54× 1284× 851884× 83No5.2890.16535.2225Internal PCIe GPU (full-height, dual-slot)
M40 GPU accelerator[23][26]November 10, 20151× GM200N/a3072:192 :96:0:0
(24)
9481114GDDR538412 or 246000288No5.825–6.8440.182–0.21395.2250Internal PCIe GPU (full-height, dual-slot)
M60 GPU accelerator[27]August 30, 20152× GM204-895-A1N/a2× 2048:128 :64:0:0
(16)
8991178GDDR52× 2562× 850002× 160No7.365–9.6500.2301–0.30165.2225–300Internal PCIe GPU (full-height, dual-slot)
P4 GPU accelerator[28]PascalSeptember 13, 20161× GP104N/a2560:160 :64:0:0
(20)
8101063GDDR525686000192.0No4.147–5.4430.1296–0.17016.150–75PCIe card
P6 GPU accelerator[29][30]March 24, 20171× GP104-995-A1N/a2048:128 :64:0:0
(16)
10121506GDDR5256163003192.2No6.1690.19286.190MXM card
P40 GPU accelerator[28]September 13, 20161× GP102N/a3840:240 :96:0:0
(30)
13031531GDDR5384247200345.6No10.01–11.760.3127–0.36746.1250PCIe card
P100 GPU accelerator (mezzanine)[31][32]April 5, 20161× GP100-890-A1N/a3584:224 :96:0:0
(56)
13281480HBM24096161430732No9.519–10.614.760–5.3046.0300SXM card
P100 GPU accelerator (16 GB card)[33]June 20, 20161× GP100N/a11261303No8.071‒9.3404.036‒4.670250PCIe card
P100 GPU accelerator (12 GB card)[33]June 20, 2016N/a307212549No8.071‒9.3404.036‒4.670
V100 GPU accelerator (mezzanine)[34][35][36]VoltaMay 10, 20171× GV100-895-A1N/a5120:320 :128:640:0
(80)
Unknown1455HBM2409616 or 321750900119.214.907.4507.0300SXM card
V100 GPU accelerator (PCIe card)[34][35][36]June 21, 20171× GV100N/aUnknown1370112.214.037.014250PCIe card
V100 GPU accelerator (PCIe FHHL card)March 27, 20181× GV100N/a9371290161620829.4105.713.216.605250PCIe FHHL card
T4 GPU accelerator (PCIe card)[37][38]TuringSeptember 12, 20181× TU104-895-A1N/a2560:160 :64:320:40
(40)
5851590GDDR625616500032064.88.1Unknown7.570PCIe card
A2 GPU accelerator (PCIe card)[39]AmpereNovember 10, 20211× GA107N/a1280:40 :32:40:10
(10)
14401770GDDR612816625220018.124.5310.148.640–60PCIe card (half height, single-slot)
A10 GPU accelerator (PCIe card)[40]April 12, 20211× GA102-890-A1N/a9216:288 :96:288:72
(72)
8851695GDDR6384246252600125.031.240.9768.6150PCIe card (single-slot)
A16 GPU accelerator (PCIe card)[41]April 12, 20214× GA107N/a4× 1280:40 :32:40:10
(10)
8851695GDDR64× 1284× 1672424× 2004x 18.434× 4.6081.0858.6250PCIe card (dual-slot)
A30 GPU accelerator (PCIe card)[42]April 12, 20211× GA100N/a3584:224 :96:224:0
(56)
9301440HBM23072241215933.1165.110.325.1618.0165PCIe card (dual-slot)
A40 GPU accelerator (PCIe card)[43]October 5, 20201× GA102N/a10752:336 :112:336:84
(84)
13051740GDDR6384487248695.8149.737.421.1688.6300PCIe card (dual-slot)
A100 GPU accelerator (PCIe card)[44][45]May 14, 2020[46]1× GA100-883AA-A1N/a6912:432 :160:432:0
(108)
7651410HBM2512040 or 8012151555312.019.59.78.0250PCIe card (dual-slot)
H100 GPU accelerator (PCIe card)[47]HopperMarch 22, 2022[48]1× GH100[49]N/a14592:456 :24:456:0
(114)
10651755 CUDA 1620 TCHBM2E51208010002039756.451.225.69.0350PCIe card (dual-slot)
H100 GPU accelerator (SXM card)N/a16896:528 :24:528:0
(132)
10651980 CUDA 1830 TCHBM3512064 or 80 or 9615003352989.466.933.59.0700SXM card
H200 GPU accelerator (PCIe card)[50]November 18, 2024[51]1× GH100N/a13651785HBM3E51201411313336083560.3230.169.0600PCIe card (dual-slot)
H200 GPU accelerator (SXM card)N/a15901980HBM3E51201411313336098966.9133.459.0700SXM card
H800 GPU accelerator (SXM card)March 21, 2023[52]1× GH100N/a10951755HBM351208013133360N/a59.329.659.0700SXM card
L40 GPU accelerator[53]Ada LovelaceOctober 13, 20221× AD102[54]N/a18176:568 :192:568:142 (142)7352490GDDR6384482250864362.190.521.4148.9300PCIe card (dual-slot)
L4 GPU accelerator[55][56]March 21, 2023[57]1x AD104[58]N/a7424:240 :80:240:0
(60)
7952040GDDR6192241563300121.030.30.498.972HHHL single slot PCIe card
B100 GPU accelerator[59]BlackwellNovember 20242× GB102N/a2× 16896:528 :24:528:0
(132)
16651837HBM3E2× 40962× 9620002× 41002× 990[60]2× 62.082× 31.0410.1700[60]SXM card
B200 GPU accelerator[61]20242× GB100N/a16651837HBM3E2× 40962× 9620002× 41002× 1125[60]2× 62.082× 31.0410.01000SXM card

Notes

  1. ^To calculate the processing power seeTesla (microarchitecture)#Performance,Fermi (microarchitecture)#Performance,Kepler (microarchitecture)#Performance,Maxwell (microarchitecture)#Performance, orPascal (microarchitecture)#Performance. A number range specifies the minimum and maximum processing power at, respectively, the base clock and maximum boost clock.
  2. ^Core architecture version according to theCUDA programming guide.
  3. ^Mainshader processors :texture mapping unit :render output units :tensor cores :ray-tracing cores (streaming multiprocessors)
  4. ^GPU Boost is a default feature that increases the core clock rate while remaining under the card's predetermined power budget. Multiple boost clocks are available, but this table lists the highest clock supported by each card.[8]
  5. ^abcSpecifications not specified by Nvidia assumed to be based on theGeForce 8800 GTX
  6. ^abcdSpecifications not specified by Nvidia assumed to be based on theGeForce GTX 280
  7. ^abSpecifications not specified by Nvidia assumed to be based on the Quadro FX 5800
  8. ^abcdefWith ECC on, a portion of the dedicated memory is used for ECC bits, so the available user memory is reduced by 12.5%. (e.g. 4 GB total memory yields 3.5 GB of user available memory.)

See also

[edit]

References

[edit]
  1. ^Casas, Alex (19 May 2020)."NVidia Drops Tesla Brand to Avoid Confusion with Tesla".Wccftech. Retrieved8 July 2020.
  2. ^"NVIDIA Supercomputing Solutions".
  3. ^"NVIDIA A100 GPUs Power the Modern Data Center". NVidia. Retrieved8 July 2020.
  4. ^"High Performance Computing - Supercomputing with Tesla GPUs".
  5. ^"Professional Workstation Solutions".
  6. ^Tesla Technical Brief (PDF)
  7. ^"Nvidia chases defense, intelligence ISVs with GPUs".TheRegister.com. Retrieved8 July 2020.
  8. ^"Nvidia GPU Boost For Tesla"(PDF). January 2014. Retrieved7 December 2015.
  9. ^"Tesla C1060 Computing Processor Board"(PDF).Nvidia.com. Retrieved11 December 2015.
  10. ^"Difference between Tesla S1070 and S1075". 31 October 2008. Retrieved29 January 2017.S1075 has one interface card
  11. ^ab"Tesla C2050 and Tesla C2070 Computing Processor"(PDF).Nvidia.com. Retrieved11 December 2015.
  12. ^"Tesla M2050 and Tesla M2070/M2070Q Dual-Slot Computing Processor Modules"(PDF).Nvidia.com. Retrieved11 December 2015.
  13. ^"Tesla C2075 Computing Processor Board"(PDF).Nvidia.com. Retrieved11 December 2015.
  14. ^Hand, Randall (23 August 2010)."NVidia Tesla M2050 & M2070/M2070Q Specs OnlineVizWorld.com".VizWorld.com. Retrieved11 December 2015.
  15. ^"Tesla M2090 Dual-Slot Computing Processor Module"(PDF).Nvidia.com. Retrieved11 December 2015.
  16. ^"Tesla K10 GPU accelerator"(PDF).Nvidia.com. Retrieved11 December 2015.
  17. ^"Tesla K20 GPU active accelerator"(PDF).Nvidia.com. Retrieved11 December 2015.
  18. ^"Tesla K20 GPU accelerator"(PDF).Nvidia.com. Retrieved11 December 2015.
  19. ^"Tesla K20X GPU accelerator"(PDF).Nvidia.com. Retrieved11 December 2015.
  20. ^"Tesla K40 GPU accelerator"(PDF).Nvidia.com. Retrieved11 December 2015.
  21. ^"Tesla K80 GPU accelerator"(PDF).Images.nvidia.com. Retrieved11 December 2015.
  22. ^"Nvidia Announces Tesla M40 & M4 Server Cards - Data Center Machine Learning".Anandtech.com. Retrieved11 December 2015.
  23. ^ab"Accelerating Hyperscale Datacenter Applications with Tesla GPUs | Parallel Forall".Devblogs.nvidia.com. 10 November 2015. Retrieved11 December 2015.
  24. ^"Tesla M6"(PDF).Images.nvidia.com. Retrieved28 May 2016.
  25. ^"Tesla M10"(PDF).Images.nvidia.com. Retrieved29 October 2016.
  26. ^"Tesla M40"(PDF).Images.nvidia.com. Retrieved11 December 2015.
  27. ^"Tesla M60"(PDF).Images.nvidia.com. Retrieved27 May 2016.
  28. ^abSmith, Ryan (13 September 2016)."Nvidia Announces Tesla P40 & Tesla P4 - Network Inference, Big & Small". Anandtech. Retrieved13 September 2016.
  29. ^"Tesla P6"(PDF).www.nvidia.com. Retrieved7 March 2019.
  30. ^"Tesla P6 Specs".www.techpowerup.com. Retrieved7 March 2019.
  31. ^Smith, Ryan (5 April 2016)."Nvidia Announces Tesla P100 Accelerator - Pascal GP100 for HPC". Anandtech.com. Anandtech.com. Retrieved5 April 2016.
  32. ^Harris, Mark."Inside Pascal: Nvidia's Newest Computing Platform". Retrieved13 September 2016.
  33. ^abSmith, Ryan (20 June 2016)."NVidia Announces PCI Express Tesla P100". Anandtech.com. Retrieved21 June 2016.
  34. ^abSmith, Ryan (10 May 2017)."The Nvidia GPU Technology Conference 2017 Keynote Live Blog". Anandtech. Retrieved10 May 2017.
  35. ^abSmith, Ryan (10 May 2017)."NVIDIA Volta Unveiled: GV100 GPU and Tesla V100 Accelerator Announced". Anandtech. Retrieved10 May 2017.
  36. ^abOh, Nate (20 June 2017)."NVIDIA Formally Announces V100: Available later this Year". Anandtech.com. Retrieved20 June 2017.
  37. ^"NVIDIA TESLA T4 TENSOR CORE GPU". NVIDIA. Retrieved17 October 2018.
  38. ^"NVIDIA Tesla T4 Tensor Core Product Brief"(PDF).www.nvidia.com. Retrieved10 July 2019.
  39. ^"NVIDIA TESLA A2 TENSOR CORE GPU".
  40. ^"NVIDIA TESLA A10 TENSOR CORE GPU".
  41. ^"NVIDIA TESLA A16 TENSOR CORE GPU".
  42. ^"NVIDIA TESLA A30 TENSOR CORE GPU".
  43. ^"NVIDIA TESLA A40 TENSOR CORE GPU".
  44. ^"NVIDIA TESLA A100 TENSOR CORE GPU". NVIDIA. Retrieved14 January 2021.
  45. ^"NVIDIA Tesla A100 Tensor Core Product Brief"(PDF).www.nvidia.com. Retrieved22 September 2020.
  46. ^Smith, Ryan (14 May 2020)."NVIDIA Ampere Unleashed: NVIDIA Announces New GPU Architecture, A100 GPU, and Accelerator". AnandTech.
  47. ^"NVIDIA H100 Tensor Core GPU".NVIDIA. Retrieved15 April 2024.
  48. ^Mujtaba, Hassan (22 March 2022)."NVIDIA Hopper GH100 GPU Unveiled: The World's First & Fastest 4nm Data Center Chip, Up To 4000 TFLOPs Compute, HBM3 3 TB/s Memory".Wccftech. Retrieved15 April 2024.
  49. ^"NVIDIA H100 PCIe 80 GB Specs".TechPowerUp. 21 March 2023. Retrieved15 April 2024.
  50. ^"NVIDIA H200 Tensor Core GPU".NVIDIA. Retrieved18 February 2025.
  51. ^"NVIDIA H200 NVL Specs".TechPowerUp. 18 February 2025. Retrieved18 February 2025.
  52. ^"NVIDIA H800 SXM5 Specs".TechPowerUp. 18 February 2025. Retrieved18 February 2025.
  53. ^"NVIDIA L40 GPU for Data Center".NVIDIA. 18 May 2023. Retrieved15 April 2024.
  54. ^"NVIDIA L40 Specs".TechPowerUp. 13 October 2022. Retrieved15 April 2024.
  55. ^"NVIDIA L4 Tensor Core GPU".NVIDIA. Retrieved15 April 2024.
  56. ^"NVIDIA ADA GPU Architecture"(PDF).nvidia.com. Retrieved15 April 2024.
  57. ^"NVIDIA and Google Cloud Deliver Powerful New Generative AI Platform, Built on the New L4 GPU and Vertex AI".NVIDIA Corporation. 21 March 2023. Retrieved15 April 2024.
  58. ^"NVIDIA L4 Specs".TechPowerUp. 21 March 2023. Retrieved15 April 2024.
  59. ^"NVIDIA B100 Specs".TechPowerUp. Retrieved20 July 2025.
  60. ^abc"NVIDIA Blackwell Architecture and B200/B100 Accelerators Announced: Going Bigger With Smaller Data".AnandTech. 18 March 2024. Archived fromthe original on 1 August 2025. Retrieved20 July 2025.
  61. ^"NVIDIA B200 SXM 192 GB Specs".TechPowerUp. Retrieved20 July 2025.

External links

[edit]
Wikimedia Commons has media related toNvidia Tesla series.
Fixed pixel pipeline
Pre-GeForce
Vertex andpixel shaders
Unified shaders
Unified shaders &NUMA
Ray tracing &Tensor Cores
Software and technologies
Multimedia acceleration
Software
Technologies
GPU microarchitectures
Other products
GraphicsWorkstation cards
GPGPU software
Console components
Nvidia Shield
SoCs and embedded
CPUs
Computerchipsets
Company
Key people
Acquisitions
GPU
Desktop
Mobile
Architecture
Components
Memory
Form factor
Performance
Misc
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nvidia_Tesla&oldid=1330145872"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp