Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Noncentral chi-squared distribution

From Wikipedia, the free encyclopedia
Noncentral generalization of the chi-squared distribution
Noncentral chi-squared
Probability density function
Cumulative distribution function
Parameters

k>0{\displaystyle k>0\,} degrees of freedom

λ>0{\displaystyle \lambda >0\,} non-centrality parameter
Supportx[0,+){\displaystyle x\in [0,+\infty )\;}
PDF12e(x+λ)/2(xλ)k/41/2Ik/21(λx){\displaystyle {\frac {1}{2}}e^{-(x+\lambda )/2}\left({\frac {x}{\lambda }}\right)^{k/4-1/2}I_{k/2-1}({\sqrt {\lambda x}})}
CDF1Qk2(λ,x){\displaystyle 1-Q_{\frac {k}{2}}\left({\sqrt {\lambda }},{\sqrt {x}}\right)} withMarcum Q-functionQM(a,b){\displaystyle Q_{M}(a,b)}
Meank+λ{\displaystyle k+\lambda \,}
Variance2(k+2λ){\displaystyle 2(k+2\lambda )\,}
Skewness23/2(k+3λ)(k+2λ)3/2{\displaystyle {\frac {2^{3/2}(k+3\lambda )}{(k+2\lambda )^{3/2}}}}
Excess kurtosis12(k+4λ)(k+2λ)2{\displaystyle {\frac {12(k+4\lambda )}{(k+2\lambda )^{2}}}}
MGFexp(λt12t)(12t)k/2 for 2t<1{\displaystyle {\frac {\exp \left({\frac {\lambda t}{1-2t}}\right)}{(1-2t)^{k/2}}}{\text{ for }}2t<1}
CFexp(iλt12it)(12it)k/2{\displaystyle {\frac {\exp \left({\frac {i\lambda t}{1-2it}}\right)}{(1-2it)^{k/2}}}}

Inprobability theory andstatistics, thenoncentral chi-squared distribution (or noncentral chi-square distribution,noncentralχ2{\displaystyle \chi ^{2}} distribution) is anoncentral generalization of thechi-squared distribution. It often arises in thepower analysis of statistical tests in which the null distribution is (perhaps asymptotically) a chi-squared distribution; important examples of such tests are thelikelihood-ratio tests.[1]

Definitions

[edit]

Background

[edit]

Let(X1,X2,,Xi,,Xk){\displaystyle (X_{1},X_{2},\ldots ,X_{i},\ldots ,X_{k})} bekindependent,normally distributed random variables with meansμi{\displaystyle \mu _{i}} and unit variances. Then the random variable

i=1kXi2{\displaystyle \sum _{i=1}^{k}X_{i}^{2}}

is distributed according to the noncentral chi-squared distribution. It has two parameters:k{\displaystyle k} which specifies the number ofdegrees of freedom (i.e. the number ofXi{\displaystyle X_{i}}), andλ{\displaystyle \lambda } which is related to the mean of the random variablesXi{\displaystyle X_{i}} by:

λ=i=1kμi2.{\displaystyle \lambda =\sum _{i=1}^{k}\mu _{i}^{2}.}

λ{\displaystyle \lambda } is sometimes called thenoncentrality parameter. Note that some references defineλ{\displaystyle \lambda } in other ways, such as half of the above sum, or its square root.

This distribution arises inmultivariate statistics as a derivative of themultivariate normal distribution. While the centralchi-squared distribution is the squarednorm of arandom vector withN(0k,Ik){\displaystyle N(0_{k},I_{k})} distribution (i.e., the squared distance from the origin to a point taken at random from that distribution), the non-centralχ2{\displaystyle \chi ^{2}} is the squared norm of a random vector withN(μ,Ik){\displaystyle N(\mu ,I_{k})} distribution. Here0k{\displaystyle 0_{k}} is a zero vector of lengthk,μ=(μ1,,μk){\displaystyle \mu =(\mu _{1},\ldots ,\mu _{k})} andIk{\displaystyle I_{k}} is theidentity matrix of sizek.

Density

[edit]

Theprobability density function (pdf) is given by

fX(x;k,λ)=i=0eλ/2(λ/2)ii!fYk+2i(x),{\displaystyle f_{X}(x;k,\lambda )=\sum _{i=0}^{\infty }{\frac {e^{-\lambda /2}(\lambda /2)^{i}}{i!}}f_{Y_{k+2i}}(x),}

whereYq{\displaystyle Y_{q}} is distributed as chi-squared withq{\displaystyle q} degrees of freedom.

From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weightedmixture of central chi-squared distributions. Suppose that a random variableJ has aPoisson distribution with meanλ/2{\displaystyle \lambda /2}, and theconditional distribution ofZ givenJ = i is chi-squared withk + 2i degrees of freedom. Then theunconditional distribution ofZ is non-central chi-squared withk degrees of freedom, and non-centrality parameterλ{\displaystyle \lambda }.

Alternatively, the pdf can be written as

fX(x;k,λ)=12e(x+λ)/2(xλ)k/41/2Ik/21(λx){\displaystyle f_{X}(x;k,\lambda )={\frac {1}{2}}e^{-(x+\lambda )/2}\left({\frac {x}{\lambda }}\right)^{k/4-1/2}I_{k/2-1}({\sqrt {\lambda x}})}

whereIν(y){\displaystyle I_{\nu }(y)} is a modifiedBessel function of the first kind given by

Iν(y)=(y/2)νj=0(y2/4)jj!Γ(ν+j+1).{\displaystyle I_{\nu }(y)=(y/2)^{\nu }\sum _{j=0}^{\infty }{\frac {(y^{2}/4)^{j}}{j!\Gamma (\nu +j+1)}}.}

Using the relation betweenBessel functions andhypergeometric functions, the pdf can also be written as:[2]

fX(x;k,λ)=eλ/20F1(;k/2;λx/4)12k/2Γ(k/2)ex/2xk/21.{\displaystyle f_{X}(x;k,\lambda )={{\rm {e}}^{-\lambda /2}}_{0}F_{1}(;k/2;\lambda x/4){\frac {1}{2^{k/2}\Gamma (k/2)}}{\rm {e}}^{-x/2}x^{k/2-1}.}

The casek = 0 (zero degrees of freedom), in which case the distribution has a discrete component at zero, is discussed by Torgersen (1972) and further by Siegel (1979).[3][4]

Derivation of the pdf

[edit]

The derivation of the probability density function is most easily done by performing the following steps:

  1. SinceX1,,Xk{\displaystyle X_{1},\ldots ,X_{k}} have unit variances, their joint distribution is spherically symmetric, up to a location shift.
  2. The spherical symmetry then implies that the distribution ofX=X12++Xk2{\displaystyle X=X_{1}^{2}+\cdots +X_{k}^{2}} depends on the means only through the squared length,λ=μ12++μk2{\displaystyle \lambda =\mu _{1}^{2}+\cdots +\mu _{k}^{2}}. Without loss of generality, we can therefore takeμ1=λ{\displaystyle \mu _{1}={\sqrt {\lambda }}} andμ2==μk=0{\displaystyle \mu _{2}=\cdots =\mu _{k}=0}.
  3. Now derive the density ofX=X12{\displaystyle X=X_{1}^{2}} (i.e. thek = 1 case). Simple transformation of random variables shows that
fX(x,1,λ)=12x(ϕ(xλ)+ϕ(x+λ))=12πxe(x+λ)/2cosh(λx),{\displaystyle {\begin{aligned}f_{X}(x,1,\lambda )&={\frac {1}{2{\sqrt {x}}}}\left(\phi ({\sqrt {x}}-{\sqrt {\lambda }})+\phi ({\sqrt {x}}+{\sqrt {\lambda }})\right)\\&={\frac {1}{\sqrt {2\pi x}}}e^{-(x+\lambda )/2}\cosh({\sqrt {\lambda x}}),\end{aligned}}}
whereϕ(){\displaystyle \phi (\cdot )} is the standard normal density.
  1. Expand thecosh term in aTaylor series. This gives the Poisson-weighted mixture representation of the density, still fork = 1. The indices on the chi-squared random variables in the series above are 1 + 2i in this case.
  2. Finally, for the general case. We've assumed, without loss of generality, thatX2,,Xk{\displaystyle X_{2},\ldots ,X_{k}} are standard normal, and soX22++Xk2{\displaystyle X_{2}^{2}+\cdots +X_{k}^{2}} has acentral chi-squared distribution with (k − 1) degrees of freedom, independent ofX12{\displaystyle X_{1}^{2}}. Using the poisson-weighted mixture representation forX12{\displaystyle X_{1}^{2}}, and the fact that the sum of chi-squared random variables is also a chi-square, completes the result. The indices in the series are (1 + 2i) + (k − 1) = k + 2i as required.

Properties

[edit]

Moment generating function

[edit]

Themoment-generating function is given by

M(t;k,λ)=exp(λt12t)(12t)k/2.{\displaystyle M(t;k,\lambda )={\frac {\exp \left({\frac {\lambda t}{1-2t}}\right)}{(1-2t)^{k/2}}}.}

Moments

[edit]

The first few rawmoments are:

μ1=k+λ{\displaystyle \mu '_{1}=k+\lambda }
μ2=(k+λ)2+2(k+2λ){\displaystyle \mu '_{2}=(k+\lambda )^{2}+2(k+2\lambda )}
μ3=(k+λ)3+6(k+λ)(k+2λ)+8(k+3λ){\displaystyle \mu '_{3}=(k+\lambda )^{3}+6(k+\lambda )(k+2\lambda )+8(k+3\lambda )}
μ4=(k+λ)4+12(k+λ)2(k+2λ)+4(11k2+44kλ+36λ2)+48(k+4λ).{\displaystyle \mu '_{4}=(k+\lambda )^{4}+12(k+\lambda )^{2}(k+2\lambda )+4(11k^{2}+44k\lambda +36\lambda ^{2})+48(k+4\lambda ).}

The first few centralmoments are:

μ2=2(k+2λ){\displaystyle \mu _{2}=2(k+2\lambda )\,}
μ3=8(k+3λ){\displaystyle \mu _{3}=8(k+3\lambda )\,}
μ4=12(k+2λ)2+48(k+4λ){\displaystyle \mu _{4}=12(k+2\lambda )^{2}+48(k+4\lambda )\,}

Thenthcumulant is

κn=2n1(n1)!(k+nλ).{\displaystyle \kappa _{n}=2^{n-1}(n-1)!(k+n\lambda ).\,}

Hence

μn=2n1(n1)!(k+nλ)+j=1n1(n1)!2j1(nj)!(k+jλ)μnj.{\displaystyle \mu '_{n}=2^{n-1}(n-1)!(k+n\lambda )+\sum _{j=1}^{n-1}{\frac {(n-1)!2^{j-1}}{(n-j)!}}(k+j\lambda )\mu '_{n-j}.}

Cumulative distribution function

[edit]

Again using the relation between the central and noncentral chi-squared distributions, thecumulative distribution function (cdf) can be written as

P(x;k,λ)=eλ/2j=0(λ/2)jj!Q(x;k+2j){\displaystyle P(x;k,\lambda )=e^{-\lambda /2}\;\sum _{j=0}^{\infty }{\frac {(\lambda /2)^{j}}{j!}}Q(x;k+2j)}

whereQ(x;k){\displaystyle Q(x;k)\,} is the cumulative distribution function of the central chi-squared distribution withk degrees of freedom which is given by

Q(x;k)=γ(k/2,x/2)Γ(k/2){\displaystyle Q(x;k)={\frac {\gamma (k/2,x/2)}{\Gamma (k/2)}}\,}
and whereγ(k,z){\displaystyle \gamma (k,z)\,} is thelower incomplete gamma function.

TheMarcum Q-functionQM(a,b){\displaystyle Q_{M}(a,b)} can also be used to represent the cdf.[5]

P(x;k,λ)=1Qk2(λ,x){\displaystyle P(x;k,\lambda )=1-Q_{\frac {k}{2}}\left({\sqrt {\lambda }},{\sqrt {x}}\right)}

When the degrees of freedomk is positive odd integer, we have a closed form expression for the complementary cumulative distribution function given by[6]

P(x;2n+1,λ)=1Qn+1/2(λ,x)=1[Q(xλ)+Q(x+λ)+e(x+λ)/2m=1n(xλ)m/21/4Im1/2(λx)],{\displaystyle {\begin{aligned}P(x;2n+1,\lambda )&=1-Q_{n+1/2}({\sqrt {\lambda }},{\sqrt {x}})\\&=1-\left[Q({\sqrt {x}}-{\sqrt {\lambda }})+Q({\sqrt {x}}+{\sqrt {\lambda }})+e^{-(x+\lambda )/2}\sum _{m=1}^{n}\left({\frac {x}{\lambda }}\right)^{m/2-1/4}I_{m-1/2}({\sqrt {\lambda x}})\right],\end{aligned}}}

wheren is non-negative integer,Q is theGaussian Q-function, andI is the modified Bessel function of first kind with half-integer order. The modified Bessel function of first kind with half-integer order in itself can be represented as a finite sum in terms ofhyperbolic functions.

In particular, fork = 1, we have

P(x;1,λ)=1[Q(xλ)+Q(x+λ)].{\displaystyle P(x;1,\lambda )=1-\left[Q({\sqrt {x}}-{\sqrt {\lambda }})+Q({\sqrt {x}}+{\sqrt {\lambda }})\right].}

Also, fork = 3, we have

P(x;3,λ)=1[Q(xλ)+Q(x+λ)+2πsinh(λx)λe(x+λ)/2].{\displaystyle P(x;3,\lambda )=1-\left[Q({\sqrt {x}}-{\sqrt {\lambda }})+Q({\sqrt {x}}+{\sqrt {\lambda }})+{\sqrt {\frac {2}{\pi }}}{\frac {\sinh({\sqrt {\lambda x}})}{\sqrt {\lambda }}}e^{-(x+\lambda )/2}\right].}

Approximation (including for quantiles)

[edit]

Abdel-Aty derives (as "first approx.") a non-centralWilson–Hilferty transformation:[7]

(χ2k+λ)13{\displaystyle \left({\frac {\chi '^{2}}{k+\lambda }}\right)^{\frac {1}{3}}} is approximatelynormally distributed,N(129f,29f),{\displaystyle \sim {\mathcal {N}}\left(1-{\frac {2}{9f}},{\frac {2}{9f}}\right),} i.e.,

P(x;k,λ)Φ{(xk+λ)1/3(129f)29f},where  f:=(k+λ)2k+2λ=k+λ2k+2λ,{\displaystyle P(x;k,\lambda )\approx \Phi \left\{{\frac {\left({\frac {x}{k+\lambda }}\right)^{1/3}-\left(1-{\frac {2}{9f}}\right)}{\sqrt {\frac {2}{9f}}}}\right\},{\text{where }}\ f:={\frac {(k+\lambda )^{2}}{k+2\lambda }}=k+{\frac {\lambda ^{2}}{k+2\lambda }},}

which is quite accurate and well adapting to the noncentrality. Also,f=f(k,λ){\displaystyle f=f(k,\lambda )} becomesf=k{\displaystyle f=k} forλ=0{\displaystyle \lambda =0}, the(central) chi-squared case.

Sankaran discusses a number ofclosed formapproximations for thecumulative distribution function.[8] In an earlier paper, he derived and states the following approximation:[9]

P(x;k,λ)Φ{(xk+λ)h(1+hp(h10.5(2h)mp))h2p(1+0.5mp)}{\displaystyle P(x;k,\lambda )\approx \Phi \left\{{\frac {({\frac {x}{k+\lambda }})^{h}-(1+hp(h-1-0.5(2-h)mp))}{h{\sqrt {2p}}(1+0.5mp)}}\right\}}

where

Φ{}{\displaystyle \Phi \lbrace \cdot \rbrace \,} denotes thecumulative distribution function of thestandard normal distribution;
h=123(k+λ)(k+3λ)(k+2λ)2;{\displaystyle h=1-{\frac {2}{3}}{\frac {(k+\lambda )(k+3\lambda )}{(k+2\lambda )^{2}}}\,;}
p=k+2λ(k+λ)2;{\displaystyle p={\frac {k+2\lambda }{(k+\lambda )^{2}}};}
m=(h1)(13h).{\displaystyle m=(h-1)(1-3h)\,.}

This and other approximations are discussed in a later text book.[10]

More recently, since the CDF of non-central chi-squared distribution with odd degree of freedom can be exactly computed, the CDF for even degree of freedom can be approximated by exploiting the monotonicity and log-concavity properties of Marcum-Q function as

P(x;2n,λ)12[P(x;2n1,λ)+P(x;2n+1,λ)].{\displaystyle P(x;2n,\lambda )\approx {\frac {1}{2}}\left[P(x;2n-1,\lambda )+P(x;2n+1,\lambda )\right].}

Another approximation that also serves as an upper bound is given by

P(x;2n,λ)1[(1P(x;2n1,λ))(1P(x;2n+1,λ))]1/2.{\displaystyle P(x;2n,\lambda )\approx 1-\left[(1-P(x;2n-1,\lambda ))(1-P(x;2n+1,\lambda ))\right]^{1/2}.}

For a given probability, these formulas are easily inverted to provide the corresponding approximation forx{\displaystyle x}, to compute approximate quantiles.

Related distributions

[edit]
fS(S)=(Sλ)(k1)/2e(S+λ)Ik1(2Sλ){\displaystyle f_{S}(S)=\left({\frac {S}{\lambda }}\right)^{(k-1)/2}e^{-(S+\lambda )}I_{k-1}(2{\sqrt {S\lambda }})},
whereλ=i=1k|μi|2{\displaystyle \lambda =\sum _{i=1}^{k}\left|\mu _{i}\right|^{2}}.

Transformations

[edit]

Sankaran (1963) discusses the transformations of the formz=[(Xb)/(k+λ)]1/2{\displaystyle z=[(X-b)/(k+\lambda )]^{1/2}}. He analyzes the expansions of thecumulants ofz{\displaystyle z} up to the termO((k+λ)4){\displaystyle O((k+\lambda )^{-4})} and shows that the following choices ofb{\displaystyle b} produce reasonable results:

Also, a simpler transformationz1=(X(k1)/2)1/2{\displaystyle z_{1}=(X-(k-1)/2)^{1/2}} can be used as avariance stabilizing transformation that produces a random variable with mean(λ+(k1)/2)1/2{\displaystyle (\lambda +(k-1)/2)^{1/2}} and varianceO((k+λ)2){\displaystyle O((k+\lambda )^{-2})}.

Usability of these transformations may be hampered by the need to take the square roots of negative numbers.

Various chi and chi-squared distributions
NameStatistic
chi-squared distributioni=1k(Xiμiσi)2{\displaystyle \sum _{i=1}^{k}\left({\frac {X_{i}-\mu _{i}}{\sigma _{i}}}\right)^{2}}
noncentral chi-squared distributioni=1k(Xiσi)2{\displaystyle \sum _{i=1}^{k}\left({\frac {X_{i}}{\sigma _{i}}}\right)^{2}}
chi distributioni=1k(Xiμiσi)2{\displaystyle {\sqrt {\sum _{i=1}^{k}\left({\frac {X_{i}-\mu _{i}}{\sigma _{i}}}\right)^{2}}}}
noncentral chi distributioni=1k(Xiσi)2{\displaystyle {\sqrt {\sum _{i=1}^{k}\left({\frac {X_{i}}{\sigma _{i}}}\right)^{2}}}}

Occurrence and applications

[edit]

Use in tolerance intervals

[edit]

Two-sided normalregressiontolerance intervals can be obtained based on the noncentral chi-squared distribution.[12] This enables the calculation of a statistical interval within which, with some confidence level, a specified proportion of a sampled population falls.

Notes

[edit]
  1. ^Patnaik, P. B. (1949)."The Non-Central χ2- and F-Distribution and their Applications".Biometrika.36 (1/2):202–232.doi:10.2307/2332542.ISSN 0006-3444.JSTOR 2332542.
  2. ^Muirhead (2005) Theorem 1.3.4
  3. ^Torgersen, E. N. (1972), "Supplementary notes on linear models", Preprint series: Statistical Memoirs, Dept. of Mathematics, University of Oslo,http://urn.nb.no/URN:NBN:no-58681
  4. ^Siegel, A. F. (1979), "The noncentral chi-squared distribution with zero degrees of freedom and testing for uniformity",Biometrika, 66, 381–386
  5. ^Nuttall, Albert H. (1975):Some Integrals Involving the QM Function,IEEE Transactions on Information Theory, 21(1), 95–96,ISSN 0018-9448
  6. ^A. Annamalai, C. Tellambura and John Matyjas (2009). "A New Twist on the Generalized Marcum Q-FunctionQM(ab) with Fractional-OrderM and its Applications".2009 6th IEEE Consumer Communications and Networking Conference, 1–5,ISBN 978-1-4244-2308-8
  7. ^Abdel-Aty, S. (1954). "Approximate Formulae for the Percentage Points and the Probability Integral of the Non-Central χ2 Distribution".Biometrika.41 (3/4):538–540.doi:10.2307/2332731.JSTOR 2332731.
  8. ^Sankaran, M. (1963). "Approximations to the non-central chi-squared distribution".Biometrika.50 (1–2):199–204.doi:10.1093/biomet/50.1-2.199.
  9. ^Sankaran, M. (1959). "On the non-central chi-squared distribution".Biometrika.46 (1–2):235–237.doi:10.1093/biomet/46.1-2.235.
  10. ^Johnson et al. (1995)Continuous Univariate Distributions Section 29.8
  11. ^Muirhead (2005) pages 22–24 and problem 1.18.
  12. ^Derek S. Young (August 2010)."tolerance: An R Package for Estimating Tolerance Intervals".Journal of Statistical Software.36 (5):1–39.ISSN 1548-7660. Retrieved19 February 2013., p. 32

References

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Noncentral_chi-squared_distribution&oldid=1292161935"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp