Probability distribution generalizing the F-distribution with a noncentrality parameter
Inprobability theory andstatistics , thenoncentralF -distribution is acontinuous probability distribution that is anoncentral generalization of the (ordinary)F -distribution . It describes the distribution of the quotient (X /n 1 )/(Y /n 2 ), where the numeratorX has anoncentral chi-squared distribution withn 1 degrees of freedom and the denominatorY has a centralchi-squared distribution withn 2 degrees of freedom. It is also required thatX andY arestatistically independent of each other.
It is the distribution of thetest statistic inanalysis of variance problems when thenull hypothesis is false. The noncentralF -distribution is used to find thepower function of such a test.
Occurrence and specification [ edit ] IfX {\displaystyle X} is anoncentral chi-squared random variable with noncentrality parameterλ {\displaystyle \lambda } andν 1 {\displaystyle \nu _{1}} degrees of freedom, andY {\displaystyle Y} is achi-squared random variable withν 2 {\displaystyle \nu _{2}} degrees of freedom that isstatistically independent ofX {\displaystyle X} , then
F = X / ν 1 Y / ν 2 {\displaystyle F={\frac {X/\nu _{1}}{Y/\nu _{2}}}} is a noncentralF -distributed random variable.Theprobability density function (pdf) for the noncentralF -distribution is[ 1]
p ( f ) = ∑ k = 0 ∞ e − λ / 2 ( λ / 2 ) k B ( ν 2 2 , ν 1 2 + k ) k ! ( ν 1 ν 2 ) ν 1 2 + k ( ν 2 ν 2 + ν 1 f ) ν 1 + ν 2 2 + k f ν 1 / 2 − 1 + k {\displaystyle p(f)=\sum \limits _{k=0}^{\infty }{\frac {e^{-\lambda /2}(\lambda /2)^{k}}{B\left({\frac {\nu _{2}}{2}},{\frac {\nu _{1}}{2}}+k\right)k!}}\left({\frac {\nu _{1}}{\nu _{2}}}\right)^{{\frac {\nu _{1}}{2}}+k}\left({\frac {\nu _{2}}{\nu _{2}+\nu _{1}f}}\right)^{{\frac {\nu _{1}+\nu _{2}}{2}}+k}f^{\nu _{1}/2-1+k}} whenf ≥ 0 {\displaystyle f\geq 0} and zero otherwise.The degrees of freedomν 1 {\displaystyle \nu _{1}} andν 2 {\displaystyle \nu _{2}} are positive.The termB ( x , y ) {\displaystyle B(x,y)} is thebeta function , where
B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) . {\displaystyle B(x,y)={\frac {\Gamma (x)\Gamma (y)}{\Gamma (x+y)}}.} Thecumulative distribution function for the noncentralF -distribution is
F ( x ∣ d 1 , d 2 , λ ) = ∑ j = 0 ∞ ( ( 1 2 λ ) j j ! e − λ / 2 ) I ( d 1 x d 2 + d 1 x | d 1 2 + j , d 2 2 ) {\displaystyle F(x\mid d_{1},d_{2},\lambda )=\sum \limits _{j=0}^{\infty }\left({\frac {\left({\frac {1}{2}}\lambda \right)^{j}}{j!}}e^{-\lambda /2}\right)I\left({\frac {d_{1}x}{d_{2}+d_{1}x}}{\bigg |}{\frac {d_{1}}{2}}+j,{\frac {d_{2}}{2}}\right)} whereI {\displaystyle I} is theregularized incomplete beta function .
The mean and variance of the noncentralF -distribution are
E [ F ] { = ν 2 ( ν 1 + λ ) ν 1 ( ν 2 − 2 ) if ν 2 > 2 does not exist if ν 2 ≤ 2 {\displaystyle \operatorname {E} [F]\quad {\begin{cases}={\frac {\nu _{2}(\nu _{1}+\lambda )}{\nu _{1}(\nu _{2}-2)}}&{\text{if }}\nu _{2}>2\\{\text{does not exist}}&{\text{if }}\nu _{2}\leq 2\\\end{cases}}} and
Var [ F ] { = 2 ( ν 1 + λ ) 2 + ( ν 1 + 2 λ ) ( ν 2 − 2 ) ( ν 2 − 2 ) 2 ( ν 2 − 4 ) ( ν 2 ν 1 ) 2 if ν 2 > 4 does not exist if ν 2 ≤ 4. {\displaystyle \operatorname {Var} [F]\quad {\begin{cases}=2{\frac {(\nu _{1}+\lambda )^{2}+(\nu _{1}+2\lambda )(\nu _{2}-2)}{(\nu _{2}-2)^{2}(\nu _{2}-4)}}\left({\frac {\nu _{2}}{\nu _{1}}}\right)^{2}&{\text{if }}\nu _{2}>4\\{\text{does not exist}}&{\text{if }}\nu _{2}\leq 4.\\\end{cases}}} Whenλ = 0, the noncentralF -distribution becomes theF -distribution .
Related distributions [ edit ] Z has anoncentral chi-squared distribution if
Z = lim ν 2 → ∞ ν 1 F {\displaystyle Z=\lim _{\nu _{2}\to \infty }\nu _{1}F} whereF has a noncentralF -distribution.
See alsononcentral t-distribution .
The noncentralF -distribution is implemented in theR language (e.g., pf function), inMATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) inMathematica (NoncentralFRatioDistribution function), inNumPy (random.noncentral_f), and inBoost C++ Libraries .[ 2]
A collaborative wiki page implements an interactive online calculator, programmed in theR language , for the noncentral t,chi-squared , and F distributions, at the Institute of Statistics and Econometrics of theHumboldt University of Berlin .[ 3]
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate andsingular Families