Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

NoncentralF-distribution

From Wikipedia, the free encyclopedia
Probability distribution generalizing the F-distribution with a noncentrality parameter

Inprobability theory andstatistics, thenoncentralF-distribution is acontinuous probability distribution that is anoncentral generalization of the (ordinary)F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numeratorX has anoncentral chi-squared distribution withn1 degrees of freedom and the denominatorY has a centralchi-squared distribution withn2 degrees of freedom. It is also required thatX andY arestatistically independent of each other.

It is the distribution of thetest statistic inanalysis of variance problems when thenull hypothesis is false. The noncentralF-distribution is used to find thepower function of such a test.

Occurrence and specification

[edit]

IfX{\displaystyle X} is anoncentral chi-squared random variable with noncentrality parameterλ{\displaystyle \lambda } andν1{\displaystyle \nu _{1}} degrees of freedom, andY{\displaystyle Y} is achi-squared random variable withν2{\displaystyle \nu _{2}} degrees of freedom that isstatistically independent ofX{\displaystyle X}, then

F=X/ν1Y/ν2{\displaystyle F={\frac {X/\nu _{1}}{Y/\nu _{2}}}}

is a noncentralF-distributed random variable.Theprobability density function (pdf) for the noncentralF-distribution is[1]

p(f)=k=0eλ/2(λ/2)kB(ν22,ν12+k)k!(ν1ν2)ν12+k(ν2ν2+ν1f)ν1+ν22+kfν1/21+k{\displaystyle p(f)=\sum \limits _{k=0}^{\infty }{\frac {e^{-\lambda /2}(\lambda /2)^{k}}{B\left({\frac {\nu _{2}}{2}},{\frac {\nu _{1}}{2}}+k\right)k!}}\left({\frac {\nu _{1}}{\nu _{2}}}\right)^{{\frac {\nu _{1}}{2}}+k}\left({\frac {\nu _{2}}{\nu _{2}+\nu _{1}f}}\right)^{{\frac {\nu _{1}+\nu _{2}}{2}}+k}f^{\nu _{1}/2-1+k}}

whenf0{\displaystyle f\geq 0} and zero otherwise.The degrees of freedomν1{\displaystyle \nu _{1}} andν2{\displaystyle \nu _{2}} are positive.The termB(x,y){\displaystyle B(x,y)} is thebeta function, where

B(x,y)=Γ(x)Γ(y)Γ(x+y).{\displaystyle B(x,y)={\frac {\Gamma (x)\Gamma (y)}{\Gamma (x+y)}}.}

Thecumulative distribution function for the noncentralF-distribution is

F(xd1,d2,λ)=j=0((12λ)jj!eλ/2)I(d1xd2+d1x|d12+j,d22){\displaystyle F(x\mid d_{1},d_{2},\lambda )=\sum \limits _{j=0}^{\infty }\left({\frac {\left({\frac {1}{2}}\lambda \right)^{j}}{j!}}e^{-\lambda /2}\right)I\left({\frac {d_{1}x}{d_{2}+d_{1}x}}{\bigg |}{\frac {d_{1}}{2}}+j,{\frac {d_{2}}{2}}\right)}

whereI{\displaystyle I} is theregularized incomplete beta function.

The mean and variance of the noncentralF-distribution are

E[F]{=ν2(ν1+λ)ν1(ν22)if ν2>2does not existif ν22{\displaystyle \operatorname {E} [F]\quad {\begin{cases}={\frac {\nu _{2}(\nu _{1}+\lambda )}{\nu _{1}(\nu _{2}-2)}}&{\text{if }}\nu _{2}>2\\{\text{does not exist}}&{\text{if }}\nu _{2}\leq 2\\\end{cases}}}

and

Var[F]{=2(ν1+λ)2+(ν1+2λ)(ν22)(ν22)2(ν24)(ν2ν1)2if ν2>4does not existif ν24.{\displaystyle \operatorname {Var} [F]\quad {\begin{cases}=2{\frac {(\nu _{1}+\lambda )^{2}+(\nu _{1}+2\lambda )(\nu _{2}-2)}{(\nu _{2}-2)^{2}(\nu _{2}-4)}}\left({\frac {\nu _{2}}{\nu _{1}}}\right)^{2}&{\text{if }}\nu _{2}>4\\{\text{does not exist}}&{\text{if }}\nu _{2}\leq 4.\\\end{cases}}}

Special cases

[edit]

Whenλ = 0, the noncentralF-distribution becomes theF-distribution.

Related distributions

[edit]

Z has anoncentral chi-squared distribution if

Z=limν2ν1F{\displaystyle Z=\lim _{\nu _{2}\to \infty }\nu _{1}F}

whereF has a noncentralF-distribution.

See alsononcentral t-distribution.

Implementations

[edit]

The noncentralF-distribution is implemented in theR language (e.g., pf function), inMATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) inMathematica (NoncentralFRatioDistribution function), inNumPy (random.noncentral_f), and inBoost C++ Libraries.[2]

A collaborative wiki page implements an interactive online calculator, programmed in theR language, for the noncentral t,chi-squared, and F distributions, at the Institute of Statistics and Econometrics of theHumboldt University of Berlin.[3]

Notes

[edit]
  1. ^Kay, S. (1998).Fundamentals of Statistical Signal Processing: Detection Theory. New Jersey: Prentice Hall. p. 29.ISBN 0-13-504135-X.
  2. ^John Maddock; Paul A. Bristow; Hubert Holin; Xiaogang Zhang; Bruno Lalande; Johan Råde."Noncentral F Distribution: Boost 1.39.0".Boost.org. Retrieved20 August 2011.
  3. ^Sigbert Klinke (10 December 2008)."Comparison of noncentral and central distributions". Humboldt-Universität zu Berlin.

References

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Noncentral_F-distribution&oldid=1291544220"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp