Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of nickel

From Wikipedia, the free encyclopedia
(Redirected fromNickel-59)

Isotopes ofnickel (28Ni)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
56Nisynth6.075 dβ+56Co
57Nisynth35.60 hβ+57Co
58Ni68.1%stable
59Nitrace8.1×104 yε59Co
60Ni26.2%stable
61Ni1.14%stable
62Ni3.63%stable
63Nisynth101 yβ63Cu
64Ni0.926%stable
Standard atomic weightAr°(Ni)

Naturally occurringnickel (28Ni) consists of five stableisotopes;58Ni,60Ni,61Ni,62Ni and64Ni;58Ni is the most abundant at over 68%. 26radioisotopes have been characterized; the most stable are59Ni with ahalf-life of 81,000 years,63Ni with a half-life of 101 years, and56Ni at 6.075 days. All the otherradioactive isotopes have half-lives of less than 60 hours and most of these have half-lives of less than 30 seconds. This element also has 11 knownmeta states.

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
48
Ni
282048.01952(46)#2.8(8) ms2p (70%)46
Fe
0+
β+ (30%)48
Co
[n 8]
β+, p?47
Fe
49
Ni
282149.00916(64)#7.5(10) msβ+, p (83%)48
Fe
7/2−#
β+ (17%)49
Co
[n 8]
50
Ni
282249.99629(54)#18.5(12) msβ+, p (73%)49
Fe
0+
β+, 2p (14%)48
Mn
β+ (13%)50
Co
51
Ni
282350.98749(54)#23.8(2) msβ+, p (87.2%)50
Fe
7/2−#
β+ (12.3%)51
Co
β+, 2p (0.5%)49
Mn
52
Ni
282451.975781(89)41.8(10) msβ+ (68.9%)52
Co
0+
β+, p (31.1%)51
Fe
53
Ni
282552.968190(27)55.2(7) msβ+ (77.3%)53
Co
(7/2−)
β+, p (22.7%)52
Fe
54
Ni
282653.9578330(50)114.1(3) msβ+54
Co
0+
β+, p?53
Fe
54m
Ni
6457.4(9) keV152(4) nsIT (64%)54
Ni
10+
p (36%)53
Co
55
Ni
282754.95132985(76)203.9(13) msβ+55
Co
7/2−
56
Ni
282855.94212776(43)6.075(10) dEC56
Co
0+
β+ (<5.8×10−5%)[5]56
Co
57
Ni
282956.93979139(61)35.60(6) hβ+57
Co
3/2−
58
Ni
283057.93534165(37)Observationally stable[n 9]0+0.680769(190)
59
Ni
283158.93434544(38)8.1(5)×104 yEC (99%)59
Co
3/2−
β+ (1.5×10−5%)[6]
60
Ni
283259.93078513(38)Stable0+0.262231(150)
61
Ni
283360.93105482(38)Stable3/2−0.011399(13)
62
Ni
[n 10]
283461.92834475(46)Stable0+0.036345(40)
63
Ni
283562.92966902(46)101.2(15) yβ63
Cu
1/2−
63m
Ni
87.15(11) keV1.67(3) μsIT63Ni5/2−
64
Ni
283663.92796623(50)Stable0+0.009256(19)
65
Ni
283764.93008459(52)2.5175(5) hβ65
Cu
5/2−
65m
Ni
63.37(5) keV69(3) μsIT65Ni1/2−
66
Ni
283865.9291393(15)54.6(3) hβ66
Cu
0+
67
Ni
283966.9315694(31)21(1) sβ67
Cu
1/2−
67m
Ni
1006.6(2) keV13.34(19) μsIT67
Ni
9/2+
68
Ni
284067.9318688(32)29(2) sβ68
Cu
0+
68m1
Ni
1603.51(28) keV270(5) nsIT68Ni0+
68m2
Ni
2849.1(3) keV850(30) μsIT68Ni5−
69
Ni
284168.9356103(40)11.4(3) sβ69
Cu
(9/2+)
69m1
Ni
321(2) keV3.5(4) sβ69
Cu
(1/2−)
IT (<0.01%)69
Ni
69m2
Ni
2700.0(10) keV439(3) nsIT69Ni(17/2−)
70
Ni
284269.9364313(23)6.0(3) sβ70
Cu
0+
70m
Ni
2860.91(8) keV232(1) nsIT70Ni8+
71
Ni
284370.9405190(24)2.56(3) sβ71
Cu
(9/2+)
71m
Ni
499(5) keV2.3(3) sβ71Cu(1/2−)
72
Ni
284471.9417859(24)1.57(5) sβ72
Cu
0+
β,n?71
Cu
73
Ni
284572.9462067(26)840(30) msβ73
Cu
(9/2+)
β, n?72
Cu
74
Ni
284673.9479853(38)[7]507.7(46) msβ74
Cu
0+
β, n?73
Cu
75
Ni
284774.952704(16)[7]331.6(32) msβ (90.0%)75
Cu
9/2+#
β, n (10.0%)74
Cu
76
Ni
284875.95471(32)#234.6(27) msβ (86.0%)76
Cu
0+
β, n (14.0%)75
Cu
76m
Ni
2418.0(5) keV547.8(33) nsIT76Ni(8+)
77
Ni
284976.95990(43)#158.9(42) msβ (74%)77
Cu
9/2+#
β, n (26%)76
Cu
β, 2n?75
Cu
78
Ni
285077.96256(43)#122.2(51) msβ78
Cu
0+
β, n?77
Cu
β, 2n?76
Cu
79
Ni
285178.96977(54)#44(8) msβ79
Cu
5/2+#
β, n?78
Cu
β, 2n?77
Cu
80
Ni
285279.97505(64)#30(22) msβ80
Cu
0+
β, n?79
Cu
β, 2n?78
Cu
81
Ni
285380.98273(75)#30# ms[>410 ns]β?81
Cu
3/2+#
82
Ni
285481.98849(86)#16# ms[>410 ns]β?82
Cu
0+
This table header & footer:
  1. ^mNi – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^abDecay product not observed, but known to beunbound with respect toproton emission with an extremely short half-life.
  9. ^Believed to decay byβ+β+ to58
    Fe
    with a half-life over 7×1020 years
  10. ^Highestbinding energy pernucleon of all nuclides

Notable isotopes

[edit]
icon
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(May 2018) (Learn how and when to remove this message)
This sectionmay containoriginal research. Pleaseimprove it byverifying the claims made and addinginline citations. Statements consisting only of original research should be removed.(May 2018) (Learn how and when to remove this message)

The known isotopes of nickel range inmass number from48Ni to82Ni, and include:[8]

Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28protons and 20neutrons48Ni is "doubly magic" (like208
Pb
) and therefore much more stable, with a half-life around 3 milliseconds, than would be expected from its position in the chart of nuclides.[9] It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide.[10]

Nickel-56, also doubly magic, is produced in large quantities insupernovae. In the last phases ofstellar evolution of very large stars,fusion of lighter elements like hydrogen and helium comes to an end. Later in the star's life cycle, elements including magnesium, silicon, and sulfur are fused to form heavier elements. Once the last nuclear fusion reactions cease, the star collapses to produce asupernova. During the supernova,silicon burning produces56Ni. This isotope of nickel is favored because it has an equal number of neutrons and protons, making it readily produced by fusing two28Si atoms.56Ni is the last element that can be formed in thealpha process. Past56Ni, nuclear reactions are endoergic and energetically unfavorable.56Ni decays to56Co and then56Fe byβ+ decay.[11] Theradioactive decay of 56Ni and56Co supplies much of the energy for thelight curves observed for stellar supernovae.[12] The shape of thelight curve of these supernovae display characteristic timescales corresponding to the decay of56Ni to56Co and then to56Fe.

Nickel-58 is the most abundant isotope of nickel with a 68.077%natural abundance. It is the only isotope theoretically unstable towarddouble beta decay.

Nickel-59 is a long-livedcosmogenicradionuclide with a half-life of 81,000 years.59Ni has found many applications inisotope geology.59Ni has been used to date the terrestrial age ofmeteorites and to determine abundances of extraterrestrial dust in ice andsediment.

Nickel-60 is the daughter product of theextinct radionuclide60
Fe
(half-life 2.62 My). Because60Fe has such a long half-life, its persistence in materials in theSolar System at high enough concentrations may have generated observable variations in the isotopic composition of60Ni. Therefore, the abundance of60Ni in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from60Ni excesses.60Ni is also the stable end-product of the decay of60Zn, the last rung of thealpha ladder.

Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies byEPR spectroscopy.[13]

Nickel-62 has the highestbinding energy per nucleon of any isotope for any element, when including the electron shell in the calculation, thoughiron-56 has the lower mass-energy per nucleon. Though fusion could form heavier isotopes exothermically - for example, two40Ca atoms could make80Kr (with 4 positron decays) and liberate 77 keV per nucleon - reactions leading to the iron/nickel region are more probable as they release more energy in total.

Nickel-63 has two main uses:detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used assurge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used inelectron capture detectors ingas chromatography for the detection mainly of halogens. It is proposed to be used for miniaturebetavoltaic generators for pacemakers.

Nickel-64 is the heaviest stable isotope of nickel.

Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greaternuclear binding energy and stability despite a lopsidedneutron-proton ratio. Its half-life is122 ± 5.1 milliseconds.[14] Due to its magic neutron number,78Ni is believed to have an important role insupernova nucleosynthesis of elements heavier than iron.[15]78Ni, along withN = 50isotones79Cu and80Zn, are thought to constitute a waiting point in ther-process, where furtherneutron capture is delayed by the shell gap and a buildup of isotopes aroundA = 80 results.[16]

See also

[edit]

Daughter products other than nickel

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Nickel".CIAAW. 2007.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^Sur, Bhaskar; Norman, Eric B.; Lesko, K. T.; Browne, Edgardo; Larimer, Ruth-Mary (1 August 1990). "Reinvestigation of Ni 56 decay".Physical Review C.42 (2):573–580.doi:10.1103/PhysRevC.42.573.PMID 9966742.
  6. ^I. Gresits; S. Tölgyesi (September 2003). "Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants".Journal of Radioanalytical and Nuclear Chemistry.258 (1):107–112.Bibcode:2003JRNC..258..107G.doi:10.1023/A:1026214310645.S2CID 93334310.
  7. ^abGiraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae".Physics Letters B.833 137309.doi:10.1016/j.physletb.2022.137309.
  8. ^"New nuclides included for the first time in the 2017 evaluation"(PDF). Discovery of Nuclides Project. 22 December 2018. Retrieved22 May 2018.
  9. ^"Discovery of doubly magic nickel".CERN Courier. 15 March 2000. Archived fromthe original on 14 December 2010. Retrieved2 April 2013.
  10. ^"Twice-magic metal makes its debut | Science News | Find Articles". Archived fromthe original on 24 May 2012.
  11. ^Umeda, Hideyuki; Nomoto, Ken'ichi (1 February 2008)."How Much 56Ni Can Be Produced in Core-Collapse Supernovae? Evolution and Explosions of 30–100M⊙ Stars".The Astrophysical Journal.673 (2):1014–1022.arXiv:0707.2598.doi:10.1086/524767 – via The Institute of Physics (IOP).
  12. ^Bouchet, P.; Danziger, I.J.; Lucy, L.B. (September 1991)."Bolometric Light Curve of SN 1987A: Results from Day 616 to 1316 After Outburst".The Astronomical Journal.102 (3):1135–1146.Bibcode:1991AJ....102.1135B.doi:10.1086/115939 – via Astrophysics Data System.
  13. ^Maurice van Gastel;Wolfgang Lubitz (2009). "EPR Investigation of [NiFe] Hydrogenases". In Graeme Hanson; Lawrence Berliner (eds.).High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine. Dordrecht: Springer. pp. 441–470.ISBN 978-0-387-84856-3.
  14. ^Bazin, D. (2017)."Viewpoint: Doubly Magic Nickel".Physics.10 (121): 121.doi:10.1103/Physics.10.121.
  15. ^Davide Castelvecchi (2005-04-22)."Atom Smashers Shed Light on Supernovae, Big Bang".Sky & Telescope.
  16. ^Pereira, J.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Hennrich, S.; Hosmer, P.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P.F.; Matos, M.; Montes, F.; Santi, P.; Pfeiffer, B.; Quinn, M.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.; Tomlin, B.E.; Walters, W.; Wöhr, A. (2009).Beta decay studies of r-process nuclei at the National Superconducting Cyclotron Laboratory.10th Symposium on Nuclei in the Cosmos. Mackinac Island.arXiv:0901.1802.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_nickel&oldid=1334631507#Nickel-59"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp