| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Ni) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurringnickel (28Ni) consists of five stableisotopes;58Ni,60Ni,61Ni,62Ni and64Ni;58Ni is the most abundant at over 68%. 26radioisotopes have been characterized; the most stable are59Ni with ahalf-life of 81,000 years,63Ni with a half-life of 101 years, and56Ni at 6.075 days. All the otherradioactive isotopes have half-lives of less than 60 hours and most of these have half-lives of less than 30 seconds. This element also has 11 knownmeta states.
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[4] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6] | Spin and parity[1] [n 7][n 4] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
| 48 Ni | 28 | 20 | 48.01952(46)# | 2.8(8) ms | 2p (70%) | 46 Fe | 0+ | ||||||||||||
| β+ (30%) | 48 Co[n 8] | ||||||||||||||||||
| β+, p? | 47 Fe | ||||||||||||||||||
| 49 Ni | 28 | 21 | 49.00916(64)# | 7.5(10) ms | β+, p (83%) | 48 Fe | 7/2−# | ||||||||||||
| β+ (17%) | 49 Co[n 8] | ||||||||||||||||||
| 50 Ni | 28 | 22 | 49.99629(54)# | 18.5(12) ms | β+, p (73%) | 49 Fe | 0+ | ||||||||||||
| β+, 2p (14%) | 48 Mn | ||||||||||||||||||
| β+ (13%) | 50 Co | ||||||||||||||||||
| 51 Ni | 28 | 23 | 50.98749(54)# | 23.8(2) ms | β+, p (87.2%) | 50 Fe | 7/2−# | ||||||||||||
| β+ (12.3%) | 51 Co | ||||||||||||||||||
| β+, 2p (0.5%) | 49 Mn | ||||||||||||||||||
| 52 Ni | 28 | 24 | 51.975781(89) | 41.8(10) ms | β+ (68.9%) | 52 Co | 0+ | ||||||||||||
| β+, p (31.1%) | 51 Fe | ||||||||||||||||||
| 53 Ni | 28 | 25 | 52.968190(27) | 55.2(7) ms | β+ (77.3%) | 53 Co | (7/2−) | ||||||||||||
| β+, p (22.7%) | 52 Fe | ||||||||||||||||||
| 54 Ni | 28 | 26 | 53.9578330(50) | 114.1(3) ms | β+ | 54 Co | 0+ | ||||||||||||
| β+, p? | 53 Fe | ||||||||||||||||||
| 54m Ni | 6457.4(9) keV | 152(4) ns | IT (64%) | 54 Ni | 10+ | ||||||||||||||
| p (36%) | 53 Co | ||||||||||||||||||
| 55 Ni | 28 | 27 | 54.95132985(76) | 203.9(13) ms | β+ | 55 Co | 7/2− | ||||||||||||
| 56 Ni | 28 | 28 | 55.94212776(43) | 6.075(10) d | EC | 56 Co | 0+ | ||||||||||||
| β+ (<5.8×10−5%)[5] | 56 Co | ||||||||||||||||||
| 57 Ni | 28 | 29 | 56.93979139(61) | 35.60(6) h | β+ | 57 Co | 3/2− | ||||||||||||
| 58 Ni | 28 | 30 | 57.93534165(37) | Observationally stable[n 9] | 0+ | 0.680769(190) | |||||||||||||
| 59 Ni | 28 | 31 | 58.93434544(38) | 8.1(5)×104 y | EC (99%) | 59 Co | 3/2− | ||||||||||||
| β+ (1.5×10−5%)[6] | |||||||||||||||||||
| 60 Ni | 28 | 32 | 59.93078513(38) | Stable | 0+ | 0.262231(150) | |||||||||||||
| 61 Ni | 28 | 33 | 60.93105482(38) | Stable | 3/2− | 0.011399(13) | |||||||||||||
| 62 Ni[n 10] | 28 | 34 | 61.92834475(46) | Stable | 0+ | 0.036345(40) | |||||||||||||
| 63 Ni | 28 | 35 | 62.92966902(46) | 101.2(15) y | β− | 63 Cu | 1/2− | ||||||||||||
| 63m Ni | 87.15(11) keV | 1.67(3) μs | IT | 63Ni | 5/2− | ||||||||||||||
| 64 Ni | 28 | 36 | 63.92796623(50) | Stable | 0+ | 0.009256(19) | |||||||||||||
| 65 Ni | 28 | 37 | 64.93008459(52) | 2.5175(5) h | β− | 65 Cu | 5/2− | ||||||||||||
| 65m Ni | 63.37(5) keV | 69(3) μs | IT | 65Ni | 1/2− | ||||||||||||||
| 66 Ni | 28 | 38 | 65.9291393(15) | 54.6(3) h | β− | 66 Cu | 0+ | ||||||||||||
| 67 Ni | 28 | 39 | 66.9315694(31) | 21(1) s | β− | 67 Cu | 1/2− | ||||||||||||
| 67m Ni | 1006.6(2) keV | 13.34(19) μs | IT | 67 Ni | 9/2+ | ||||||||||||||
| 68 Ni | 28 | 40 | 67.9318688(32) | 29(2) s | β− | 68 Cu | 0+ | ||||||||||||
| 68m1 Ni | 1603.51(28) keV | 270(5) ns | IT | 68Ni | 0+ | ||||||||||||||
| 68m2 Ni | 2849.1(3) keV | 850(30) μs | IT | 68Ni | 5− | ||||||||||||||
| 69 Ni | 28 | 41 | 68.9356103(40) | 11.4(3) s | β− | 69 Cu | (9/2+) | ||||||||||||
| 69m1 Ni | 321(2) keV | 3.5(4) s | β− | 69 Cu | (1/2−) | ||||||||||||||
| IT (<0.01%) | 69 Ni | ||||||||||||||||||
| 69m2 Ni | 2700.0(10) keV | 439(3) ns | IT | 69Ni | (17/2−) | ||||||||||||||
| 70 Ni | 28 | 42 | 69.9364313(23) | 6.0(3) s | β− | 70 Cu | 0+ | ||||||||||||
| 70m Ni | 2860.91(8) keV | 232(1) ns | IT | 70Ni | 8+ | ||||||||||||||
| 71 Ni | 28 | 43 | 70.9405190(24) | 2.56(3) s | β− | 71 Cu | (9/2+) | ||||||||||||
| 71m Ni | 499(5) keV | 2.3(3) s | β− | 71Cu | (1/2−) | ||||||||||||||
| 72 Ni | 28 | 44 | 71.9417859(24) | 1.57(5) s | β− | 72 Cu | 0+ | ||||||||||||
| β−,n? | 71 Cu | ||||||||||||||||||
| 73 Ni | 28 | 45 | 72.9462067(26) | 840(30) ms | β− | 73 Cu | (9/2+) | ||||||||||||
| β−, n? | 72 Cu | ||||||||||||||||||
| 74 Ni | 28 | 46 | 73.9479853(38)[7] | 507.7(46) ms | β− | 74 Cu | 0+ | ||||||||||||
| β−, n? | 73 Cu | ||||||||||||||||||
| 75 Ni | 28 | 47 | 74.952704(16)[7] | 331.6(32) ms | β− (90.0%) | 75 Cu | 9/2+# | ||||||||||||
| β−, n (10.0%) | 74 Cu | ||||||||||||||||||
| 76 Ni | 28 | 48 | 75.95471(32)# | 234.6(27) ms | β− (86.0%) | 76 Cu | 0+ | ||||||||||||
| β−, n (14.0%) | 75 Cu | ||||||||||||||||||
| 76m Ni | 2418.0(5) keV | 547.8(33) ns | IT | 76Ni | (8+) | ||||||||||||||
| 77 Ni | 28 | 49 | 76.95990(43)# | 158.9(42) ms | β− (74%) | 77 Cu | 9/2+# | ||||||||||||
| β−, n (26%) | 76 Cu | ||||||||||||||||||
| β−, 2n? | 75 Cu | ||||||||||||||||||
| 78 Ni | 28 | 50 | 77.96256(43)# | 122.2(51) ms | β− | 78 Cu | 0+ | ||||||||||||
| β−, n? | 77 Cu | ||||||||||||||||||
| β−, 2n? | 76 Cu | ||||||||||||||||||
| 79 Ni | 28 | 51 | 78.96977(54)# | 44(8) ms | β− | 79 Cu | 5/2+# | ||||||||||||
| β−, n? | 78 Cu | ||||||||||||||||||
| β−, 2n? | 77 Cu | ||||||||||||||||||
| 80 Ni | 28 | 52 | 79.97505(64)# | 30(22) ms | β− | 80 Cu | 0+ | ||||||||||||
| β−, n? | 79 Cu | ||||||||||||||||||
| β−, 2n? | 78 Cu | ||||||||||||||||||
| 81 Ni | 28 | 53 | 80.98273(75)# | 30# ms[>410 ns] | β−? | 81 Cu | 3/2+# | ||||||||||||
| 82 Ni | 28 | 54 | 81.98849(86)# | 16# ms[>410 ns] | β−? | 82 Cu | 0+ | ||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| n: | Neutron emission |
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(May 2018) (Learn how and when to remove this message) |
This sectionmay containoriginal research. Pleaseimprove it byverifying the claims made and addinginline citations. Statements consisting only of original research should be removed.(May 2018) (Learn how and when to remove this message) |
The known isotopes of nickel range inmass number from48Ni to82Ni, and include:[8]
Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28protons and 20neutrons48Ni is "doubly magic" (like208
Pb) and therefore much more stable, with a half-life around 3 milliseconds, than would be expected from its position in the chart of nuclides.[9] It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide.[10]
Nickel-56, also doubly magic, is produced in large quantities insupernovae. In the last phases ofstellar evolution of very large stars,fusion of lighter elements like hydrogen and helium comes to an end. Later in the star's life cycle, elements including magnesium, silicon, and sulfur are fused to form heavier elements. Once the last nuclear fusion reactions cease, the star collapses to produce asupernova. During the supernova,silicon burning produces56Ni. This isotope of nickel is favored because it has an equal number of neutrons and protons, making it readily produced by fusing two28Si atoms.56Ni is the last element that can be formed in thealpha process. Past56Ni, nuclear reactions are endoergic and energetically unfavorable.56Ni decays to56Co and then56Fe byβ+ decay.[11] Theradioactive decay of 56Ni and56Co supplies much of the energy for thelight curves observed for stellar supernovae.[12] The shape of thelight curve of these supernovae display characteristic timescales corresponding to the decay of56Ni to56Co and then to56Fe.
Nickel-58 is the most abundant isotope of nickel with a 68.077%natural abundance. It is the only isotope theoretically unstable towarddouble beta decay.
Nickel-59 is a long-livedcosmogenicradionuclide with a half-life of 81,000 years.59Ni has found many applications inisotope geology.59Ni has been used to date the terrestrial age ofmeteorites and to determine abundances of extraterrestrial dust in ice andsediment.
Nickel-60 is the daughter product of theextinct radionuclide60
Fe (half-life 2.62 My). Because60Fe has such a long half-life, its persistence in materials in theSolar System at high enough concentrations may have generated observable variations in the isotopic composition of60Ni. Therefore, the abundance of60Ni in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from60Ni excesses.60Ni is also the stable end-product of the decay of60Zn, the last rung of thealpha ladder.
Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies byEPR spectroscopy.[13]
Nickel-62 has the highestbinding energy per nucleon of any isotope for any element, when including the electron shell in the calculation, thoughiron-56 has the lower mass-energy per nucleon. Though fusion could form heavier isotopes exothermically - for example, two40Ca atoms could make80Kr (with 4 positron decays) and liberate 77 keV per nucleon - reactions leading to the iron/nickel region are more probable as they release more energy in total.
Nickel-63 has two main uses:detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used assurge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used inelectron capture detectors ingas chromatography for the detection mainly of halogens. It is proposed to be used for miniaturebetavoltaic generators for pacemakers.
Nickel-64 is the heaviest stable isotope of nickel.
Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greaternuclear binding energy and stability despite a lopsidedneutron-proton ratio. Its half-life is122 ± 5.1 milliseconds.[14] Due to its magic neutron number,78Ni is believed to have an important role insupernova nucleosynthesis of elements heavier than iron.[15]78Ni, along withN = 50isotones79Cu and80Zn, are thought to constitute a waiting point in ther-process, where furtherneutron capture is delayed by the shell gap and a buildup of isotopes aroundA = 80 results.[16]
Daughter products other than nickel