Natural gas is afossil fuel that is formed when layers oforganic matter (primarily marine microorganisms)[6] are thermally decomposed under oxygen-free conditions, subjected to intense heat and pressure underground over millions of years.[7] The energy that the decayed organisms originally obtained from the sun viaphotosynthesis is stored as chemical energy within the molecules of methane and other hydrocarbons.[8]
Natural gas can be burned for heating, cooking,[9] andelectricity generation. Consisting mainly of methane, natural gas is rarely used as a chemicalfeedstock.
The extraction and consumption of natural gas is a major industry. When burned forheat orelectricity, natural gas emits fewer toxic air pollutants, less carbon dioxide, and almost no particulate matter compared to other fossil fuels.[10] However,gas venting and unintendedfugitive emissions throughout thesupply chain can result in natural gas having a similarcarbon footprint to other fossil fuels overall.[11]
Natural gas can be found in undergroundgeological formations, often alongside other fossil fuels likecoal andoil (petroleum). Most natural gas has been created through either biogenic or thermogenic processes. Thermogenic gas takes a much longer period of time to form and is created when organic matter is heated and compressed deep underground.[12][7] Methanogenic organisms produce methane from a variety of sources, principally carbon dioxide.
During petroleum production, natural gas is sometimesflared rather than being collected and used. Before natural gas can be burned as a fuel or used in manufacturing processes, it almost always has to beprocessed to remove impurities such as water. The byproducts of this processing includeethane,propane,butanes,pentanes, and higher molecular weight hydrocarbons. Hydrogen sulfide (which may be converted into puresulfur),carbon dioxide,water vapor, and sometimeshelium andnitrogen must also be removed.
Natural gas is sometimes informally referred to simply as "gas", especially when it is being compared to other energy sources, such as oil, coal or renewables. However, it is not to be confused withgasoline, which is also shortened in colloquial usage to "gas", especially in North America.[13]
Natural gas is measured instandard cubic meters orstandard cubic feet. The density compared to air ranges from 0.58 (16.8 g/mole, 0.71 kg per standard cubic meter) to as high as 0.79 (22.9 g/mole, 0.97 kg per scm), but generally less than 0.64 (18.5 g/mole, 0.78 kg per scm).[14] For comparison, pure methane (16.0425 g/mole) has a density 0.5539 times that of air (0.678 kg per standard cubic meter).
In the early 1800s, natural gas became known as "natural" to distinguish it from the dominant gas fuel at the time,coal gas.[15] Unlike coal gas, which is manufactured by heating coal, natural gas can be extracted from the ground in its native gaseous form. When the use of natural gas overtook the use of coal gas in English speaking countries in the 20th century, it was increasingly referred to as simply "gas."[16] In order to highlight its role in exacerbating theclimate crisis, however, many organizations have criticized the continued use of the word "natural" in referring to the gas. These advocates prefer the term "fossil gas" or "methane gas" as better conveying to the public its climate threat.[17][18][19] A 2020 study of Americans' perceptions of the fuel found that, across political identifications, the term "methane gas" led to better estimates of its harms and risks.[20]
A gas bill fromBaltimore, Maryland, 1834, for manufactured coal gas, before the introduction of ground-extracted methane gas.
Natural gas can come out of the ground and cause a long-burning fire. Inancient Greece, the gas flames atMount Chimaera contributed to the legend of the fire-breathing creatureChimera. Inancient China, gas resulting from the drilling forbrines was first used by about 400 BC.[21] The Chinese transported gas seeping from the ground in crude pipelines of bamboo to where it was used to boil salt water toextract the salt in theZiliujing District ofSichuan.[22][23]
Natural gas was not widely used before the development of long distance pipelines in the early 20th century. Before that, most use was near to the source of the well, and the predominant gas for fuel and lighting during the industrial revolution was manufactured coal gas.[24]
The history of natural gas in the United States begins with localized use. In the seventeenth century, French missionaries witnessed the American Indians setting fire to natural gas seeps aroundLake Erie, and scattered observations of these seeps were made by European-descended settlers throughout the eastern seaboard through the 1700s.[25] In 1821, William Hart dug the first commercial natural gas well in the United States atFredonia, New York, United States, which led in 1858 to the formation of theFredonia Gas Light Company.[26] Further such ventures followed near wells in other states, until technological innovations allowed the growth of major long distance pipelines from the 1920s onwards.[25]
By 2009, 66,000 km3 (16,000 cu mi) (or 8%) had been used out of the total 850,000 km3 (200,000 cu mi) of estimated remaining recoverable reserves of natural gas.[27]
In the 19th century, natural gas was primarily obtained as a by-product ofproducing oil. The small, light gas carbon chains came out of solution as the extracted fluids underwent pressure reduction from thereservoir to the surface, similar to uncapping a soft drink bottle where the carbon dioxideeffervesces. The gas was often viewed as a by-product, a hazard, and a disposal problem in active oil fields. The large volumes produced could not be used until relatively expensivepipeline andstorage facilities were constructed to deliver the gas to consumer markets.
Until the early part of the 20th century, most natural gas associated with oil was either simply released orburned off at oil fields.Gas venting andproduction flaring are still practised in modern times, but efforts are ongoing around the world to retire them, and to replace them with other commercially viable and useful alternatives.[28][29]
In addition to transporting gas via pipelines for use in power generation, other end uses for natural gas include export asliquefied natural gas (LNG) or conversion of natural gas into other liquid products viagas to liquids (GTL) technologies. GTL technologies can convert natural gas into liquids products such as gasoline, diesel or jet fuel. A variety of GTL technologies have been developed, includingFischer–Tropsch (F–T), methanol to gasoline (MTG) andsyngas to gasoline plus (STG+). F–T produces a synthetic crude that can be further refined into finished products, while MTG can produce synthetic gasoline from natural gas. STG+ can produce drop-in gasoline, diesel, jet fuel and aromatic chemicals directly from natural gas via a single-loop process.[30] In 2011,Royal Dutch Shell's 140,000 barrels (22,000 m3) per day F–T plant went into operation inQatar.[31]
It is estimated that there are about 900,000 km3 of "unconventional" gas such as shale gas, of which 180,000 km3 may be recoverable.[39] In turn, many studies fromMIT,Black & Veatch and theUS Department of Energy predict that natural gas will account for a larger portion of electricity generation and heat in the future.[40][better source needed]
The world's largest gas field is the offshoreSouth Pars/North Dome Gas-Condensate field, shared between Iran and Qatar. It is estimated to have 51,000 cubic kilometers (12,000 cu mi) of natural gas and 50 billion barrels (7.9 billion cubic meters) ofnatural gas condensates.
Because natural gas is not a pure product, as the reservoir pressure drops when non-associated gas is extracted from a field undersupercritical (pressure/temperature) conditions, the higher molecular weight components may partially condense upon isothermic depressurizing—an effect calledretrograde condensation. The liquid thus formed may get trapped as the pores of the gas reservoir get depleted. One method to deal with this problem is to re-inject dried gas free of condensate to maintain the underground pressure and to allow re-evaporation and extraction of condensates. More frequently, the liquid condenses at the surface, and one of the tasks of thegas plant is to collect this condensate. The resulting liquid is called natural gas liquid (NGL) and has commercial value.
Shale gas is natural gas produced fromshale. Because shale's matrix permeability is too low to allow gas to flow in economical quantities, shale gas wells depend on fractures to allow the gas to flow. Early shale gas wells depended on natural fractures through which gas flowed; almost all shale gas wells today require fractures artificially created byhydraulic fracturing. Since 2000, shale gas has become a major source of natural gas in the United States and Canada.[41] Because of increased shale gas production the United States was in 2014 the number one natural gas producer in the world.[42] The production of shale gas in the United States has been described as a "shale gas revolution" and as "one of the landmark events in the 21st century."[43]
Following the increased production in the United States, shale gas exploration is beginning in countries such as Poland, China, and South Africa.[44][45][46] Chinese geologists have identified theSichuan Basin as a promising target for shale gas drilling, because of the similarity of shales to those that have proven productive in the United States. Production from the Wei-201 well is between 10,000 and 20,000 m3 per day.[47] In late 2020, China National Petroleum Corporation claimed daily production of 20 million cubic meters of gas from its Changning-Weiyuan demonstration zone.[48][unreliable source?]
Town gas is a flammable gaseous fuel made by the destructive distillation ofcoal. It contains a variety of calorific gases includinghydrogen,carbon monoxide,methane, and other volatilehydrocarbons, together with small quantities of non-calorific gases such ascarbon dioxide andnitrogen, and was used in a similar way to natural gas. This is a historical technology and is not usually economically competitive with other sources of fuel gas today.
Most town "gashouses" located in the eastern US in the late 19th and early 20th centuries were simple by-productcoke ovens that heated bituminous coal in air-tight chambers. The gas driven off from the coal was collected and distributed through networks of pipes to residences and other buildings where it was used for cooking and lighting. (Gas heating did not come into widespread use until the last half of the 20th century.) Thecoal tar (orasphalt) that collected in the bottoms of the gashouse ovens was often used for roofing and other waterproofing purposes, and when mixed with sand and gravel was used for paving streets.
Synthetic natural gas (SNG), is a fuel gas (predominantly methane, CH4) that can be produced from fossil fuels such as lignite coal, oil shale, or from biofuels or using electricity with power-to-gas system.Gasification process is used to generate SNG.[49] When the gasification is conducted with hydrogen in place of oxygen/air, it is called hydrogasification.[50]
Huge quantities of natural gas (primarily methane) exist in the form ofclathrates under sediment on offshore continental shelves and on land in arctic regions that experiencepermafrost, such as those inSiberia. Hydrates require a combination of high pressure and low temperature to form.
In 2013, Japan Oil, Gas and Metals National Corporation (JOGMEC) announced that they had recovered commercially relevant quantities of natural gas from methane hydrate.[52]
Natural gas processing plant inAderklaa, Lower Austria
The image below is a schematicblock flow diagram of a typical natural gas processing plant. It shows the various unit processes used to convert raw natural gas into sales gas pipelined to the end user markets.
The block flow diagram also shows how processing of the raw natural gas yields byproduct sulfur, byproduct ethane, andnatural gas liquids (NGL) propane, butanes and natural gasoline (denoted aspentanes +).[53][54][55][56]
Schematic flow diagram of a typical natural gas processing plant
As of mid-2020, natural gas production in the US had peaked three times, with current levels exceeding both previous peaks. It reached 24.1 trillion cubic feet per year in 1973, followed by a decline, and reached 24.5 trillion cubic feet in 2001. After a brief drop, withdrawals increased nearly every year since 2006 (owing to theshale gas boom), with 2017 production at 33.4 trillion cubic feet and 2019 production at 40.7 trillion cubic feet. After the third peak in December 2019, extraction continued to fall from March onward due to decreased demand caused by theCOVID-19 pandemic in the US.[57]
The2021 global energy crisis was driven by a global surge in demand as the world quit the economic recession caused by COVID-19, particularly due to strong energy demand in Asia.[58]
Polyethylene plasticmain being placed in atrench Construction close to high pressure gas transmission pipelines is discouraged, often with standing warning signs.[59]
This section needs to beupdated. The reason given is: change in transport from Russia. Please help update this article to reflect recent events or newly available information.(May 2022)
Because of its low density, it is not easy to store natural gas or to transport it by vehicle. Natural gaspipelines are impractical across oceans, since the gas needs to be cooled down and compressed, as the friction in the pipeline causes the gas to heat up. Manyexisting pipelines in the US are close to reaching their capacity, prompting some politicians representing northern states to speak of potential shortages. The large trade cost implies that natural gas markets are globally much less integrated, causing significant price differences across countries. InWestern Europe, the gas pipeline network is already dense.[60][better source needed][full citation needed] New pipelines are planned or under construction between Western Europe and theNear East orNorthern Africa.[61]
Whenever gas is bought or sold at custody transfer points, rules and agreements are made regarding the gas quality. These may include the maximum allowable concentration ofCO 2,H 2S andH 2O. Usually sales quality gas that has beentreated to remove contamination is traded on a "dry gas" basis and is required to be commercially free from objectionable odours, materials, and dust or other solid or liquid matter, waxes, gums and gum forming constituents, which might damage or adversely affect operation of equipment downstream of the custody transfer point.
Based on their geographic origin, H-gas (high-calorific gas) and L-gas (low-calorific gas) are to be distinguished.[62] Both types require separate transport, leading to two separate pipeline networks, e.g. in parts of Germany (with a strengthened focus and transition towards H-gas, as the L-gas reservoirs in Germany and the Netherlands are declining).[63]
LNG carrier ships transportliquefied natural gas (LNG) across oceans, whiletank trucks can carry LNG or compressed natural gas (CNG) over shorter distances.[64] Sea transport usingCNG carrier ships that are now under development may be competitive with LNG transport in specific conditions.[65]
Gas is turned into liquid at aliquefaction plant, and is returned to gas form atregasification plant at theterminal. Shipborne regasification equipment is also used. LNG is the preferred form for long distance, high volume transportation of natural gas, whereas pipeline is preferred for transport for distances up to 4,000 km (2,500 mi) over land and approximately half that distance offshore.
CNG is transported at high pressure, typically above 200bars (20,000 kPa; 2,900 psi). Compressors and decompression equipment are less capital intensive and may be economical in smaller unit sizes than liquefaction/regasification plants. Natural gas trucks and carriers may transport natural gas directly to end-users, or to distribution points such as pipelines.
In the past, the natural gas which was recovered in the course of recoveringpetroleum could not be profitably sold, and was simply burned at the oil field in a process known asflaring. Flaring is now illegal in many countries.[66] Additionally, higher demand in the last 20–30 years has made production of gas associated with oil economically viable. As a further option, the gas is now sometimes re-injected into the formation forenhanced oil recovery by pressure maintenance as well as miscible or immiscible flooding. Conservation, re-injection, or flaring of natural gas associated with oil is primarily dependent on proximity to markets (pipelines), and regulatory restrictions.
Natural gas can be indirectly exported through the absorption in other physical output. The expansion of shale gas production in the US has caused prices to drop relative to other countries. This has caused a boom in energy intensive manufacturing sector exports, whereby the average dollar unit of US manufacturing exports has almost tripled its energy content between 1996 and 2012.[67]
A "master gas system" was invented inSaudi Arabia in the late 1970s, ending any necessity for flaring. Satellite and nearby infra-red camera observations, however, shows that flaring[68][69][70][71] and venting[72] are still happening in some countries.
Natural gas is used to generate electricity and heat fordesalination. Similarly, some landfills that also discharge methane gases have been set up to capture the methane and generate electricity.
Natural gas is often stored underground [references about geological storage needed]inside depleted gas reservoirs from previous gas wells,salt domes, or in tanks as liquefied natural gas. The gas is injected in a time of low demand and extracted when demand picks up. Storage nearby end users helps to meet volatile demands, but such storage may not always be practicable.
With 15 countries accounting for 84% of the worldwide extraction, access to natural gas has become an important issue in international politics, and countries vie for control of pipelines.[73] In the first decade of the 21st century,Gazprom, the state-owned energy company in Russia, engaged in disputes withUkraine andBelarus over the price of natural gas, which have created concerns that gas deliveries to parts of Europe could be cut off for political reasons.[74] The United States is preparing to export natural gas.[75]
Floating liquefied natural gas (FLNG) is an innovative technology designed to enable the development of offshore gas resources that would otherwise remain untapped due to environmental or economic factors which currently make them impractical to develop via a land-based LNG operation. FLNG technology also provides a number of environmental and economic advantages:
Environmental – Because all processing is done at the gas field, there is no requirement for long pipelines to shore, compression units to pump the gas to shore, dredging and jetty construction, and onshore construction of an LNG processing plant, which significantly reduces the environmental footprint.[76] Avoiding construction also helps preserve marine and coastal environments. In addition, environmental disturbance will be minimised during decommissioning because the facility can easily be disconnected and removed before being refurbished and re-deployed elsewhere.
Economic – Where pumping gas to shore can be prohibitively expensive, FLNG makes development economically viable. As a result, it will open up new business opportunities for countries to develop offshore gas fields that would otherwise remain stranded, such as those offshore East Africa.[77]
Many gas and oil companies are considering the economic and environmental benefits of floating liquefied natural gas (FLNG). There are currently projects underway to construct five FLNG facilities.Petronas is close to completion on their FLNG-1[78] atDaewoo Shipbuilding and Marine Engineering and are underway on their FLNG-2 project[79] atSamsung Heavy Industries.Shell Prelude is due to start production 2017.[80] TheBrowse LNG project will commenceFEED in 2019.[81]
Natural gas is primarily used in the northern hemisphere. North America and Europe are major consumers.
Often well head gases require removal of various hydrocarbon molecules contained within the gas. Some of these gases includeheptane,pentane,propane and other hydrocarbons with molecular weights abovemethane (CH 4). The natural gas transmission lines extend to the natural gas processing plant or unit which removes the higher-molecular weight hydrocarbons to produce natural gas with energy content between 35–39 megajoules per cubic metre (950–1,050 British thermal units per cubic foot). The processed natural gas may then be used for residential, commercial and industrial uses.
Natural gas flowing in the distribution lines is called mid-stream natural gas and is often used to power engines which rotate compressors. These compressors are required in the transmission line to pressurize and repressurize the mid-stream natural gas as the gas travels. Typically, natural gas powered engines require 35–39 MJ/m3 (950–1,050 BTU/cu ft) natural gas to operate at the rotational name plate specifications.[82] Several methods are used to remove these higher molecular weighted gases for use by the natural gas engine. A few technologies are as follows:
In the US, over one-third of households (>40 million homes) cook with gas.[4] Natural gas dispensed in a residential setting can generate temperatures in excess of 1,100 °C (2,000 °F) making it a powerful domestic cooking and heating fuel.[85] Stanford scientists estimated that gas stoves emit 0.8–1.3% of the gas they use as unburned methane and that total U.S. stove emissions are 28.1 gigagrams of methane.[4] In much of the developed world it is supplied through pipes to homes, where it is used for many purposes including ranges and ovens,heating/cooling, outdoor and portablegrills, andcentral heating.[86] Heaters in homes and other buildings may include boilers,furnaces, andwater heaters. Both North America and Europe are major consumers of natural gas.
Domestic appliances, furnaces, and boilers use low pressure, usually with a standard pressure around 1.7 kilopascals (0.25 psi) over atmospheric pressure. The pressures in the supply lines vary, either the standard utilization pressure (UP) mentioned above or elevated pressure (EP), which may be anywhere from 7 to 800 kilopascals (1 to 120 psi) over atmospheric pressure. Systems using EP have aregulator at the service entrance to step down to UP.[87]
Natural gas piping systems inside buildings are often designed with pressures of 14 to 34 kilopascals (2 to 5 psi), and have downstream pressure regulators to reduce pressure as needed. In the United States the maximum allowable operating pressure for natural gas piping systems within a building is based on NFPA 54: National Fuel Gas Code,[88] except when approved by the Public Safety Authority or when insurance companies have more stringent requirements.
Generally, natural gas system pressures are not allowed to exceed 5 psi (34 kPa) unless all of the following conditions are met:
The AHJ will allow a higher pressure.
The distribution pipe is welded. (Note: 2. Some jurisdictions may also require that welded joints be radiographed to verify continuity).
The pipes are closed for protection and placed in a ventilated area that does not allow gas accumulation.
The pipe is installed in the areas used for industrial processes, research, storage or mechanical equipment rooms.
Generally, a maximum liquefied petroleum gas pressure of 20 psi (140 kPa) is allowed, provided the building is constructed in accordance with NFPA 58: Liquefied Petroleum Gas Code, Chapter 7.[89]
A seismic earthquake valve operating at a pressure of 55 psig (3.7 bar) can stop the flow of natural gas into the site wide natural gas distribution piping network (that runs (outdoors underground, above building roofs, and or within the upper supports of a canopy roof). Seismic earthquake valves are designed for use at a maximum of 60 psig.[90][91]
In Australia, natural gas is transported from gas processing facilities to regulator stations via transmission pipelines. Gas is then regulated down to distributed pressures and the gas is distributed around a gas network via gas mains. Small branches from the network, called services, connect individual domestic dwellings, or multi-dwelling buildings to the network. The networks typically range in pressures from 7 kPa (low pressure) to 515 kPa (high pressure). Gas is then regulated down to 1.1 kPa or 2.75 kPa, before being metered and passed to the consumer for domestic use.[92] Natural gas mains are made from a variety of materials: historically cast iron, though more modern mains are made from steel or polyethylene.
In some states in the USA, natural gas can be supplied by independent natural gas wholesalers/suppliers using existing pipeline owners' infrastructure throughNatural Gas Choice programs.
LPG (liquefied petroleum gas) typically fuels outdoor and portablegrills. Although,compressed natural gas (CNG) is sparsely available for similar applications in the US inrural areas underserved by the existing pipeline system and distribution network of the less expensive and more abundant LPG (liquefied petroleum gas).
Honda Civic GX, a natural gas-powered automobile sold in North America from 1998 to 2015
CNG is a cleaner and also cheaper alternative to otherautomobile fuels such asgasoline (petrol).[93] By the end of 2014, there were over 20 millionnatural gas vehicles worldwide, led byIran (3.5 million),China (3.3 million),Pakistan (2.8 million),Argentina (2.5 million),India (1.8 million), andBrazil (1.8 million).[94] Theenergy efficiency is generally equal to that of gasoline engines, but lower compared with modern diesel engines. Gasoline/petrol vehicles converted to run on natural gas suffer because of the lowcompression ratio of their engines, resulting in a cropping of delivered power while running on natural gas (10–15%). CNG-specific engines, however, use a higher compression ratio due to this fuel's higheroctane number of 120–130.[95]
Besides use in road vehicles, CNG can also be used in aircraft.[96] Compressed natural gas has been used in some aircraft like theAviat Aircraft Husky 200 CNG[97] and the Chromarat VX-1 KittyHawk[98]
LNG is also being used in aircraft.Russian aircraft manufacturerTupolev for instance is running a development program to produce LNG- andhydrogen-powered aircraft.[99] The program has been running since the mid-1970s, and seeks to develop LNG and hydrogen variants of theTu-204 andTu-334 passenger aircraft, and also theTu-330 cargo aircraft. Depending on the current market price for jet fuel and LNG, the consumption cost advantage for LNG-powered aircraft is approximately 18.96%, along with a 53.72% reduction tocarbon monoxide,hydrocarbon andnitrogen oxide emissions.[100]
The advantages of liquid methane as a jet engine fuel are that it has morespecific energy than the standardkerosene mixes do and that its low temperature can help cool the air which the engine compresses for greater volumetric efficiency, in effect replacing anintercooler. Alternatively, it can be used to lower the temperature of the exhaust.[citation needed]
Natural gas is a major feedstock for the production ofammonia, via theHaber process, for use infertilizer production.[86][101] The development of synthetic nitrogen fertilizer has significantly supported globalpopulation growth — it has been estimated that almost half the people on the Earth are currently fed as a result of synthetic nitrogen fertilizer use.[102][103]
Natural gas can be used to producehydrogen, with one common method being thehydrogen reformer. Hydrogen has many applications: it is a primary feedstock for thechemical industry, a hydrogenating agent, an important commodity for oil refineries, and the fuel source inhydrogen vehicles.
Natural gas components(alkanes) can be converted intoolefins(alkenes) or otherchemical synthesis. Ethane by oxidative dehydrogenation converts to ethylene, which can be further converted toethylene oxide,ethylene glycol,acetaldehyde or other olefins. Propane by oxidative hydrogenation converts to propylene or can be oxidized to acrylic acid andacrylonitrile.
Fuel for industrial heating anddesiccation processes.
Raw material for large-scale fuel production usinggas-to-liquid (GTL) process (e.g. to produce sulphur-and aromatic-free diesel with low-emission combustion).
Deaths caused by use of fossil fuels such as natural gas (areas of rectangles in chart) greatly exceed those resulting from production ofwind energy,nuclear energy orsolar energy (rectangles barely visible in chart).[110]
The warming influence (calledradiative forcing) of long-lived greenhouse gases has increased substantially in the last 40 years, with carbon dioxide and methane being the dominant drivers of global warming.[111]
Natural gas is a growing contributor toclimate change.[112][113][114] Both the NG itself (specificallymethane) andcarbon dioxide, which is released when natural gas is burned, aregreenhouse gases.[115][116]Human activity is responsible for about 60% of allmethane emissions and for most of the resulting increase in atmospheric methane.[117][118][119] Natural gas is intentionally released or is otherwise known to leak during the extraction, storage, transportation, and distribution offossil fuels. Globally, methane accounts for an estimated 33% of anthropogenicgreenhouse gas warming.[120] The decomposition of municipal solid waste (a source oflandfill gas) and wastewater account for an additional 18% of such emissions. These estimates include substantial uncertainties[121] which should be reduced in the near future with improvedsatellite measurements, such as those planned forMethaneSAT.[116]
After release to the atmosphere, methane is removed by gradual oxidation to carbon dioxide and water by hydroxyl radicals (OH− ) formed in the troposphere or stratosphere, giving the overall chemical reactionCH 4 + 2O 2 →CO 2 + 2H 2O.[122][123] While the lifetime of atmospheric methane is relatively short when compared to carbon dioxide,[124] with ahalf-life of about 7 years, it is more efficient at trapping heat in the atmosphere, so that a given quantity of methane has 84 times theglobal-warming potential of carbon dioxide over a 20-year period and 28 times over a 100-year period. Natural gas is thus a potent greenhouse gas due to the strongradiative forcing of methane in the short term, and the continuing effects of carbon dioxide in the longer term.[119]
When refined and burned, natural gas can produce 25–30% less carbon dioxide perjoule delivered than oil, and 40–45% less than coal.[125] It can also produce potentially fewer toxicpollutants than other hydrocarbon fuels.[125][126] However, compared to other major fossil fuels, natural gas causes more emissions in relative terms during the production and transportation of the fuel, meaning that the life cycle greenhouse gas emissions are about 50% higher than the direct emissions from the site of consumption.[127][128]
In terms of the warming effect over 100 years, natural gas production and use comprises about one fifth of humangreenhouse gas emissions, and this contribution is growing rapidly. Globally, natural gas use emitted about 7.8 billion tons ofCO 2 in 2020 (including flaring), while coal and oil use emitted 14.4 and 12 billion tons, respectively.[129] The IEA estimates the energy sector (oil, natural gas, coal and bioenergy) to be responsible for about 40% of human methane emissions.[130] According to theIPCC Sixth Assessment Report, natural gas consumption grew by 15% between 2015 and 2019, compared to a 5% increase in oil and oil product consumption.[131]
The continued financing and construction of new gaspipelines indicates that huge emissions of fossil greenhouse gases could be locked-in for 40 to 50 years into the future.[132] In the U.S. state ofTexas alone, five new long-distance gas pipelines have been under construction, with the first entering service in 2019,[133] and the others scheduled to come online during 2020–2022.[134]: 23
To reduce its greenhouse emissions, theNetherlands is subsidizing a transition away from natural gas for all homes in the country by 2050. InAmsterdam, no new residential gas accounts have been allowed since 2018, and all homes in the city are expected to be converted by 2040 to use the excess heat from adjacent industrial buildings and operations.[135]Some cities in the United States have started prohibiting gas hookups for new houses, with state laws passed and under consideration to either require electrification or prohibit local requirements.[136] New gas appliance hookups are banned inNew York State[137] and theAustralian Capital Territory.[138] Additionally, the state ofVictoria in Australia has implemented a ban on new natural gas hookups starting from January 1, 2024, as part of its gas substitution roadmap.[139] This followed campaigning which resulted in a prohibition on onshore gas exploration and production in Victoria in 2014. This was partially lifted in 2021 but a constitutional ban remains on fracking.[140]
The UK government is also experimenting with alternative home heating technologies to meet its climate goals.[141] To preserve their businesses, natural gas utilities in the United States have been lobbying for laws preventing local electrification ordinances, and are promotingrenewable natural gas andhydrogen fuel.[142]
Although natural gas produces far lower amounts ofsulfur dioxide andnitrogen oxides (NOx) than other fossil fuels,[126]NOx from burning natural gas in homes can be a health hazard.[143]
Natural gas extraction also produces radioactive isotopes ofpolonium (Po-210),lead (Pb-210) andradon (Rn-220). Radon is a gas with initial activity from 5 to 200,000becquerels per cubic meter of gas. It decays rapidly to Pb-210 which can build up as a thin film in gas extraction equipment.[144]
Extraction of natural gas (or oil) leads to decrease in pressure in thereservoir. Such decrease in pressure in turn may result insubsidence — sinking of the ground above. Subsidence may affect ecosystems, waterways, sewer and water supply systems, foundations, and so on.[148]
Releasing natural gas from subsurface porous rock formations may be accomplished by a process calledhydraulic fracturing or "fracking". Since the first commercial hydraulic fracturing operation in 1949, approximately one million wells have been hydraulically fractured in the United States.[149] The production of natural gas from hydraulically fractured wells has used the technological developments of directional and horizontal drilling, which improved access to natural gas in tight rock formations.[150] Strong growth in the production of unconventional gas from hydraulically fractured wells occurred between 2000 and 2012.[151]
In hydraulic fracturing, well operators force water mixed with a variety of chemicals through the wellbore casing into the rock. The high pressure water breaks up or "fracks" the rock, which releases gas from the rock formation. Sand and other particles are added to the water as aproppant to keep the fractures in the rock open, thus enabling the gas to flow into the casing and then to the surface. Chemicals are added to the fluid to perform such functions as reducing friction and inhibiting corrosion. After the "frack", oil or gas is extracted and 30–70% of the frack fluid, i.e. the mixture of water, chemicals, sand, etc., flows back to the surface. Many gas-bearing formations also contain water, which will flow up the wellbore to the surface along with the gas, in both hydraulically fractured and non-hydraulically fractured wells. Thisproduced water often has a high content of salt and other dissolved minerals that occur in the formation.[152]
The volume of water used to hydraulically fracture wells varies according to the hydraulic fracturing technique. In the United States, the average volume of water used per hydraulic fracture has been reported as nearly 7,375 gallons for vertical oil and gas wells prior to 1953, nearly 197,000 gallons for vertical oil and gas wells between 2000 and 2010, and nearly 3 million gallons for horizontal gas wells between 2000 and 2010.[153]
Determining which fracking technique is appropriate for well productivity depends largely on the properties of the reservoir rock from which to extract oil or gas. If the rock is characterized by low-permeability – which refers to its ability to let substances, i.e. gas, pass through it, then the rock may be considered a source oftight gas.[154] Fracking for shale gas, which is currently also known as a source ofunconventional gas, involves drilling a borehole vertically until it reaches a lateral shale rock formation, at which point the drill turns to follow the rock for hundreds or thousands of feet horizontally.[155] In contrast, conventional oil and gas sources are characterized by higher rock permeability, which naturally enables the flow of oil or gas into the wellbore with less intensive hydraulic fracturing techniques than the production of tight gas has required.[156][157] The decades in development of drilling technology for conventional andunconventional oil and gas production have not only improved access to natural gas in low-permeability reservoir rocks, but also posed significant adverse impacts on environmental and public health.[158][159][160][161]
The US EPA has acknowledged that toxic, carcinogenic chemicals, i.e. benzene and ethylbenzene, have been used as gelling agents in water and chemical mixtures for high volume horizontal fracturing (HVHF).[162] Following the hydraulic fracture in HVHF, the water, chemicals, and frack fluid that return to the well's surface, called flowback or produced water, may contain radioactive materials, heavy metals, natural salts, and hydrocarbons which exist naturally in shale rock formations.[163] Fracking chemicals, radioactive materials, heavy metals, and salts that are removed from the HVHF well by well operators are so difficult to remove from the water they are mixed with, and would so heavilypollute thewater cycle, that most of the flowback is either recycled into other fracking operations or injected into deep underground wells, eliminating the water that HVHF required from the hydrologic cycle.[164]
In its native state, natural gas is colorless and almostodorless. In the US, theNew London School explosion that occurred in 1937 in Texas caused a push for legislation requiring the addition of an odorant to assist consumers in detectingleaks. Anodorizer with an unpleasant smell, such asthiophane ortert-Butylthiol (t-butyl mercaptan) may be added. Situations have occurred in which an odorant cannot be properly detected by an observer with a normal sense of smell despite being detectable by analytical instruments. This is caused by odor masking, when one odor overpowers the sensation of another. As of 2011, the industry is conducting research on the causes of odor masking.[166][needs update]
Gas network emergency vehicle responding to a major fire inKyiv,Ukraine
Explosions caused by naturalgas leaks occur a few times each year. Individual homes, small businesses and other structures are most frequently affected when an internal leak builds up gas inside the structure. Leaks often result from excavation work, such as when contractors dig and strike pipelines, sometimes without knowing any damage resulted. Frequently, the blast is powerful enough to significantly damage a building but leave it standing. In these cases, the people inside tend to have minor to moderate injuries. Occasionally, the gas can collect in high enough quantities to cause a deadly explosion, destroying one or more buildings in the process. Many building codes now forbid the installation of gas pipes inside cavity walls or below floor boards to mitigate against this risk. Gas usually dissipates readily outdoors, but can sometimes collect in dangerous quantities ifflow rates are high enough.[167] However, considering the tens of millions of structures that use the fuel, the individual risk from using natural gas is low.
Natural gas heating systems may causecarbon monoxide poisoning if unvented or poorly vented. Improvements in natural gas furnace designs have greatly reduced CO poisoning concerns.Detectors are also available that warn of carbon monoxide or explosive gases such as methane and propane.[168]
This section needs to beupdated. Please help update this article to reflect recent events or newly available information.(October 2022)
The U.S. and Russia have been the predominant producers of natural gas.[169]
Quantities of natural gas are measured instandard cubic meters (cubic meter of gas at temperature 15 °C (59 °F) and pressure 101.325 kPa (14.6959 psi)) orstandard cubic feet (cubic foot of gas at temperature 60.0 °F and pressure 14.73 psi (101.6 kPa)), 1 standard cubic meter = 35.301 standard cubic feet. Thegross heat of combustion of commercial quality natural gas is around 39 MJ/m3 (0.31 kWh/cu ft), but this can vary by several percent. This is about 50 to 54 MJ/kg depending on the density.[170][171] For comparison, theheat of combustion of pure methane is 37.7 MJ per standard cubic metre, or 55.5 MJ/kg.
Except in the European Union, the U.S., and Canada, natural gas is sold in gigajoule retail units. LNG (liquefied natural gas) and LPG (liquefied petroleum gas) are traded in metric tonnes (1,000 kg) or million BTU as spot deliveries. Long term natural gas distribution contracts are signed in cubic meters, and LNG contracts are in metric tonnes. The LNG and LPG is transported by specializedtransport ships, as the gas is liquified atcryogenic temperatures. The specification of each LNG/LPG cargo will usually contain the energy content, but this information is in general not available to the public. The European Union aimed to cut itsgas dependency on Russia by two-thirds in 2022.[172]
In August 2015, possibly the largest natural gas discovery in history was made and notified by an Italian gas company ENI. The energy company indicated that it has unearthed a"supergiant" gas field in the Mediterranean Sea covering about 40 square miles (100 km2). This was named theZohr gas field and could hold a potential 30 trillion cubic feet (850 billion cubic meters) of natural gas. ENI said that the energy is about 5.5 billion barrels of oil equivalent [BOE] (3.4×1010 GJ). TheZohr field was found in the deep waters off the northern coast of Egypt and ENI claims that it will be the largest ever in the Mediterranean and even the world.[173]
Gas prices for end users vary greatly across theEU.[174] A single European energy market, one of the key objectives of the EU, should level the prices of gas in all EU member states. Moreover, it would help to resolve supply andglobal warming issues,[175] as well as strengthen relations with other Mediterranean countries and foster investments in the region.[176] During theprelude to the 2022 Russian invasion of Ukraine,Qatar was asked by the US to supply emergency gas to the EU in case of supply disruptions.[177]
InUS units, one standard cubic foot (28 L) of natural gas produces around 1,028British thermal units (1,085 kJ). The actual heating value when the water formed does not condense is thenet heat of combustion and can be as much as 10% less.[178]
In the United States, retail sales are often in units oftherms (th); 1 therm = 100,000 BTU. Gas sales to domestic consumers are often in units of 100standard cubic feet (scf).Gas meters measure the volume of gas used, and this is converted to therms by multiplying the volume by the energy content of the gas used during that period, which varies slightly over time. The typical annual consumption of a single family residence is 1,000 therms or oneResidential Customer Equivalent (RCE). Wholesale transactions are generally done indecatherms (Dth), thousand decatherms (MDth), or million decatherms (MMDth). A million decatherms is a trillion BTU, roughly a billion cubic feet of natural gas.
The price of natural gas varies greatly depending on location and type of consumer. The typical caloric value of natural gas is roughly 1,000 BTU per cubic foot, depending on gas composition. Natural gas in the United States is traded as afutures contract on theNew York Mercantile Exchange. Each contract is for 10,000 million BTU or 10 billion BTU (10,551 GJ). Thus, if the price of gas is $10/million BTU on the NYMEX, the contract is worth $100,000.
Canada usesmetric measure for internal trade ofpetrochemical products. Consequently, natural gas is sold by the gigajoule (GJ), cubic meter (m3) or thousand cubic meters (E3m3). Distribution infrastructure and meters almost always meter volume (cubic foot or cubic meter). Some jurisdictions, such as Saskatchewan, sell gas by volume only. Other jurisdictions, such as Alberta, sell gas by energy content (GJ). In these areas, almost all meters for residential and small commercial customers measure volume (m3 or ft3), and billing statements include a multiplier to convert the volume to the energy content of the local gas supply.
Agigajoule (GJ) is a measure approximately equal to 80 litres (0.5 barrels) of oil, or 28 m3 or 1,000 cu ft or 1 million BTUs of gas. The energy content of gas supply in Canada can vary from 37 to 43 MJ/m3 (990 to 1,150 BTU/cu ft) depending on gas supply and processing between the wellhead and the customer.
Natural gas may be stored by adsorbing it to the porous solids called sorbents. The optimal condition for methane storage is at room temperature and atmospheric pressure. Pressures up to 4 MPa (about 40 times atmospheric pressure) will yield greater storage capacity. The most common sorbent used for ANG is activated carbon (AC), primarily in three forms: Activated Carbon Fiber (ACF), Powdered Activated Carbon (PAC), and activated carbon monolith.[179]
^Wang, Qiang; Chen, Xi; Jha, Awadhesh N.; Rogers, Howard (February 2014). "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States".Renewable and Sustainable Energy Reviews.30:1–28.Bibcode:2014RSERv..30....1W.doi:10.1016/j.rser.2013.08.065.
^[1] Plumbing Engineering Design Handbook | A Plumbing Engineer's Guide to System Design and Specifications | American Society of Plumbing Engineers | Plumbing Systems | Volume 2 Chapter 7 — Fuel Gas Piping Systems Page 115
^[2] Risk-based maintenance: an holistic application to the gas distribution industry | Xavier António Reis Andrade | 2016 | Page 15 | Figure 3.2: Technical drawing of the pressure regulator and measurement station.
^[3] State of California | Apply for Gas Shutoff Valve Certification for Residential Structures | The Division of the State Architect (DSA) oversees the certification of two types of gas shutoff valves as required by the Health and Safety Code.
^Ritchie, Hannah; Roser, Max (2021)."What are the safest and cleanest sources of energy?".Our World in Data.Archived from the original on 15 January 2024. Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
^"Methane, explained".National Geographic. nationalgeographic.com. 23 January 2019. Archived fromthe original on 17 April 2019. Retrieved24 April 2020.
^abMyhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang (2013)"Anthropogenic and Natural Radiative Forcing". Table 8.7 on page 714. In:Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, New York, US.Anthropogenic and Natural Radiative Forcing
^Chiras, Daniel (2012).Environmental Science. Jones & Bartlett Learning. p. 283.ISBN978-1-4496-1486-7 – via Google Books.However, natural gas extraction can cause subsidence in the vicinity of the well. One notable example is in the Los Angeles–Long Beach harbor area, where extensive oil and gas extraction began in 1928 and has caused the ground to drop 9 meters (30 feet) in some areas.
^Brantley, Susan L.; Meyendorff, Anna (13 March 2013)."The Facts on Fracking".The New York Times.
^Fitzgerald, Timothy. "Frackonomics: Some Economics of Hydraulic Fracturing." Case Western Reserve Law Review 63.4 (2013). Web. 1 Sept. 2015.
^Chojna, J., Losoncz, M., & Suni, P. (November 2013). Shale Energy Shapes Global Energy Markets. National Institute Economic Review.
^Farah, Paolo Davide (2015). "Offshore Natural Gas Resources in the Eastern Mediterranean in the Relations to the European Union: A Legal Perspective through the Lenses of MedReg".Journal of World Energy Law and Business.8 (8).SSRN2695964.
Campos, Adriana Fiorotti, et al. "A review of Brazilian natural gas industry: Challenges and strategies."Renewable and Sustainable Energy Reviews 75 (2017): 1207-1216.
Castaneda, Christopher James.Regulated enterprise: natural gas pipelines and northeastern markets, 1938-1954 (Ohio State University Press, 1993).
Castaneda, Christopher J., et al.Gas pipelines and the emergence of America's regulatory state: a history of Panhandle Eastern Corporation, 1928-1993 (Cambridge University Press, 2003).
Castaneda, Christopher J. "History of Natural Gas" in Encyclopedia of Energy (2004). 4: 207–218. doi:10.1016/B0-12-176480-X/00042-5
Castaneda, Christopher. "History beneath the surface: natural gas pipelines and the National Historic Preservation Act."The Public Historian 26.1 (2004): 105-122.
Chengzao, Jia, Zhang Yongfeng, and Zhao Xia. "Prospects of and challenges to natural gas industry development in China."Natural Gas Industry B 1.1 (2014): 1-13.online
Emiliozzi, Simone, et al. "The European energy crisis and the consequences for the global natural gas market."The Energy Journal 46.1 (2025): 119-145.online
Li, Luguang. "Development of natural gas industry in China: Review and prospect."Natural Gas Industry B 9.2 (2022): 187-196.online
Mathias, Melissa Cristina, and Alexandre Szklo. "Lessons learned from Brazilian natural gas industry reform."Energy Policy 35.12 (2007): 6478-6490.
Penna, Anthony N.A History of Energy Flows: from human labor to renewable power (Routledge, 2019.
Pratt, Joseph A., Tyler Priest, and Christopher J. Castaneda.Offshore pioneers: Brown & Root and the history of offshore oil and gas (Elsevier, 1997)online
Purwanto, Widodo Wahyu, et al. "Status and outlook of natural gas industry development in Indonesia."Journal of Natural Gas Science and Engineering 29 (2016): 55-65.online
Xiao, Renrong, et al. "Liquefied natural gas trade network changes and its mechanism in the context of the Russia–Ukraine conflict."Journal of Transport Geography 123 (2025): 104101.