Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Multivariate normal distribution

From Wikipedia, the free encyclopedia
Generalization of the one-dimensional normal distribution to higher dimensions
Multivariate normal
Probability density function
Many sample points from a multivariate normal distribution withμ=[00]{\displaystyle {\boldsymbol {\mu }}=\left[{\begin{smallmatrix}0\\0\end{smallmatrix}}\right]} andΣ=[13/53/52]{\displaystyle {\boldsymbol {\Sigma }}=\left[{\begin{smallmatrix}1&3/5\\3/5&2\end{smallmatrix}}\right]}, shown along with the 3-sigma ellipse, the two marginal distributions, and the two 1-d histograms.
NotationN(μ,Σ){\displaystyle {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})}
ParametersμRklocation
ΣRk × kcovariance (positive semi-definite matrix)
Supportxμ + span(Σ) ⊆Rk
PDF(2π)k/2det(Σ)1/2exp(12(xμ)TΣ1(xμ)),{\displaystyle (2\pi )^{-k/2}\det({\boldsymbol {\Sigma }})^{-1/2}\,\exp \left(-{\frac {1}{2}}(\mathbf {x} -{\boldsymbol {\mu }})^{\mathrm {T} }{\boldsymbol {\Sigma }}^{-1}(\mathbf {x} -{\boldsymbol {\mu }})\right),}
exists only whenΣ ispositive-definite
Meanμ
Modeμ
VarianceΣ
Entropyk2log(2πe)+12logdet(Σ){\displaystyle {\frac {k}{2}}\log {\mathord {\left(2\pi \mathrm {e} \right)}}+{\frac {1}{2}}\log \det {\mathord {\left({\boldsymbol {\Sigma }}\right)}}}
MGFexp(μTt+12tTΣt){\displaystyle \exp \!{\Big (}{\boldsymbol {\mu }}^{\mathrm {T} }\mathbf {t} +{\tfrac {1}{2}}\mathbf {t} ^{\mathrm {T} }{\boldsymbol {\Sigma }}\mathbf {t} {\Big )}}
CFexp(iμTt12tTΣt){\displaystyle \exp \!{\Big (}i{\boldsymbol {\mu }}^{\mathrm {T} }\mathbf {t} -{\tfrac {1}{2}}\mathbf {t} ^{\mathrm {T} }{\boldsymbol {\Sigma }}\mathbf {t} {\Big )}}
Kullback–Leibler divergenceSee§ Kullback–Leibler divergence

Inprobability theory andstatistics, themultivariate normal distribution,multivariate Gaussian distribution, orjoint normal distribution is a generalization of the one-dimensional (univariate)normal distribution to higherdimensions. One definition is that arandom vector is said to bek-variate normally distributed if everylinear combination of itsk components has a univariate normal distribution. Its importance derives mainly from themultivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly)correlated real-valuedrandom variables, each of which clusters around a mean value.

Definitions

[edit]

Notation and parametrization

[edit]

The multivariate normal distribution of ak-dimensional random vectorX=(X1,,Xk)T{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }} can be written in the following notation:

X  N(μ,Σ),{\displaystyle \mathbf {X} \ \sim \ {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }}),}

or to make it explicitly known thatX{\displaystyle \mathbf {X} } isk-dimensional,

X  Nk(μ,Σ),{\displaystyle \mathbf {X} \ \sim \ {\mathcal {N}}_{k}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }}),}

withk-dimensionalmean vector

μ=E[X]=(E[X1],E[X2],,E[Xk])T,{\displaystyle {\boldsymbol {\mu }}=\operatorname {E} [\mathbf {X} ]=(\operatorname {E} [X_{1}],\operatorname {E} [X_{2}],\ldots ,\operatorname {E} [X_{k}])^{\mathrm {T} },}

andk×k{\displaystyle k\times k}covariance matrix

Σi,j=E[(Xiμi)(Xjμj)]=Cov[Xi,Xj]{\displaystyle \Sigma _{i,j}=\operatorname {E} [(X_{i}-\mu _{i})(X_{j}-\mu _{j})]=\operatorname {Cov} [X_{i},X_{j}]}

such that1ik{\displaystyle 1\leq i\leq k} and1jk{\displaystyle 1\leq j\leq k}. Theinverse of the covariance matrix is called theprecision matrix, denoted byQ=Σ1{\displaystyle {\boldsymbol {Q}}={\boldsymbol {\Sigma }}^{-1}}.

Standard normal random vector

[edit]

A realrandom vectorX=(X1,,Xk)T{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }} is called astandard normal random vector if all of its componentsXi{\displaystyle X_{i}} are independent and each is a zero-mean unit-variance normally distributed random variable, i.e. ifXi N(0,1){\displaystyle X_{i}\sim \ {\mathcal {N}}(0,1)} for alli=1k{\displaystyle i=1\ldots k}.[1]: p. 454 

Centered normal random vector

[edit]

A real random vectorX=(X1,,Xk)T{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }} is called acentered normal random vector if there exists ak×{\displaystyle k\times \ell } matrixA{\displaystyle {\boldsymbol {A}}} such thatAZ{\displaystyle {\boldsymbol {A}}\mathbf {Z} } has the same distribution asX{\displaystyle \mathbf {X} } whereZ{\displaystyle \mathbf {Z} } is a standard normal random vector with{\displaystyle \ell } components.[1]: p. 454 

Normal random vector

[edit]

A real random vectorX=(X1,,Xk)T{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }} is called anormal random vector if there exists a random{\displaystyle \ell }-vectorZ{\displaystyle \mathbf {Z} }, which is a standard normal random vector, ak{\displaystyle k}-vectorμ{\displaystyle {\boldsymbol {\mu }}}, and ak×{\displaystyle k\times \ell } matrixA{\displaystyle {\boldsymbol {A}}}, such thatX=AZ+μ{\displaystyle \mathbf {X} ={\boldsymbol {A}}\mathbf {Z} +{\boldsymbol {\mu }}}.[2]: p. 454 [1]: p. 455 

Formally:

X  Nk(μ,Σ)there exist μRk,ARk× such that X=AZ+μ and n=1,,:Zn N(0,1),i.i.d.{\displaystyle \mathbf {X} \ \sim \ {\mathcal {N}}_{k}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\iff {\text{there exist }}{\boldsymbol {\mu }}\in \mathbb {R} ^{k},{\boldsymbol {A}}\in \mathbb {R} ^{k\times \ell }{\text{ such that }}\mathbf {X} ={\boldsymbol {A}}\mathbf {Z} +{\boldsymbol {\mu }}{\text{ and }}\forall n=1,\ldots ,\ell :Z_{n}\sim \ {\mathcal {N}}(0,1),{\text{i.i.d.}}}

Here thecovariance matrix isΣ=AAT{\displaystyle {\boldsymbol {\Sigma }}={\boldsymbol {A}}{\boldsymbol {A}}^{\mathrm {T} }}.

In thedegenerate case where the covariance matrix issingular, the corresponding distribution has no density; see thesection below for details. This case arises frequently instatistics; for example, in the distribution of the vector ofresiduals in theordinary least squares regression. TheXi{\displaystyle X_{i}} are in generalnot independent; they can be seen as the result of applying the matrixA{\displaystyle {\boldsymbol {A}}} to a collection of independent Gaussian variablesZ{\displaystyle \mathbf {Z} }.

Equivalent definitions

[edit]

The following definitions are equivalent to the definition given above. A random vectorX=(X1,,Xk)T{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }} has a multivariate normal distribution if it satisfies one of the following equivalent conditions.

The spherical normal distribution can be characterised as the unique distribution where components are independent in any orthogonal coordinate system.[3][4]

Density function

[edit]
Bivariate normaljoint density

Non-degenerate case

[edit]

The multivariate normal distribution is said to be "non-degenerate" when the symmetriccovariance matrixΣ{\displaystyle {\boldsymbol {\Sigma }}} ispositive definite. In this case the distribution hasdensity[5]

fX(x1,,xk)=exp(12(xμ)TΣ1(xμ))(2π)k|Σ|{\displaystyle f_{\mathbf {X} }(x_{1},\ldots ,x_{k})={\frac {\exp \left(-{\frac {1}{2}}\left({\mathbf {x} }-{\boldsymbol {\mu }}\right)^{\mathrm {T} }{\boldsymbol {\Sigma }}^{-1}\left({\mathbf {x} }-{\boldsymbol {\mu }}\right)\right)}{\sqrt {(2\pi )^{k}|{\boldsymbol {\Sigma }}|}}}}

wherex{\displaystyle {\mathbf {x} }} is a realk-dimensional column vector and|Σ|detΣ{\displaystyle |{\boldsymbol {\Sigma }}|\equiv \det {\boldsymbol {\Sigma }}} is thedeterminant ofΣ{\displaystyle {\boldsymbol {\Sigma }}}, also known as thegeneralized variance. The equation above reduces to that of the univariate normal distribution ifΣ{\displaystyle {\boldsymbol {\Sigma }}} is a1×1{\displaystyle 1\times 1} matrix (i.e., a single real number).

The circularly symmetric version of thecomplex normal distribution has a slightly different form.

Each iso-densitylocus — the locus of points ink-dimensional space each of which gives the same particular value of the density — is anellipse or its higher-dimensional generalization; hence the multivariate normal is a special case of theelliptical distributions.

The quantity(xμ)TΣ1(xμ){\displaystyle {\sqrt {({\mathbf {x} }-{\boldsymbol {\mu }})^{\mathrm {T} }{\boldsymbol {\Sigma }}^{-1}({\mathbf {x} }-{\boldsymbol {\mu }})}}} is known as theMahalanobis distance, which represents the distance of the test pointx{\displaystyle {\mathbf {x} }} from the meanμ{\displaystyle {\boldsymbol {\mu }}}. The squared Mahalanobis distance(xμ)TΣ1(xμ){\displaystyle ({\mathbf {x} }-{\boldsymbol {\mu }})^{\mathrm {T} }{\boldsymbol {\Sigma }}^{-1}({\mathbf {x} }-{\boldsymbol {\mu }})} is decomposed into a sum ofk terms, each term being a product of three meaningful components.[6]Note that in the case whenk=1{\displaystyle k=1}, the distribution reduces to a univariate normal distribution and the Mahalanobis distance reduces to the absolute value of thestandard score. See alsoInterval below.

Bivariate case

[edit]

In the 2-dimensional nonsingular case (k=rank(Σ)=2{\displaystyle k=\operatorname {rank} \left(\Sigma \right)=2}), theprobability density function of a vector[XY]{\displaystyle {\text{[XY]}}\prime } is:f(x,y)=12πσXσY1ρ2exp(12[1ρ2][(xμXσX)22ρ(xμXσX)(yμYσY)+(yμYσY)2]){\displaystyle f(x,y)={\frac {1}{2\pi \sigma _{X}\sigma _{Y}{\sqrt {1-\rho ^{2}}}}}\exp \left(-{\frac {1}{2\left[1-\rho ^{2}\right]}}\left[\left({\frac {x-\mu _{X}}{\sigma _{X}}}\right)^{2}-2\rho \left({\frac {x-\mu _{X}}{\sigma _{X}}}\right)\left({\frac {y-\mu _{Y}}{\sigma _{Y}}}\right)+\left({\frac {y-\mu _{Y}}{\sigma _{Y}}}\right)^{2}\right]\right)}whereρ{\displaystyle \rho } is thecorrelation betweenX{\displaystyle X} andY{\displaystyle Y} andwhereσX>0{\displaystyle \sigma _{X}>0} andσY>0{\displaystyle \sigma _{Y}>0}. In this case,

μ=(μXμY),Σ=(σX2ρσXσYρσXσYσY2).{\displaystyle {\boldsymbol {\mu }}={\begin{pmatrix}\mu _{X}\\\mu _{Y}\end{pmatrix}},\quad {\boldsymbol {\Sigma }}={\begin{pmatrix}\sigma _{X}^{2}&\rho \sigma _{X}\sigma _{Y}\\\rho \sigma _{X}\sigma _{Y}&\sigma _{Y}^{2}\end{pmatrix}}.}

In the bivariate case, the first equivalent condition for multivariate reconstruction of normality can be made less restrictive as it is sufficient to verify that acountably infinite set of distinct linear combinations ofX{\displaystyle X} andY{\displaystyle Y} are normal in order to conclude that the vector of[XY]{\displaystyle {\text{[XY]}}\prime } is bivariate normal.[7]

The bivariate iso-density loci plotted in thex,y{\displaystyle x,y}-plane areellipses, whoseprincipal axes are defined by theeigenvectors of the covariance matrixΣ{\displaystyle {\boldsymbol {\Sigma }}} (the major and minorsemidiameters of the ellipse equal the square-root of the ordered eigenvalues).

Bivariate normal distribution centered at(1,3){\displaystyle (1,3)} with a standard deviation of 3 in roughly the(0.878,0.478){\displaystyle (0.878,0.478)} direction and of 1 in the orthogonal direction.

As the absolute value of the correlation parameterρ{\displaystyle \rho } increases, these loci are squeezed toward the following line :

y(x)=sgn(ρ)σYσX(xμX)+μY.{\displaystyle y(x)=\operatorname {sgn}(\rho ){\frac {\sigma _{Y}}{\sigma _{X}}}(x-\mu _{X})+\mu _{Y}.}

This is because this expression, withsgn(ρ){\displaystyle \operatorname {sgn}(\rho )} (where sgn is thesign function) replaced byρ{\displaystyle \rho }, is thebest linear unbiased prediction ofY{\displaystyle Y} given a value ofX{\displaystyle X}.[8]

Degenerate case

[edit]

If the covariance matrixΣ{\displaystyle {\boldsymbol {\Sigma }}} is not full rank, then the multivariate normal distribution is degenerate and does not have a density. More precisely, it does not have a density with respect tok-dimensionalLebesgue measure (which is the usual measure assumed in calculus-level probability courses). Only random vectors whose distributions areabsolutely continuous with respect to a measure are said to have densities (with respect to that measure). To talk about densities but avoid dealing with measure-theoretic complications it can be simpler to restrict attention to a subset ofrank(Σ){\displaystyle \operatorname {rank} ({\boldsymbol {\Sigma }})} of the coordinates ofx{\displaystyle \mathbf {x} } such that the covariance matrix for this subset is positive definite; then the other coordinates may be thought of as anaffine function of these selected coordinates.[9]

To talk about densities meaningfully in singular cases, then, we must select a different base measure. Using thedisintegration theorem we can define a restriction of Lebesgue measure to therank(Σ){\displaystyle \operatorname {rank} ({\boldsymbol {\Sigma }})}-dimensional affine subspace ofRk{\displaystyle \mathbb {R} ^{k}} where the Gaussian distribution is supported, i.e.{μ+Σ1/2v:vRk}{\displaystyle \left\{{\boldsymbol {\mu }}+{\boldsymbol {\Sigma ^{1/2}}}\mathbf {v} :\mathbf {v} \in \mathbb {R} ^{k}\right\}}. With respect to this measure the distribution has the density of the following motif:

f(x)=exp(12(xμ)TΣ+(xμ))det(2πΣ){\displaystyle f(\mathbf {x} )={\frac {\exp \left(-{\frac {1}{2}}\left(\mathbf {x} -{\boldsymbol {\mu }}\right)^{\mathrm {T} }{\boldsymbol {\Sigma }}^{+}\left(\mathbf {x} -{\boldsymbol {\mu }}\right)\right)}{\sqrt {\det \nolimits ^{*}(2\pi {\boldsymbol {\Sigma }})}}}}

whereΣ+{\displaystyle {\boldsymbol {\Sigma }}^{+}} is thegeneralized inverse anddet{\displaystyle \det \nolimits ^{*}} is thepseudo-determinant.[10]

Cumulative distribution function

[edit]

The notion ofcumulative distribution function (cdf) in dimension 1 can be extended in two ways to the multidimensional case, based on rectangular and ellipsoidal regions.

The first way is to define the cdfF(x){\displaystyle F(\mathbf {x} )} of a random vectorX{\displaystyle \mathbf {X} } as the probability that all components ofX{\displaystyle \mathbf {X} } are less than or equal to the corresponding values in the vectorx{\displaystyle \mathbf {x} }:[11]

F(x)=P(Xx),where XN(μ,Σ).{\displaystyle F(\mathbf {x} )=\mathbb {P} (\mathbf {X} \leq \mathbf {x} ),\quad {\text{where }}\mathbf {X} \sim {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }}).}

Though there is no closed form forF(x){\displaystyle F(\mathbf {x} )}, there are a number of algorithms that estimate it numerically.[11][12]

Another way is to define the cdfF(r){\displaystyle F(r)} as the probability that a sample lies inside the ellipsoid determined by itsMahalanobis distancer{\displaystyle r} from the Gaussian, a direct generalization of the standard deviation.[13]In order to compute the values of this function, closed analytic formula exist,[13] as follows.

Interval

[edit]
Further information:Confidence region andHotelling t-squared statistic

Theinterval for the multivariate normal distribution yields a region consisting of those vectorsx satisfying

(xμ)TΣ1(xμ)χk2(p).{\displaystyle ({\mathbf {x} }-{\boldsymbol {\mu }})^{\mathrm {T} }{\boldsymbol {\Sigma }}^{-1}({\mathbf {x} }-{\boldsymbol {\mu }})\leq \chi _{k}^{2}(p).}

Herex{\displaystyle {\mathbf {x} }} is ak{\displaystyle k}-dimensional vector,μ{\displaystyle {\boldsymbol {\mu }}} is the knownk{\displaystyle k}-dimensional mean vector,Σ{\displaystyle {\boldsymbol {\Sigma }}} is the knowncovariance matrix andχk2(p){\displaystyle \chi _{k}^{2}(p)} is thequantile function for probabilityp{\displaystyle p} of thechi-squared distribution withk{\displaystyle k} degrees of freedom.[14]Whenk=2,{\displaystyle k=2,} the expression defines the interior of an ellipse and the chi-squared distribution simplifies to anexponential distribution with mean equal to two (rate equal to half).

Complementary cumulative distribution function (tail distribution)

[edit]

Thecomplementary cumulative distribution function (ccdf) or thetail distribution is defined asF¯(x)=1P(Xx){\displaystyle {\overline {F}}(\mathbf {x} )=1-\mathbb {P} \left(\mathbf {X} \leq \mathbf {x} \right)}. WhenXN(μ,Σ){\displaystyle \mathbf {X} \sim {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})}, thenthe ccdf can be written as a probability the maximum of dependent Gaussian variables:[15]

F¯(x)=P(i{Xixi})=P(maxiYi0),where YN(μx,Σ).{\displaystyle {\overline {F}}(\mathbf {x} )=\mathbb {P} \left(\bigcup _{i}\{X_{i}\geq x_{i}\}\right)=\mathbb {P} \left(\max _{i}Y_{i}\geq 0\right),\quad {\text{where }}\mathbf {Y} \sim {\mathcal {N}}\left({\boldsymbol {\mu }}-\mathbf {x} ,\,{\boldsymbol {\Sigma }}\right).}

While no simple closed formula exists for computing the ccdf, the maximum of dependent Gaussian variables can be estimated accurately via theMonte Carlo method.[15][16]

Properties

[edit]

Probability in different domains

[edit]
Top: the probability of a bivariate normal in the domainxsinyycosx>1{\displaystyle x\sin y-y\cos x>1} (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined byi=14|xi|<1{\displaystyle \sum _{i=1}^{4}\vert x_{i}\vert <1}. These are all computed by the numerical method of ray-tracing.[17]

The probability content of the multivariate normal in a quadratic domain defined byq(x)=xQ2x+q1x+q0>0{\displaystyle q({\boldsymbol {x}})={\boldsymbol {x}}'\mathbf {Q_{2}} {\boldsymbol {x}}+{\boldsymbol {q_{1}}}'{\boldsymbol {x}}+q_{0}>0} (whereQ2{\displaystyle \mathbf {Q_{2}} } is a matrix,q1{\displaystyle {\boldsymbol {q_{1}}}} is a vector, andq0{\displaystyle q_{0}} is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by thegeneralized chi-squared distribution.[17]The probability content within any general domain defined byf(x)>0{\displaystyle f({\boldsymbol {x}})>0} (wheref(x){\displaystyle f({\boldsymbol {x}})} is a general function) can be computed using the numerical method of ray-tracing[17] (Matlab code).

Higher moments

[edit]
Main article:Isserlis' theorem

Thekth-ordermoments ofx are given by

μ1,,N(x)=defμr1,,rN(x)=defE[j=1NXjrj]{\displaystyle \mu _{1,\ldots ,N}(\mathbf {x} )\mathrel {\stackrel {\mathrm {def} }{=}} \mu _{r_{1},\ldots ,r_{N}}(\mathbf {x} )\mathrel {\stackrel {\mathrm {def} }{=}} \operatorname {E} \left[\prod _{j=1}^{N}X_{j}^{r_{j}}\right]}

wherer1 +r2 + ⋯ +rN =k.

Thekth-order central moments are as follows

  1. Ifk is odd,μ1, ...,N(xμ) = 0.
  2. Ifk is even withk = 2λ, then[ambiguous]μ1,,2λ(xμ)=(σijσkσXZ){\displaystyle \mu _{1,\dots ,2\lambda }(\mathbf {x} -{\boldsymbol {\mu }})=\sum \left(\sigma _{ij}\sigma _{k\ell }\cdots \sigma _{XZ}\right)}

where the sum is taken over all allocations of the set{1,,2λ}{\displaystyle \left\{1,\ldots ,2\lambda \right\}} intoλ (unordered) pairs. That is, for akth (= 2λ = 6) central moment, one sums the products ofλ = 3 covariances (the expected valueμ is taken to be 0 in the interests of parsimony):

E[X1X2X3X4X5X6]=E[X1X2]E[X3X4]E[X5X6]+E[X1X2]E[X3X5]E[X4X6]+E[X1X2]E[X3X6]E[X4X5]+E[X1X3]E[X2X4]E[X5X6]+E[X1X3]E[X2X5]E[X4X6]+E[X1X3]E[X2X6]E[X4X5]+E[X1X4]E[X2X3]E[X5X6]+E[X1X4]E[X2X5]E[X3X6]+E[X1X4]E[X2X6]E[X3X5]+E[X1X5]E[X2X3]E[X4X6]+E[X1X5]E[X2X4]E[X3X6]+E[X1X5]E[X2X6]E[X3X4]+E[X1X6]E[X2X3]E[X4X5]+E[X1X6]E[X2X4]E[X3X5]+E[X1X6]E[X2X5]E[X3X4].{\displaystyle {\begin{aligned}&\operatorname {E} [X_{1}X_{2}X_{3}X_{4}X_{5}X_{6}]\\[8pt]={}&\operatorname {E} [X_{1}X_{2}]\operatorname {E} [X_{3}X_{4}]\operatorname {E} [X_{5}X_{6}]+\operatorname {E} [X_{1}X_{2}]\operatorname {E} [X_{3}X_{5}]\operatorname {E} [X_{4}X_{6}]+\operatorname {E} [X_{1}X_{2}]\operatorname {E} [X_{3}X_{6}]\operatorname {E} [X_{4}X_{5}]\\[4pt]&{}+\operatorname {E} [X_{1}X_{3}]\operatorname {E} [X_{2}X_{4}]\operatorname {E} [X_{5}X_{6}]+\operatorname {E} [X_{1}X_{3}]\operatorname {E} [X_{2}X_{5}]\operatorname {E} [X_{4}X_{6}]+\operatorname {E} [X_{1}X_{3}]\operatorname {E} [X_{2}X_{6}]\operatorname {E} [X_{4}X_{5}]\\[4pt]&{}+\operatorname {E} [X_{1}X_{4}]\operatorname {E} [X_{2}X_{3}]\operatorname {E} [X_{5}X_{6}]+\operatorname {E} [X_{1}X_{4}]\operatorname {E} [X_{2}X_{5}]\operatorname {E} [X_{3}X_{6}]+\operatorname {E} [X_{1}X_{4}]\operatorname {E} [X_{2}X_{6}]\operatorname {E} [X_{3}X_{5}]\\[4pt]&{}+\operatorname {E} [X_{1}X_{5}]\operatorname {E} [X_{2}X_{3}]\operatorname {E} [X_{4}X_{6}]+\operatorname {E} [X_{1}X_{5}]\operatorname {E} [X_{2}X_{4}]\operatorname {E} [X_{3}X_{6}]+\operatorname {E} [X_{1}X_{5}]\operatorname {E} [X_{2}X_{6}]\operatorname {E} [X_{3}X_{4}]\\[4pt]&{}+\operatorname {E} [X_{1}X_{6}]\operatorname {E} [X_{2}X_{3}]\operatorname {E} [X_{4}X_{5}]+\operatorname {E} [X_{1}X_{6}]\operatorname {E} [X_{2}X_{4}]\operatorname {E} [X_{3}X_{5}]+\operatorname {E} [X_{1}X_{6}]\operatorname {E} [X_{2}X_{5}]\operatorname {E} [X_{3}X_{4}].\end{aligned}}}

This yields(2λ1)!2λ1(λ1)!{\displaystyle {\tfrac {(2\lambda -1)!}{2^{\lambda -1}(\lambda -1)!}}} terms in the sum (15 in the above case), each being the product ofλ (in this case 3) covariances. For fourth order moments (four variables) there are three terms. For sixth-order moments there are3 × 5 = 15 terms, and for eighth-order moments there are3 × 5 × 7 = 105 terms.

The covariances are then determined by replacing the terms of the list[1,,2λ]{\displaystyle [1,\ldots ,2\lambda ]} by the corresponding terms of the list consisting ofr1 ones, thenr2 twos, etc.. To illustrate this, examine the following 4th-order central moment case:

E[Xi4]=3σii2E[Xi3Xj]=3σiiσijE[Xi2Xj2]=σiiσjj+2σij2E[Xi2XjXk]=σiiσjk+2σijσikE[XiXjXkXn]=σijσkn+σikσjn+σinσjk.{\displaystyle {\begin{aligned}\operatorname {E} \left[X_{i}^{4}\right]&=3\sigma _{ii}^{2}\\[4pt]\operatorname {E} \left[X_{i}^{3}X_{j}\right]&=3\sigma _{ii}\sigma _{ij}\\[4pt]\operatorname {E} \left[X_{i}^{2}X_{j}^{2}\right]&=\sigma _{ii}\sigma _{jj}+2\sigma _{ij}^{2}\\[4pt]\operatorname {E} \left[X_{i}^{2}X_{j}X_{k}\right]&=\sigma _{ii}\sigma _{jk}+2\sigma _{ij}\sigma _{ik}\\[4pt]\operatorname {E} \left[X_{i}X_{j}X_{k}X_{n}\right]&=\sigma _{ij}\sigma _{kn}+\sigma _{ik}\sigma _{jn}+\sigma _{in}\sigma _{jk}.\end{aligned}}}

whereσij{\displaystyle \sigma _{ij}} is the covariance ofXi andXj. With the above method one first finds the general case for akth moment withk differentX variables,E[XiXjXkXn]{\displaystyle E\left[X_{i}X_{j}X_{k}X_{n}\right]}, and then one simplifies this accordingly. For example, forE[Xi2XkXn]{\displaystyle \operatorname {E} [X_{i}^{2}X_{k}X_{n}]}, one letsXi =Xj and one uses the fact thatσii=σi2{\displaystyle \sigma _{ii}=\sigma _{i}^{2}}.

Functions of a normal vector

[edit]
a: Probability density of a functioncosx2{\displaystyle \cos x^{2}} of a single normal variablex{\displaystyle x} withμ=2{\displaystyle \mu =-2} andσ=3{\displaystyle \sigma =3}.b: Probability density of a functionxy{\displaystyle x^{y}} of a normal vector(x,y){\displaystyle (x,y)}, with meanμ=(1,2){\displaystyle {\boldsymbol {\mu }}=(1,2)}, and covarianceΣ=[.01.016.016.04]{\displaystyle \mathbf {\Sigma } ={\begin{bmatrix}.01&.016\\.016&.04\end{bmatrix}}}.c: Heat map of the joint probability density of two functions of a normal vector(x,y){\displaystyle (x,y)}, with meanμ=(2,5){\displaystyle {\boldsymbol {\mu }}=(-2,5)}, and covarianceΣ=[107710]{\displaystyle \mathbf {\Sigma } ={\begin{bmatrix}10&-7\\-7&10\end{bmatrix}}}.d: Probability density of a functioni=14|xi|{\displaystyle \sum _{i=1}^{4}\vert x_{i}\vert } of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing.[17]

Aquadratic form of a normal vectorx{\displaystyle {\boldsymbol {x}}},q(x)=xQ2x+q1x+q0{\displaystyle q({\boldsymbol {x}})={\boldsymbol {x}}'\mathbf {Q_{2}} {\boldsymbol {x}}+{\boldsymbol {q_{1}}}'{\boldsymbol {x}}+q_{0}} (whereQ2{\displaystyle \mathbf {Q_{2}} } is a matrix,q1{\displaystyle {\boldsymbol {q_{1}}}} is a vector, andq0{\displaystyle q_{0}} is a scalar), is ageneralized chi-squared variable.[17] The direction of a normal vector follows aprojected normal distribution.[18]

Iff(x){\displaystyle f({\boldsymbol {x}})} is a general scalar-valued function of a normal vector, itsprobability density function,cumulative distribution function, andinverse cumulative distribution function can be computed with the numerical method of ray-tracing (Matlab code).[17]

Likelihood function

[edit]

If the mean and covariance matrix are known, the log likelihood of an observed vectorx{\displaystyle {\boldsymbol {x}}} is simply the log of theprobability density function:

lnL(x)=12[ln(|Σ|)+(xμ)Σ1(xμ)+kln(2π)]{\displaystyle \ln L({\boldsymbol {x}})=-{\frac {1}{2}}\left[\ln(|{\boldsymbol {\Sigma }}|\,)+({\boldsymbol {x}}-{\boldsymbol {\mu }})'{\boldsymbol {\Sigma }}^{-1}({\boldsymbol {x}}-{\boldsymbol {\mu }})+k\ln(2\pi )\right]},

The circularly symmetric version of the noncentral complex case, wherez{\displaystyle {\boldsymbol {z}}} is a vector of complex numbers, would be

lnL(z)=ln(|Σ|)(zμ)Σ1(zμ)kln(π){\displaystyle \ln L({\boldsymbol {z}})=-\ln(|{\boldsymbol {\Sigma }}|\,)-({\boldsymbol {z}}-{\boldsymbol {\mu }})^{\dagger }{\boldsymbol {\Sigma }}^{-1}({\boldsymbol {z}}-{\boldsymbol {\mu }})-k\ln(\pi )}

i.e. with theconjugate transpose (indicated by{\displaystyle \dagger }) replacing the normaltranspose (indicated by{\displaystyle '}). This is slightly different than in the real case, because the circularly symmetric version of thecomplex normal distribution has a slightly different form for thenormalization constant.

A similar notation is used formultiple linear regression.[19]

Since the log likelihood of a normal vector is aquadratic form of the normal vector, it is distributed as ageneralized chi-squared variable.[17]

Differential entropy

[edit]

Thedifferential entropy of the multivariate normal distribution is[20]

h(f)=f(x)lnf(x)dx=12ln|2πeΣ|=k2(1+ln2π)+12ln|Σ|,{\displaystyle {\begin{aligned}h\left(f\right)&=-\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\cdots \int _{-\infty }^{\infty }f(\mathbf {x} )\ln f(\mathbf {x} )\,d\mathbf {x} \\[1ex]&={\frac {1}{2}}\ln \left|2\pi e{\boldsymbol {\Sigma }}\right|={\frac {k}{2}}\left(1+\ln 2\pi \right)+{\frac {1}{2}}\ln \left|{\boldsymbol {\Sigma }}\right|,\end{aligned}}}

where the bars denote thematrix determinant,k is the dimensionality of the vector space, and the result has units ofnats.

Kullback–Leibler divergence

[edit]

TheKullback–Leibler divergence fromN1(μ1,Σ1){\displaystyle {\mathcal {N}}_{1}({\boldsymbol {\mu }}_{1},{\boldsymbol {\Sigma }}_{1})} toN0(μ0,Σ0){\displaystyle {\mathcal {N}}_{0}({\boldsymbol {\mu }}_{0},{\boldsymbol {\Sigma }}_{0})}, for non-singular matrices Σ1 and Σ0, is:[21]

DKL(N0N1)=12{tr(Σ11Σ0)+(μ1μ0)TΣ11(μ1μ0)k+ln|Σ1||Σ0|},{\displaystyle D_{\text{KL}}({\mathcal {N}}_{0}\parallel {\mathcal {N}}_{1})={1 \over 2}\left\{\operatorname {tr} \left({\boldsymbol {\Sigma }}_{1}^{-1}{\boldsymbol {\Sigma }}_{0}\right)+\left({\boldsymbol {\mu }}_{1}-{\boldsymbol {\mu }}_{0}\right)^{\rm {T}}{\boldsymbol {\Sigma }}_{1}^{-1}({\boldsymbol {\mu }}_{1}-{\boldsymbol {\mu }}_{0})-k+\ln {|{\boldsymbol {\Sigma }}_{1}| \over |{\boldsymbol {\Sigma }}_{0}|}\right\},}

where||{\displaystyle |\cdot |} denotes thematrix determinant,tr(){\displaystyle tr(\cdot )} is thetrace,ln(){\displaystyle ln(\cdot )} is thenatural logarithm andk{\displaystyle k} is the dimension of the vector space.

Thelogarithm must be taken to basee since the two terms following the logarithm are themselves base-e logarithms of expressions that are either factors of the density function or otherwise arise naturally. The equation therefore gives a result measured innats. Dividing the entire expression above by loge 2 yields the divergence inbits.

Whenμ1=μ0{\displaystyle {\boldsymbol {\mu }}_{1}={\boldsymbol {\mu }}_{0}},

DKL(N0N1)=12{tr(Σ11Σ0)k+ln|Σ1||Σ0|}.{\displaystyle D_{\text{KL}}({\mathcal {N}}_{0}\parallel {\mathcal {N}}_{1})={1 \over 2}\left\{\operatorname {tr} \left({\boldsymbol {\Sigma }}_{1}^{-1}{\boldsymbol {\Sigma }}_{0}\right)-k+\ln {|{\boldsymbol {\Sigma }}_{1}| \over |{\boldsymbol {\Sigma }}_{0}|}\right\}.}

Mutual information

[edit]

Themutual information of two multivariate normal distribution is a special case of theKullback–Leibler divergence in whichP{\displaystyle P} is the fullk{\displaystyle k} dimensional multivariate distribution andQ{\displaystyle Q} is the product of thek1{\displaystyle k_{1}} andk2{\displaystyle k_{2}} dimensional marginal distributionsX{\displaystyle X} andY{\displaystyle Y}, such thatk1+k2=k{\displaystyle k_{1}+k_{2}=k}. The mutual information betweenX{\displaystyle X} andY{\displaystyle Y} is given by:[22]

I(X,Y)=12ln(det(ΣX)det(ΣY)det(Σ)),{\displaystyle I({\boldsymbol {X}},{\boldsymbol {Y}})={\frac {1}{2}}\ln \left({\frac {\det(\Sigma _{X})\det(\Sigma _{Y})}{\det(\Sigma )}}\right),}

where

Σ=[ΣXΣXYΣXYΣY].{\displaystyle \Sigma ={\begin{bmatrix}\Sigma _{X}&\Sigma _{XY}\\\Sigma _{XY}&\Sigma _{Y}\end{bmatrix}}.}

IfQ{\displaystyle Q} is product ofk{\displaystyle k} one-dimensional normal distributions, then in the notation of theKullback–Leibler divergence section of this article,Σ1{\displaystyle {\boldsymbol {\Sigma }}_{1}} is adiagonal matrix with the diagonal entries ofΣ0{\displaystyle {\boldsymbol {\Sigma }}_{0}}, andμ1=μ0{\displaystyle {\boldsymbol {\mu }}_{1}={\boldsymbol {\mu }}_{0}}. The resulting formula for mutual information is:

I(X)=12ln|ρ0|,{\displaystyle I({\boldsymbol {X}})=-{1 \over 2}\ln |{\boldsymbol {\rho }}_{0}|,}

whereρ0{\displaystyle {\boldsymbol {\rho }}_{0}} is thecorrelation matrix constructed fromΣ0{\displaystyle {\boldsymbol {\Sigma }}_{0}}.[23]

In the bivariate case the expression for the mutual information is:

I(x;y)=12ln(1ρ2).{\displaystyle I(x;y)=-{1 \over 2}\ln(1-\rho ^{2}).}

Joint normality

[edit]

Normally distributed and independent

[edit]

IfX{\displaystyle X} andY{\displaystyle Y} are normally distributed andindependent, this implies they are "jointly normally distributed", i.e., the pair(X,Y){\displaystyle (X,Y)} must have multivariate normal distribution. However, a pair of jointly normally distributed variables need not be independent (would only be so if uncorrelated,ρ=0{\displaystyle \rho =0} ).

Two normally distributed random variables need not be jointly bivariate normal

[edit]
See also:normally distributed and uncorrelated does not imply independent

The fact that two random variablesX{\displaystyle X} andY{\displaystyle Y} both have a normal distribution does not imply that the pair(X,Y){\displaystyle (X,Y)} has a joint normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, andY=X{\displaystyle Y=X} if|X|>c{\displaystyle |X|>c} andY=X{\displaystyle Y=-X} if|X|<c{\displaystyle |X|<c}, wherec>0{\displaystyle c>0}. There are similar counterexamples for more than two random variables. In general, they sum to amixture model.[citation needed]

Correlations and independence

[edit]

In general, random variables may be uncorrelated but statistically dependent. But if a random vector has a multivariate normal distribution then any two or more of its components that are uncorrelated areindependent. This implies that any two or more of its components that arepairwise independent are independent. But, as pointed out just above, it isnot true that two random variables that are (separately, marginally) normally distributed and uncorrelated are independent.

Conditional distributions

[edit]

IfN-dimensionalx is partitioned as follows

x=[x1x2] with sizes [q×1(Nq)×1]{\displaystyle \mathbf {x} ={\begin{bmatrix}\mathbf {x} _{1}\\\mathbf {x} _{2}\end{bmatrix}}{\text{ with sizes }}{\begin{bmatrix}q\times 1\\(N-q)\times 1\end{bmatrix}}}

and accordinglyμ andΣ are partitioned as follows

μ=[μ1μ2] with sizes [q×1(Nq)×1]{\displaystyle {\boldsymbol {\mu }}={\begin{bmatrix}{\boldsymbol {\mu }}_{1}\\{\boldsymbol {\mu }}_{2}\end{bmatrix}}{\text{ with sizes }}{\begin{bmatrix}q\times 1\\(N-q)\times 1\end{bmatrix}}}
Σ=[Σ11Σ12Σ21Σ22] with sizes [q×qq×(Nq)(Nq)×q(Nq)×(Nq)]{\displaystyle {\boldsymbol {\Sigma }}={\begin{bmatrix}{\boldsymbol {\Sigma }}_{11}&{\boldsymbol {\Sigma }}_{12}\\{\boldsymbol {\Sigma }}_{21}&{\boldsymbol {\Sigma }}_{22}\end{bmatrix}}{\text{ with sizes }}{\begin{bmatrix}q\times q&q\times (N-q)\\(N-q)\times q&(N-q)\times (N-q)\end{bmatrix}}}

then the distribution ofx1 conditional onx2 =a is multivariate normal[24](x1 | x2 =a) ~N(μ,Σ) where

μ¯=μ1+Σ12Σ221(aμ2){\displaystyle {\bar {\boldsymbol {\mu }}}={\boldsymbol {\mu }}_{1}+{\boldsymbol {\Sigma }}_{12}{\boldsymbol {\Sigma }}_{22}^{-1}\left(\mathbf {a} -{\boldsymbol {\mu }}_{2}\right)}

and covariance matrix

Σ¯=Σ11Σ12Σ221Σ21.{\displaystyle {\overline {\boldsymbol {\Sigma }}}={\boldsymbol {\Sigma }}_{11}-{\boldsymbol {\Sigma }}_{12}{\boldsymbol {\Sigma }}_{22}^{-1}{\boldsymbol {\Sigma }}_{21}.}[25]

HereΣ221{\displaystyle {\boldsymbol {\Sigma }}_{22}^{-1}} is thegeneralized inverse ofΣ22{\displaystyle {\boldsymbol {\Sigma }}_{22}}. The matrixΣ¯{\displaystyle {\overline {\boldsymbol {\Sigma }}}} is theSchur complement ofΣ22 inΣ. That is, the equation above is equivalent to inverting the overall covariance matrix, dropping the rows and columns corresponding to the variables being conditioned upon, and inverting back to get the conditional covariance matrix.

Note that knowing thatx2 =a alters the variance, though the new variance does not depend on the specific value ofa; perhaps more surprisingly, the mean is shifted byΣ12Σ221(aμ2){\displaystyle {\boldsymbol {\Sigma }}_{12}{\boldsymbol {\Sigma }}_{22}^{-1}\left(\mathbf {a} -{\boldsymbol {\mu }}_{2}\right)}; compare this with the situation of not knowing the value ofa, in which casex1 would have distributionNq(μ1,Σ11){\displaystyle {\mathcal {N}}_{q}\left({\boldsymbol {\mu }}_{1},{\boldsymbol {\Sigma }}_{11}\right)}.

An interesting fact derived in order to prove this result, is that the random vectorsx2{\displaystyle \mathbf {x} _{2}} andy1=x1Σ12Σ221x2{\displaystyle \mathbf {y} _{1}=\mathbf {x} _{1}-{\boldsymbol {\Sigma }}_{12}{\boldsymbol {\Sigma }}_{22}^{-1}\mathbf {x} _{2}} are independent.

The matrixΣ12Σ22−1 is known as the matrix ofregression coefficients.

Bivariate case

[edit]

In the bivariate case wherex is partitioned intoX1{\displaystyle X_{1}} andX2{\displaystyle X_{2}}, the conditional distribution ofX1{\displaystyle X_{1}} givenX2{\displaystyle X_{2}} is[26]

X1X2=a  N(μ1+σ1σ2ρ(aμ2),(1ρ2)σ12){\displaystyle X_{1}\mid X_{2}=a\ \sim \ {\mathcal {N}}\left(\mu _{1}+{\frac {\sigma _{1}}{\sigma _{2}}}\rho (a-\mu _{2}),\,(1-\rho ^{2})\sigma _{1}^{2}\right)}

whereρ=σ12σ1σ2{\displaystyle \rho ={\frac {\sigma _{12}}{\sigma _{1}\sigma _{2}}}} is thecorrelation coefficient betweenX1{\displaystyle X_{1}} andX2{\displaystyle X_{2}}.

Bivariate conditional expectation

[edit]
In the general case
[edit]
(X1X2)N((μ1μ2),(σ12ρσ1σ2ρσ1σ2σ22)){\displaystyle {\begin{pmatrix}X_{1}\\X_{2}\end{pmatrix}}\sim {\mathcal {N}}\left({\begin{pmatrix}\mu _{1}\\\mu _{2}\end{pmatrix}},{\begin{pmatrix}\sigma _{1}^{2}&\rho \sigma _{1}\sigma _{2}\\\rho \sigma _{1}\sigma _{2}&\sigma _{2}^{2}\end{pmatrix}}\right)}

The conditional expectation of X1 given X2 is:

E(X1X2=x2)=μ1+ρσ1σ2(x2μ2){\displaystyle \operatorname {E} (X_{1}\mid X_{2}=x_{2})=\mu _{1}+\rho {\frac {\sigma _{1}}{\sigma _{2}}}(x_{2}-\mu _{2})}

Proof: the result is obtained by taking the expectation of the conditional distributionX1X2{\displaystyle X_{1}\mid X_{2}} above.

In the centered case with unit variances
[edit]
(X1X2)N((00),(1ρρ1)){\displaystyle {\begin{pmatrix}X_{1}\\X_{2}\end{pmatrix}}\sim {\mathcal {N}}\left({\begin{pmatrix}0\\0\end{pmatrix}},{\begin{pmatrix}1&\rho \\\rho &1\end{pmatrix}}\right)}

The conditional expectation ofX1 givenX2 is

E(X1X2=x2)=ρx2{\displaystyle \operatorname {E} (X_{1}\mid X_{2}=x_{2})=\rho x_{2}}

and the conditional variance is

var(X1X2=x2)=1ρ2;{\displaystyle \operatorname {var} (X_{1}\mid X_{2}=x_{2})=1-\rho ^{2};}

thus the conditional variance does not depend onx2.

The conditional expectation ofX1 given thatX2 is smaller/bigger thanz is:[27]: 367 

E(X1X2<z)=ρφ(z)Φ(z),{\displaystyle \operatorname {E} (X_{1}\mid X_{2}<z)=-\rho {\varphi (z) \over \Phi (z)},}
E(X1X2>z)=ρφ(z)(1Φ(z)),{\displaystyle \operatorname {E} (X_{1}\mid X_{2}>z)=\rho {\varphi (z) \over (1-\Phi (z))},}

where the final ratio here is called theinverse Mills ratio.

Proof: the last two results are obtained using the resultE(X1X2=x2)=ρx2{\displaystyle \operatorname {E} (X_{1}\mid X_{2}=x_{2})=\rho x_{2}}, so that

E(X1X2<z)=ρE(X2X2<z){\displaystyle \operatorname {E} (X_{1}\mid X_{2}<z)=\rho E(X_{2}\mid X_{2}<z)} and then using the properties of the expectation of atruncated normal distribution.

Marginal distributions

[edit]

To obtain themarginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this follows from the definitions of multivariate normal distributions and linear algebra.[28]

Example

LetX = [X1,X2,X3] be multivariate normal random variables with mean vectorμ = [μ1,μ2,μ3] and covariance matrixΣ (standard parametrization for multivariate normal distributions). Then the joint distribution ofX = [X1,X3] is multivariate normal with mean vectorμ = [μ1,μ3] and covariance matrixΣ=[Σ11Σ13Σ31Σ33]{\displaystyle {\boldsymbol {\Sigma }}'={\begin{bmatrix}{\boldsymbol {\Sigma }}_{11}&{\boldsymbol {\Sigma }}_{13}\\{\boldsymbol {\Sigma }}_{31}&{\boldsymbol {\Sigma }}_{33}\end{bmatrix}}}.

Affine transformation

[edit]

IfY =c +BX is anaffine transformation ofX N(μ,Σ),{\displaystyle \mathbf {X} \ \sim {\mathcal {N}}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}),} wherec is anM×1{\displaystyle M\times 1} vector of constants andB is a constantM×N{\displaystyle M\times N} matrix, thenY has a multivariate normal distribution with expected valuec + and varianceBΣBT i.e.,YN(c+Bμ,BΣBT){\displaystyle \mathbf {Y} \sim {\mathcal {N}}\left(\mathbf {c} +\mathbf {B} {\boldsymbol {\mu }},\mathbf {B} {\boldsymbol {\Sigma }}\mathbf {B} ^{\rm {T}}\right)}. In particular, any subset of theXi has a marginal distribution that is also multivariate normal.To see this, consider the following example: to extract the subset (X1,X2,X4)T, use

B=[100000010000000100]{\displaystyle \mathbf {B} ={\begin{bmatrix}1&0&0&0&0&\ldots &0\\0&1&0&0&0&\ldots &0\\0&0&0&1&0&\ldots &0\end{bmatrix}}}

which extracts the desired elements directly.

Another corollary is that the distribution ofZ =b ·X, whereb is a constant vector with the same number of elements asX and the dot indicates thedot product, is univariate Gaussian withZN(bμ,bTΣb){\displaystyle Z\sim {\mathcal {N}}\left(\mathbf {b} \cdot {\boldsymbol {\mu }},\mathbf {b} ^{\rm {T}}{\boldsymbol {\Sigma }}\mathbf {b} \right)}. This result follows by using

B=[b1b2bn]=bT.{\displaystyle \mathbf {B} ={\begin{bmatrix}b_{1}&b_{2}&\ldots &b_{n}\end{bmatrix}}=\mathbf {b} ^{\rm {T}}.}

Observe how the positive-definiteness ofΣ implies that the variance of the dot product must be positive.

An affine transformation ofX such as 2X is not the same as thesum of two independent realisations ofX.

Geometric interpretation

[edit]
See also:Confidence region

The equidensity contours of a non-singular multivariate normal distribution areellipsoids (i.e. affine transformations ofhyperspheres) centered at the mean.[29] Hence the multivariate normal distribution is an example of the class ofelliptical distributions. The directions of the principal axes of the ellipsoids are given by the eigenvectors of the covariance matrixΣ{\displaystyle {\boldsymbol {\Sigma }}}. The squared relative lengths of the principal axes are given by the corresponding eigenvalues.

IfΣ =UΛUT =1/2(1/2)T is aneigendecomposition where the columns ofU are unit eigenvectors andΛ is adiagonal matrix of the eigenvalues, then we have

X N(μ,Σ)X μ+UΛ1/2N(0,I)X μ+UN(0,Λ).{\displaystyle \mathbf {X} \ \sim {\mathcal {N}}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\iff \mathbf {X} \ \sim {\boldsymbol {\mu }}+\mathbf {U} {\boldsymbol {\Lambda }}^{1/2}{\mathcal {N}}(0,\mathbf {I} )\iff \mathbf {X} \ \sim {\boldsymbol {\mu }}+\mathbf {U} {\mathcal {N}}(0,{\boldsymbol {\Lambda }}).}

Moreover,U can be chosen to be arotation matrix, as inverting an axis does not have any effect onN(0,Λ), but inverting a column changes the sign ofU's determinant. The distributionN(μ,Σ) is in effectN(0,I) scaled byΛ1/2, rotated byU and translated byμ.

Conversely, any choice ofμ, full rank matrixU, and positive diagonal entries Λi yields a non-singular multivariate normal distribution. If any Λi is zero andU is square, the resulting covariance matrixUΛUT issingular. Geometrically this means that every contour ellipsoid is infinitely thin and has zero volume inn-dimensional space, as at least one of the principal axes has length of zero; this is thedegenerate case.

"The radius around the true mean in a bivariate normal random variable, re-written inpolar coordinates (radius and angle), follows aHoyt distribution."[30]

In one dimension the probability of finding a sample of the normal distribution in the intervalμ±σ{\displaystyle \mu \pm \sigma } is approximately 68.27%, but in higher dimensions the probability of finding a sample in the region of the standard deviation ellipse is lower.[31]

DimensionalityProbability
10.6827
20.3935
30.1987
40.0902
50.0374
60.0144
70.0052
80.0018
90.0006
100.0002

Statistical inference

[edit]

Parameter estimation

[edit]
Further information:Estimation of covariance matrices

The derivation of themaximum-likelihoodestimator of the covariance matrix of a multivariate normal distribution is straightforward.

In short, the probability density function (pdf) of a multivariate normal is

f(x)=1(2π)k|Σ|exp(12(xμ)TΣ1(xμ)){\displaystyle f(\mathbf {x} )={\frac {1}{\sqrt {(2\pi )^{k}|{\boldsymbol {\Sigma }}|}}}\exp \left(-{1 \over 2}(\mathbf {x} -{\boldsymbol {\mu }})^{\rm {T}}{\boldsymbol {\Sigma }}^{-1}({\mathbf {x} }-{\boldsymbol {\mu }})\right)}

and the ML estimator of the covariance matrix from a sample ofn observations is[32]

Σ^=1ni=1n(xix¯)(xix¯)T{\displaystyle {\widehat {\boldsymbol {\Sigma }}}={1 \over n}\sum _{i=1}^{n}({\mathbf {x} }_{i}-{\overline {\mathbf {x} }})({\mathbf {x} }_{i}-{\overline {\mathbf {x} }})^{\mathrm {T} }}

which is simply thesample covariance matrix. This is abiased estimator whose expectation is

E[Σ^]=n1nΣ.{\displaystyle E\left[{\widehat {\boldsymbol {\Sigma }}}\right]={\frac {n-1}{n}}{\boldsymbol {\Sigma }}.}

An unbiased sample covariance is

Σ^=1n1i=1n(xix¯)(xix¯)T=1n1[X(I1nJ)X]{\displaystyle {\widehat {\boldsymbol {\Sigma }}}={\frac {1}{n-1}}\sum _{i=1}^{n}(\mathbf {x} _{i}-{\overline {\mathbf {x} }})(\mathbf {x} _{i}-{\overline {\mathbf {x} }})^{\rm {T}}={\frac {1}{n-1}}\left[X'\left(I-{\frac {1}{n}}\cdot J\right)X\right]} (matrix form;I{\displaystyle I} is theK×K{\displaystyle K\times K} identity matrix, J is aK×K{\displaystyle K\times K} matrix of ones; the term in parentheses is thus theK×K{\displaystyle K\times K} centering matrix)

TheFisher information matrix for estimating the parameters of a multivariate normal distribution has a closed form expression. This can be used, for example, to compute theCramér–Rao bound for parameter estimation in this setting. SeeFisher information for more details.

Bayesian inference

[edit]

InBayesian statistics, theconjugate prior of the mean vector is another multivariate normal distribution, and the conjugate prior of the covariance matrix is aninverse-Wishart distributionW1{\displaystyle {\mathcal {W}}^{-1}} . Suppose then thatn observations have been made

X={x1,,xn}N(μ,Σ){\displaystyle \mathbf {X} =\{\mathbf {x} _{1},\dots ,\mathbf {x} _{n}\}\sim {\mathcal {N}}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}

and that a conjugate prior has been assigned, where

p(μ,Σ)=p(μΣ) p(Σ),{\displaystyle p({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})=p({\boldsymbol {\mu }}\mid {\boldsymbol {\Sigma }})\ p({\boldsymbol {\Sigma }}),}

where

p(μΣ)N(μ0,m1Σ),{\displaystyle p({\boldsymbol {\mu }}\mid {\boldsymbol {\Sigma }})\sim {\mathcal {N}}({\boldsymbol {\mu }}_{0},m^{-1}{\boldsymbol {\Sigma }}),}

and

p(Σ)W1(Ψ,n0).{\displaystyle p({\boldsymbol {\Sigma }})\sim {\mathcal {W}}^{-1}({\boldsymbol {\Psi }},n_{0}).}

Then[32]

p(μΣ,X)N(nx¯+mμ0n+m,1n+mΣ),p(ΣX)W1(Ψ+nS+nmn+m(x¯μ0)(x¯μ0),n+n0),{\displaystyle {\begin{array}{rcl}p({\boldsymbol {\mu }}\mid {\boldsymbol {\Sigma }},\mathbf {X} )&\sim &{\mathcal {N}}\left({\frac {n{\bar {\mathbf {x} }}+m{\boldsymbol {\mu }}_{0}}{n+m}},{\frac {1}{n+m}}{\boldsymbol {\Sigma }}\right),\\p({\boldsymbol {\Sigma }}\mid \mathbf {X} )&\sim &{\mathcal {W}}^{-1}\left({\boldsymbol {\Psi }}+n\mathbf {S} +{\frac {nm}{n+m}}({\bar {\mathbf {x} }}-{\boldsymbol {\mu }}_{0})({\bar {\mathbf {x} }}-{\boldsymbol {\mu }}_{0})',n+n_{0}\right),\end{array}}}

where

x¯=1ni=1nxi,S=1ni=1n(xix¯)(xix¯).{\displaystyle {\begin{aligned}{\bar {\mathbf {x} }}&={\frac {1}{n}}\sum _{i=1}^{n}\mathbf {x} _{i},\\\mathbf {S} &={\frac {1}{n}}\sum _{i=1}^{n}(\mathbf {x} _{i}-{\bar {\mathbf {x} }})(\mathbf {x} _{i}-{\bar {\mathbf {x} }})'.\end{aligned}}}

Multivariate normality tests

[edit]

Multivariate normality tests check a given set of data for similarity to the multivariatenormal distribution. Thenull hypothesis is that thedata set is similar to the normal distribution, therefore a sufficiently smallp-value indicates non-normal data. Multivariate normality tests include the Cox–Small test[33]and Smith and Jain's adaptation[34] of the Friedman–Rafsky test created byLarry Rafsky andJerome Friedman.[35]

Mardia's test[36] is based on multivariate extensions ofskewness andkurtosis measures. For a sample {x1, ...,xn} ofk-dimensional vectors we compute

Σ^=1nj=1n(xjx¯)(xjx¯)TA=16ni=1nj=1n[(xix¯)TΣ^1(xjx¯)]3B=n8k(k+2){1ni=1n[(xix¯)TΣ^1(xix¯)]2k(k+2)}{\displaystyle {\begin{aligned}&{\widehat {\boldsymbol {\Sigma }}}={1 \over n}\sum _{j=1}^{n}\left(\mathbf {x} _{j}-{\bar {\mathbf {x} }}\right)\left(\mathbf {x} _{j}-{\bar {\mathbf {x} }}\right)^{\mathrm {T} }\\&A={1 \over 6n}\sum _{i=1}^{n}\sum _{j=1}^{n}\left[(\mathbf {x} _{i}-{\bar {\mathbf {x} }})^{\mathrm {T} }\;{\widehat {\boldsymbol {\Sigma }}}^{-1}(\mathbf {x} _{j}-{\bar {\mathbf {x} }})\right]^{3}\\&B={\sqrt {\frac {n}{8k(k+2)}}}\left\{{1 \over n}\sum _{i=1}^{n}\left[(\mathbf {x} _{i}-{\bar {\mathbf {x} }})^{\mathrm {T} }\;{\widehat {\boldsymbol {\Sigma }}}^{-1}(\mathbf {x} _{i}-{\bar {\mathbf {x} }})\right]^{2}-k(k+2)\right\}\end{aligned}}}

Under the null hypothesis of multivariate normality, the statisticA will have approximately achi-squared distribution with1/6k(k + 1)(k + 2) degrees of freedom, andB will be approximatelystandard normalN(0,1).

Mardia's kurtosis statistic is skewed and converges very slowly to the limiting normal distribution. For medium size samples(50n<400){\displaystyle (50\leq n<400)}, the parameters of the asymptotic distribution of the kurtosis statistic are modified[37] For small sample tests (n<50{\displaystyle n<50}) empirical critical values are used. Tables of critical values for both statistics are given by Rencher[38] fork = 2, 3, 4.

Mardia's tests are affine invariant but not consistent. For example, the multivariate skewness test is not consistent againstsymmetric non-normal alternatives.[39]

TheBHEP test[40] computes the norm of the difference between the empiricalcharacteristic function and the theoretical characteristic function of the normal distribution. Calculation of the norm is performed in theL2(μ) space of square-integrable functions with respect to the Gaussian weighting functionμβ(t)=(2πβ2)k/2e|t|2/(2β2){\displaystyle \mu _{\beta }(\mathbf {t} )=(2\pi \beta ^{2})^{-k/2}e^{-|\mathbf {t} |^{2}/(2\beta ^{2})}}. The test statistic is

Tβ=Rk|1nj=1neitTΣ^1/2(xjx)¯e|t|2/2|2μβ(t)dt=1n2i,j=1neβ22(xixj)TΣ^1(xixj)2n(1+β2)k/2i=1neβ22(1+β2)(xix¯)TΣ^1(xix¯)+1(1+2β2)k/2{\displaystyle {\begin{aligned}T_{\beta }&=\int _{\mathbb {R} ^{k}}\left|{1 \over n}\sum _{j=1}^{n}e^{i\mathbf {t} ^{\mathrm {T} }{\widehat {\boldsymbol {\Sigma }}}^{-1/2}(\mathbf {x} _{j}-{\bar {\mathbf {x} )}}}-e^{-|\mathbf {t} |^{2}/2}\right|^{2}\;{\boldsymbol {\mu }}_{\beta }(\mathbf {t} )\,d\mathbf {t} \\&={1 \over n^{2}}\sum _{i,j=1}^{n}e^{-{\beta ^{2} \over 2}(\mathbf {x} _{i}-\mathbf {x} _{j})^{\mathrm {T} }{\widehat {\boldsymbol {\Sigma }}}^{-1}(\mathbf {x} _{i}-\mathbf {x} _{j})}-{\frac {2}{n(1+\beta ^{2})^{k/2}}}\sum _{i=1}^{n}e^{-{\frac {\beta ^{2}}{2(1+\beta ^{2})}}(\mathbf {x} _{i}-{\bar {\mathbf {x} }})^{\mathrm {T} }{\widehat {\boldsymbol {\Sigma }}}^{-1}(\mathbf {x} _{i}-{\bar {\mathbf {x} }})}+{\frac {1}{(1+2\beta ^{2})^{k/2}}}\end{aligned}}}

The limiting distribution of this test statistic is a weighted sum of chi-squared random variables.[40]

A detailed survey of these and other test procedures is available.[41]

Classification into multivariate normal classes

[edit]
Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions.pe{\displaystyle p_{e}} is the probability of total classification error. Right: the error matrix.pij{\displaystyle p_{ij}} is the probability of classifying a sample from normali{\displaystyle i} asj{\displaystyle j}. These are computed by the numerical method of ray-tracing[17] (Matlab code).

Gaussian Discriminant Analysis

[edit]

Suppose that observations (which are vectors) are presumed to come from one of several multivariate normal distributions, with known means and covariances. Then any given observation can be assigned to the distribution from which it has the highest probability of arising. This classification procedure is called Gaussian discriminant analysis.The classification performance, i.e. probabilities of the different classification outcomes, and the overall classification error, can be computed by the numerical method of ray-tracing[17] (Matlab code).

Computational methods

[edit]

Drawing values from the distribution

[edit]

A widely used method for drawing (sampling) a random vectorx from theN-dimensional multivariate normal distribution with mean vectorμ andcovariance matrixΣ works as follows:[42]

  1. Find any real matrixA such thatAAT =Σ. WhenΣ is positive-definite, theCholesky decomposition is typically used because it is widely available, computationally efficient, and well known. If a rank-revealing (pivoted) Cholesky decomposition such as LAPACK's dpstrf() is available, it can be used in the general positive-semidefinite case as well. A slower general alternative is to use the matrixA =1/2 obtained from aspectral decompositionΣ =UΛU−1 ofΣ.
  2. Letz = (z1, ...,zN)T be a vector whose components areNindependentstandard normal variates (which can be generated, for example, by using theBox–Muller transform).
  3. Letx beμ +Az. This has the desired distribution due to the affine transformation property.

See also

[edit]

References

[edit]
  1. ^abcLapidoth, Amos (2009).A Foundation in Digital Communication. Cambridge University Press.ISBN 978-0-521-19395-5.
  2. ^Gut, Allan (2009).An Intermediate Course in Probability. Springer.ISBN 978-1-441-90161-3.
  3. ^Kac, M. (1939). "On a characterization of the normal distribution".American Journal of Mathematics.61 (3):726–728.doi:10.2307/2371328.JSTOR 2371328.
  4. ^Sinz, Fabian; Gerwinn, Sebastian; Bethge, Matthias (2009)."Characterization of the p-generalized normal distribution".Journal of Multivariate Analysis.100 (5):817–820.doi:10.1016/j.jmva.2008.07.006.
  5. ^Simon J.D. Prince(June 2012).Computer Vision: Models, Learning, and InferenceArchived 2020-10-28 at theWayback Machine. Cambridge University Press. 3.7:"Multivariate normal distribution".
  6. ^Kim, M. G. (2000). "Multivariate outliers and decompositions of Mahalanobis distance".Communications in Statistics – Theory and Methods.29 (7):1511–1526.doi:10.1080/03610920008832559.
  7. ^Hamedani, G. G.; Tata, M. N. (1975). "On the determination of the bivariate normal distribution from distributions of linear combinations of the variables".The American Mathematical Monthly.82 (9):913–915.doi:10.2307/2318494.JSTOR 2318494.
  8. ^Wyatt, John (November 26, 2008)."Linear least mean-squared error estimation"(PDF).Lecture notes course on applied probability. Archived fromthe original(PDF) on October 10, 2015. Retrieved23 January 2012.
  9. ^"linear algebra - Mapping between affine coordinate function".Mathematics Stack Exchange. Retrieved2022-06-24.
  10. ^Rao, C. R. (1973).Linear Statistical Inference and Its Applications. New York: Wiley. pp. 527–528.ISBN 0-471-70823-2.
  11. ^abBotev, Z. I. (2016). "The normal law under linear restrictions: simulation and estimation via minimax tilting".Journal of the Royal Statistical Society, Series B.79:125–148.arXiv:1603.04166.Bibcode:2016arXiv160304166B.doi:10.1111/rssb.12162.S2CID 88515228.
  12. ^Genz, Alan (2009).Computation of Multivariate Normal and t Probabilities. Springer.ISBN 978-3-642-01689-9.
  13. ^abBensimhoun Michael,N-Dimensional Cumulative Function, And Other Useful Facts About Gaussians and Normal Densities (2006)
  14. ^Siotani, Minoru (1964)."Tolerance regions for a multivariate normal population"(PDF).Annals of the Institute of Statistical Mathematics.16 (1):135–153.doi:10.1007/BF02868568.S2CID 123269490.
  15. ^abBotev, Z. I.; Mandjes, M.; Ridder, A. (6–9 December 2015). "Tail distribution of the maximum of correlated Gaussian random variables".2015 Winter Simulation Conference (WSC). Huntington Beach, Calif., USA: IEEE. pp. 633–642.doi:10.1109/WSC.2015.7408202.hdl:10419/130486.ISBN 978-1-4673-9743-8.
  16. ^Adler, R. J.; Blanchet, J.; Liu, J. (7–10 Dec 2008). "Efficient simulation for tail probabilities of Gaussian random fields".2008 Winter Simulation Conference (WSC). Miami, Fla., USA: IEEE. pp. 328–336.doi:10.1109/WSC.2008.4736085.ISBN 978-1-4244-2707-9.
  17. ^abcdefghiDas, Abhranil; Wilson S Geisler (2020). "Methods to integrate multinormals and compute classification measures".arXiv:2012.14331 [stat.ML].
  18. ^Hernandez-Stumpfhauser, Daniel; Breidt, F. Jay; van der Woerd, Mark J. (2017)."The General Projected Normal Distribution of Arbitrary Dimension: Modeling and Bayesian Inference".Bayesian Analysis.12 (1):113–133.doi:10.1214/15-BA989.
  19. ^Tong, T. (2010)Multiple Linear Regression : MLE and Its Distributional ResultsArchived 2013-06-16 atWebCite, Lecture Notes
  20. ^Gokhale, DV; Ahmed, NA; Res, BC; Piscataway, NJ (May 1989). "Entropy Expressions and Their Estimators for Multivariate Distributions".IEEE Transactions on Information Theory.35 (3):688–692.doi:10.1109/18.30996.
  21. ^Duchi, J.Derivations for Linear Algebra and Optimization(PDF) (Thesis). p. 13.
  22. ^Proof: Mutual information of the multivariate normal distribution
  23. ^MacKay, David J. C. (2003-10-06).Information Theory, Inference and Learning Algorithms (Illustrated ed.). Cambridge: Cambridge University Press.ISBN 978-0-521-64298-9.
  24. ^Holt, W.; Nguyen, D. (2023).Essential Aspects of Bayesian Data Imputation (Thesis).SSRN 4494314.
  25. ^Eaton, Morris L. (1983).Multivariate Statistics: a Vector Space Approach. John Wiley and Sons. pp. 116–117.ISBN 978-0-471-02776-8.
  26. ^Jensen, J (2000).Statistics for Petroleum Engineers and Geoscientists. Amsterdam: Elsevier. p. 207.ISBN 0-444-50552-0.
  27. ^Maddala, G. S. (1983).Limited Dependent and Qualitative Variables in Econometrics. Cambridge University Press.ISBN 0-521-33825-5.
  28. ^An algebraic computation of the marginal distribution is shown herehttp://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.htmlArchived 2010-01-17 at theWayback Machine. A much shorter proof is outlined herehttps://math.stackexchange.com/a/3832137
  29. ^Nikolaus Hansen (2016)."The CMA Evolution Strategy: A Tutorial"(PDF).arXiv:1604.00772.Bibcode:2016arXiv160400772H. Archived fromthe original(PDF) on 2010-03-31. Retrieved2012-01-07.
  30. ^Daniel Wollschlaeger."The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2)".[permanent dead link]
  31. ^Wang, Bin; Shi, Wenzhong; Miao, Zelang (2015-03-13). Rocchini, Duccio (ed.)."Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space".PLOS ONE.10 (3): e0118537.Bibcode:2015PLoSO..1018537W.doi:10.1371/journal.pone.0118537.ISSN 1932-6203.PMC 4358977.PMID 25769048.
  32. ^abHolt, W.; Nguyen, D. (2023).Introduction to Bayesian Data Imputation (Thesis).SSRN 4494314.
  33. ^Cox, D. R.; Small, N. J. H. (1978). "Testing multivariate normality".Biometrika.65 (2): 263.doi:10.1093/biomet/65.2.263.
  34. ^Smith, S. P.; Jain, A. K. (1988). "A test to determine the multivariate normality of a data set".IEEE Transactions on Pattern Analysis and Machine Intelligence.10 (5): 757.doi:10.1109/34.6789.
  35. ^Friedman, J. H.; Rafsky, L. C. (1979)."Multivariate Generalizations of the Wald–Wolfowitz and Smirnov Two-Sample Tests".The Annals of Statistics.7 (4): 697.doi:10.1214/aos/1176344722.
  36. ^Mardia, K. V. (1970). "Measures of multivariate skewness and kurtosis with applications".Biometrika.57 (3):519–530.doi:10.1093/biomet/57.3.519.
  37. ^Rencher (1995), pages 112–113.
  38. ^Rencher (1995), pages 493–495.
  39. ^Baringhaus, L.; Henze, N. (1991)."Limit distributions for measures of multivariate skewness and kurtosis based on projections".Journal of Multivariate Analysis.38:51–69.doi:10.1016/0047-259X(91)90031-V.
  40. ^abBaringhaus, L.; Henze, N. (1988). "A consistent test for multivariate normality based on the empirical characteristic function".Metrika.35 (1):339–348.doi:10.1007/BF02613322.S2CID 122362448.
  41. ^Henze, Norbert (2002). "Invariant tests for multivariate normality: a critical review".Statistical Papers.43 (4):467–506.doi:10.1007/s00362-002-0119-6.S2CID 122934510.
  42. ^Gentle, J. E. (2009).Computational Statistics. Statistics and Computing. New York: Springer. pp. 315–316.doi:10.1007/978-0-387-98144-4.ISBN 978-0-387-98143-7.

Literature

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Multivariate_normal_distribution&oldid=1288576354"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp