Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Most-perfect magic square

From Wikipedia, the free encyclopedia
Data
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Most-perfect magic square" – news ·newspapers ·books ·scholar ·JSTOR
(July 2021) (Learn how and when to remove this message)
Most-perfect magic square from theParshvanath Jain temple inKhajuraho, India
712114
213811
163105
96154
transcription of
theindian numerals

Amost-perfect magic square of ordern is amagic square containing the numbers 1 ton2 with two additional properties:

  1. Each 2 × 2 subsquare sums to 2s, wheres =n2 + 1.
  2. All pairs of integers distantn/2 along a (major) diagonal sum tos.

There are 384 such combinations.

Examples

[edit]
Image ofSriramachakra as a most-perfect magic square given in thePanchangam published bySringeri Sharada Peetham.
Construction of a fourth-order most-perfect magic square from aLatin square with distinct diagonals, M, and itstranspose, MT.

Two 12 × 12 most-perfect magic squares can be obtained adding 1 to each element of:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12][1,]   64   92   81   94   48   77   67   63   50    61    83    78[2,]   31   99   14   97   47  114   28  128   45   130    12   113[3,]   24  132   41  134    8  117   27  103   10   101    43   118[4,]   23  107    6  105   39  122   20  136   37   138     4   121[5,]   16  140   33  142    0  125   19  111    2   109    35   126[6,]   75   55   58   53   91   70   72   84   89    86    56    69[7,]   76   80   93   82   60   65   79   51   62    49    95    66[8,]  115   15   98   13  131   30  112   44  129    46    96    29[9,]  116   40  133   42  100   25  119   11  102     9   135    26[10,]  123    7  106    5  139   22  120   36  137    38   104    21[11,]  124   32  141   34  108   17  127    3  110     1   143    18[12,]   71   59   54   57   87   74   68   88   85    90    52    73
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12][1,]    4  113   14  131    3  121   31  138   21   120    32   130[2,]  136   33  126   15  137   25  109    8  119    26   108    16[3,]   73   44   83   62   72   52  100   69   90    51   101    61[4,]   64  105   54   87   65   97   37   80   47    98    36    88[5,]    1  116   11  134    0  124   28  141   18   123    29   133[6,]  103   66   93   48  104   58   76   41   86    59    75    49[7,]  112    5  122   23  111   13  139   30  129    12   140    22[8,]   34  135   24  117   35  127    7  110   17   128     6   118[9,]   43   74   53   92   42   82   70   99   60    81    71    91[10,]  106   63   96   45  107   55   79   38   89    56    78    46[11,]  115    2  125   20  114   10  142   27  132     9   143    19[12,]   67  102   57   84   68   94   40   77   50    95    39    85

Properties

[edit]

All most-perfect magic squares arepanmagic squares.

Apart from the trivial case of the first order square, most-perfect magic squares are all of order 4n. In their book,Kathleen Ollerenshaw andDavid S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is aone-to-one correspondence betweenreversible squares and most-perfect magic squares.

Forn = 36, there are about 2.7 × 1044essentially different most-perfect magic squares.

References

[edit]
  • Kathleen Ollerenshaw, David S. Brée:Most-perfect Pandiagonal Magic Squares: Their Construction and Enumeration, Southend-on-Sea : Institute of Mathematics and its Applications, 1998, 186 pages, ISBN 0-905091-06-X
  • T.V.Padmakumar,Number Theory and Magic Squares,Sura booksArchived 2010-02-25 at theWayback Machine, India, 2008, 128 pages, ISBN 978-81-8449-321-4

External links

[edit]
Types
Related shapes
Higher dimensional shapes
Classification
Related concepts
Retrieved from "https://en.wikipedia.org/w/index.php?title=Most-perfect_magic_square&oldid=1291210353"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp