Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Moment-generating function

From Wikipedia, the free encyclopedia
Concept in probability theory and statistics

Inprobability theory andstatistics, themoment-generating function of a real-valuedrandom variable is an alternative specification of itsprobability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly withprobability density functions orcumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.

As its name implies, the moment-generating function can be used to compute a distribution’smoments: then-th moment about 0 is then-th derivative of the moment-generating function, evaluated at 0.

In addition to real-valued distributions (univariate distributions), moment-generating functions can be defined for vector- or matrix-valued random variables, and can even be extended to more general cases.

The moment-generating function of a real-valued distribution does not always exist, unlike thecharacteristic function. There are relations between the behavior of the moment-generating function of a distribution and properties of the distribution, such as the existence of moments.

Definition

[edit]

LetX{\displaystyle X} be arandom variable withCDFFX{\displaystyle F_{X}}. The moment generating function (mgf) ofX{\displaystyle X} (orFX{\displaystyle F_{X}}), denoted byMX(t){\displaystyle M_{X}(t)}, is

MX(t)=E[etX]{\displaystyle M_{X}(t)=\operatorname {E} \left[e^{tX}\right]}

provided thisexpectation exists fort{\displaystyle t} in some openneighborhood of 0. That is, there is anh>0{\displaystyle h>0} such that for allt{\displaystyle t} inh<t<h{\displaystyle -h<t<h},E[etX]{\displaystyle \operatorname {E} \left[e^{tX}\right]} exists. If the expectation does not exist in an open neighborhood of 0, we say that the moment generating function does not exist.[1]

In other words, the moment-generating function ofX is theexpectation of the random variableetX{\displaystyle e^{tX}}. More generally, whenX=(X1,,Xn)T{\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\mathrm {T} }}, ann{\displaystyle n}-dimensionalrandom vector, andt{\displaystyle \mathbf {t} } is a fixed vector, one usestX=tTX{\displaystyle \mathbf {t} \cdot \mathbf {X} =\mathbf {t} ^{\mathrm {T} }\mathbf {X} } instead of tX{\displaystyle tX}:MX(t):=E[etTX].{\displaystyle M_{\mathbf {X} }(\mathbf {t} ):=\operatorname {E} \left[e^{\mathbf {t} ^{\mathrm {T} }\mathbf {X} }\right].}

MX(0){\displaystyle M_{X}(0)} always exists and is equal to 1. However, a key problem with moment-generating functions is that moments and the moment-generating function may not exist, as the integrals need not converge absolutely. By contrast, thecharacteristic function or Fourier transform always exists (because it is the integral of a bounded function on a space of finitemeasure), and for some purposes may be used instead.

The moment-generating function is so named because it can be used to find the moments of the distribution.[2] The series expansion ofetX{\displaystyle e^{tX}} is

etX=1+tX+t2X22!+t3X33!++tnXnn!+.{\displaystyle e^{tX}=1+tX+{\frac {t^{2}X^{2}}{2!}}+{\frac {t^{3}X^{3}}{3!}}+\cdots +{\frac {t^{n}X^{n}}{n!}}+\cdots .}

Hence,MX(t)=E[etX]=1+tE[X]+t2E[X2]2!+t3E[X3]3!++tnE[Xn]n!+=1+tm1+t2m22!+t3m33!++tnmnn!+,{\displaystyle {\begin{aligned}M_{X}(t)&=\operatorname {E} [e^{tX}]\\[1ex]&=1+t\operatorname {E} [X]+{\frac {t^{2}\operatorname {E} [X^{2}]}{2!}}+{\frac {t^{3}\operatorname {E} [X^{3}]}{3!}}+\cdots +{\frac {t^{n}\operatorname {E} [X^{n}]}{n!}}+\cdots \\[1ex]&=1+tm_{1}+{\frac {t^{2}m_{2}}{2!}}+{\frac {t^{3}m_{3}}{3!}}+\cdots +{\frac {t^{n}m_{n}}{n!}}+\cdots ,\end{aligned}}}

wheremn{\displaystyle m_{n}} is then{\displaystyle n}-thmoment. DifferentiatingMX(t){\displaystyle M_{X}(t)}i{\displaystyle i} times with respect tot{\displaystyle t} and settingt=0{\displaystyle t=0}, we obtain thei{\displaystyle i}-th moment about the origin,mi{\displaystyle m_{i}}; see§ Calculations of moments below.

IfX{\displaystyle X} is a continuous random variable, the following relation between its moment-generating functionMX(t){\displaystyle M_{X}(t)} and thetwo-sided Laplace transform of its probability density functionfX(x){\displaystyle f_{X}(x)} holds:

MX(t)=L{fX}(t),{\displaystyle M_{X}(t)={\mathcal {L}}\{f_{X}\}(-t),}

since the PDF's two-sided Laplace transform is given as

L{fX}(s)=esxfX(x)dx,{\displaystyle {\mathcal {L}}\{f_{X}\}(s)=\int _{-\infty }^{\infty }e^{-sx}f_{X}(x)\,dx,}

and the moment-generating function's definition expands (by thelaw of the unconscious statistician) toMX(t)=E[etX]=etxfX(x)dx.{\displaystyle M_{X}(t)=\operatorname {E} \left[e^{tX}\right]=\int _{-\infty }^{\infty }e^{tx}f_{X}(x)\,dx.}

This is consistent with the characteristic function ofX{\displaystyle X} being aWick rotation ofMX(t){\displaystyle M_{X}(t)} when the moment generating function exists, as the characteristic function of a continuous random variableX{\displaystyle X} is theFourier transform of its probability density functionfX(x){\displaystyle f_{X}(x)}, and in general when a functionf(x){\displaystyle f(x)} is ofexponential order, the Fourier transform off{\displaystyle f} is a Wick rotation of its two-sided Laplace transform in the region of convergence. Seethe relation of the Fourier and Laplace transforms for further information.

Examples

[edit]

Here are some examples of the moment-generating function and the characteristic function for comparison. It can be seen that the characteristic function is aWick rotation of the moment-generating functionMX(t){\displaystyle M_{X}(t)} when the latter exists.

DistributionMoment-generating functionMX(t){\displaystyle M_{X}(t)}Characteristic functionφ(t){\displaystyle \varphi (t)}
Degenerateδa{\displaystyle \delta _{a}}eta{\displaystyle e^{ta}}eita{\displaystyle e^{ita}}
BernoulliP(X=1)=p{\displaystyle P(X=1)=p}1p+pet{\displaystyle 1-p+pe^{t}}1p+peit{\displaystyle 1-p+pe^{it}}
BinomialB(n,p){\displaystyle B(n,p)}(1p+pet)n{\displaystyle \left(1-p+pe^{t}\right)^{n}}(1p+peit)n{\displaystyle \left(1-p+pe^{it}\right)^{n}}
Geometric(1p)kp{\displaystyle (1-p)^{k}\,p}p1(1p)et, t<ln(1p){\displaystyle {\frac {p}{1-(1-p)e^{t}}},~t<-\ln(1-p)}p1(1p)eit{\displaystyle {\frac {p}{1-(1-p)\,e^{it}}}}
Negative binomialNB(r,p){\displaystyle \operatorname {NB} (r,p)}(p1et+pet)r, t<ln(1p){\displaystyle \left({\frac {p}{1-e^{t}+pe^{t}}}\right)^{r},~t<-\ln(1-p)}(p1eit+peit)r{\displaystyle \left({\frac {p}{1-e^{it}+pe^{it}}}\right)^{r}}
PoissonPois(λ){\displaystyle \operatorname {Pois} (\lambda )}eλ(et1){\displaystyle e^{\lambda (e^{t}-1)}}eλ(eit1){\displaystyle e^{\lambda (e^{it}-1)}}
Uniform (continuous)U(a,b){\displaystyle \operatorname {U} (a,b)}etbetat(ba){\displaystyle {\frac {e^{tb}-e^{ta}}{t(b-a)}}}eitbeitait(ba){\displaystyle {\frac {e^{itb}-e^{ita}}{it(b-a)}}}
Uniform (discrete)DU(a,b){\displaystyle \operatorname {DU} (a,b)}eate(b+1)t(ba+1)(1et){\displaystyle {\frac {e^{at}-e^{(b+1)t}}{(b-a+1)(1-e^{t})}}}eaite(b+1)it(ba+1)(1eit){\displaystyle {\frac {e^{ait}-e^{(b+1)it}}{(b-a+1)(1-e^{it})}}}
LaplaceL(μ,b){\displaystyle L(\mu ,b)}etμ1b2t2, |t|<1/b{\displaystyle {\frac {e^{t\mu }}{1-b^{2}t^{2}}},~|t|<1/b}eitμ1+b2t2{\displaystyle {\frac {e^{it\mu }}{1+b^{2}t^{2}}}}
NormalN(μ,σ2){\displaystyle N(\mu ,\sigma ^{2})}etμ+σ2t2/2{\displaystyle e^{t\mu +\sigma ^{2}t^{2}/2}}eitμσ2t2/2{\displaystyle e^{it\mu -\sigma ^{2}t^{2}/2}}
Chi-squaredχk2{\displaystyle \chi _{k}^{2}}(12t)k/2, t<1/2{\displaystyle {\left(1-2t\right)}^{-k/2},~t<1/2}(12it)k/2{\displaystyle {\left(1-2it\right)}^{-{k}/{2}}}
Noncentral chi-squaredχk2(λ){\displaystyle \chi _{k}^{2}(\lambda )}eλt/(12t)(12t)k/2{\displaystyle e^{\lambda t/(1-2t)}{\left(1-2t\right)}^{-k/2}}eiλt/(12it)(12it)k/2{\displaystyle e^{i\lambda t/(1-2it)}{\left(1-2it\right)}^{-k/2}}
GammaΓ(k,1θ){\displaystyle \Gamma (k,{\tfrac {1}{\theta }})}(1tθ)k, t<1θ{\displaystyle {\left(1-t\theta \right)}^{-k},~t<{\tfrac {1}{\theta }}}(1itθ)k{\displaystyle {\left(1-it\theta \right)}^{-k}}
ExponentialExp(λ){\displaystyle \operatorname {Exp} (\lambda )}(1tλ1)1, t<λ{\displaystyle \left(1-t\lambda ^{-1}\right)^{-1},~t<\lambda }(1itλ1)1{\displaystyle \left(1-it\lambda ^{-1}\right)^{-1}}
Beta1+k=1(r=0k1α+rα+β+r)tkk!{\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}}1F1(α;α+β;it){\displaystyle {}_{1}F_{1}(\alpha ;\alpha +\beta ;i\,t)\!} (seeConfluent hypergeometric function)
Multivariate normalN(μ,Σ){\displaystyle N(\mathbf {\mu } ,\mathbf {\Sigma } )}exp[tT(μ+12Σt)]{\displaystyle \exp \left[\mathbf {t} ^{\mathrm {T} }\left({\boldsymbol {\mu }}+{\tfrac {1}{2}}{\boldsymbol {\Sigma }}\mathbf {t} \right)\right]}exp[tT(iμ12Σt)]{\displaystyle \exp \left[\mathbf {t} ^{\mathrm {T} }\left(i{\boldsymbol {\mu }}-{\tfrac {1}{2}}{\boldsymbol {\Sigma }}\mathbf {t} \right)\right]}
CauchyCauchy(μ,θ){\displaystyle \operatorname {Cauchy} (\mu ,\theta )}Does not existeitμθ|t|{\displaystyle e^{it\mu -\theta |t|}}
Multivariate Cauchy

MultiCauchy(μ,Σ){\displaystyle \operatorname {MultiCauchy} (\mu ,\Sigma )}[3]

Does not existexp(itTμtTΣt){\displaystyle \exp \left(i\mathbf {t} ^{\mathrm {T} }{\boldsymbol {\mu }}-{\sqrt {\mathbf {t} ^{\mathrm {T} }{\boldsymbol {\Sigma }}\mathbf {t} }}\right)}

Calculation

[edit]

The moment-generating function is the expectation of a function of the random variable, it can be written as:

Note that for the case whereX{\displaystyle X} has a continuousprobability density functionf(x){\displaystyle f(x)},MX(t){\displaystyle M_{X}(-t)} is thetwo-sided Laplace transform off(x){\displaystyle f(x)}.

MX(t)=etxf(x)dx=(1+tx+t2x22!++tnxnn!+)f(x)dx=1+tm1+t2m22!++tnmnn!+,{\displaystyle {\begin{aligned}M_{X}(t)&=\int _{-\infty }^{\infty }e^{tx}f(x)\,dx\\[1ex]&=\int _{-\infty }^{\infty }\left(1+tx+{\frac {t^{2}x^{2}}{2!}}+\cdots +{\frac {t^{n}x^{n}}{n!}}+\cdots \right)f(x)\,dx\\[1ex]&=1+tm_{1}+{\frac {t^{2}m_{2}}{2!}}+\cdots +{\frac {t^{n}m_{n}}{n!}}+\cdots ,\end{aligned}}}

wheremn{\displaystyle m_{n}} is then{\displaystyle n}thmoment.

Linear transformations of random variables

[edit]

If random variableX{\displaystyle X} has moment generating functionMX(t){\displaystyle M_{X}(t)}, thenαX+β{\displaystyle \alpha X+\beta } has moment generating functionMαX+β(t)=eβtMX(αt){\displaystyle M_{\alpha X+\beta }(t)=e^{\beta t}M_{X}(\alpha t)}

MαX+β(t)=E[e(αX+β)t]=eβtE[eαXt]=eβtMX(αt){\displaystyle M_{\alpha X+\beta }(t)=\operatorname {E} \left[e^{(\alpha X+\beta )t}\right]=e^{\beta t}\operatorname {E} \left[e^{\alpha Xt}\right]=e^{\beta t}M_{X}(\alpha t)}

Linear combination of independent random variables

[edit]

IfSn=i=1naiXi{\textstyle S_{n}=\sum _{i=1}^{n}a_{i}X_{i}}, where theXi are independent random variables and theai are constants, then the probability density function forSn is theconvolution of the probability density functions of each of theXi, and the moment-generating function forSn is given by

MSn(t)=MX1(a1t)MX2(a2t)MXn(ant).{\displaystyle M_{S_{n}}(t)=M_{X_{1}}(a_{1}t)M_{X_{2}}(a_{2}t)\cdots M_{X_{n}}(a_{n}t)\,.}

Vector-valued random variables

[edit]

Forvector-valued random variablesX{\displaystyle \mathbf {X} } withreal components, the moment-generating function is given by

MX(t)=E[et,X]{\displaystyle M_{X}(\mathbf {t} )=\operatorname {E} \left[e^{\langle \mathbf {t} ,\mathbf {X} \rangle }\right]}

wheret{\displaystyle \mathbf {t} } is a vector and,{\displaystyle \langle \cdot ,\cdot \rangle } is thedot product.

Important properties

[edit]

Moment generating functions are positive andlog-convex,[citation needed] withM(0) = 1.

An important property of the moment-generating function is that it uniquely determines the distribution. In other words, ifX{\displaystyle X} andY{\displaystyle Y} are two random variables and for all values of t,

MX(t)=MY(t),{\displaystyle M_{X}(t)=M_{Y}(t),}thenFX(x)=FY(x){\displaystyle F_{X}(x)=F_{Y}(x)}

for all values ofx (or equivalentlyX andY have the same distribution). This statement is not equivalent to the statement "if two distributions have the same moments, then they are identical at all points." This is because in some cases, the moments exist and yet the moment-generating function does not, because the limit

limni=0ntimii!{\displaystyle \lim _{n\to \infty }\sum _{i=0}^{n}{\frac {t^{i}m_{i}}{i!}}}

may not exist. Thelog-normal distribution is an example of when this occurs.

Calculations of moments

[edit]

The moment-generating function is so called because if it exists on an open interval aroundt = 0, then it is theexponential generating function of themoments of theprobability distribution:

mn=E[Xn]=MX(n)(0)=dnMXdtn|t=0.{\displaystyle m_{n}=\operatorname {E} \left[X^{n}\right]=M_{X}^{(n)}(0)=\left.{\frac {d^{n}M_{X}}{dt^{n}}}\right|_{t=0}.}

That is, withn being a nonnegative integer, then-th moment about 0 is then-th derivative of the moment generating function, evaluated att = 0.

Other properties

[edit]

Jensen's inequality provides a simple lower bound on the moment-generating function:MX(t)eμt,{\displaystyle M_{X}(t)\geq e^{\mu t},}whereμ{\displaystyle \mu } is the mean ofX.

The moment-generating function can be used in conjunction withMarkov's inequality to bound the upper tail of a real random variableX. This statement is also called theChernoff bound. Sincexext{\displaystyle x\mapsto e^{xt}} is monotonically increasing fort>0{\displaystyle t>0}, we havePr(Xa)=Pr(etXeta)eatE[etX]=eatMX(t){\displaystyle \Pr(X\geq a)=\Pr(e^{tX}\geq e^{ta})\leq e^{-at}\operatorname {E} \left[e^{tX}\right]=e^{-at}M_{X}(t)}for anyt>0{\displaystyle t>0} and anya, providedMX(t){\displaystyle M_{X}(t)} exists. For example, whenX is a standard normal distribution anda>0{\displaystyle a>0}, we can chooset=a{\displaystyle t=a} and recall thatMX(t)=et2/2{\displaystyle M_{X}(t)=e^{t^{2}/2}}. This givesPr(Xa)ea2/2{\displaystyle \Pr(X\geq a)\leq e^{-a^{2}/2}}, which is within a factor of1+a of the exact value.

Various lemmas, such asHoeffding's lemma orBennett's inequality provide bounds on the moment-generating function in the case of a zero-mean, bounded random variable.

WhenX{\displaystyle X} is non-negative, the moment generating function gives a simple, useful bound on the moments:E[Xm](mte)mMX(t),{\displaystyle \operatorname {E} [X^{m}]\leq \left({\frac {m}{te}}\right)^{m}M_{X}(t),}For anyX,m0{\displaystyle X,m\geq 0} andt>0{\displaystyle t>0}.

This follows from the inequality1+xex{\displaystyle 1+x\leq e^{x}} into which we can substitutex=tx/m1{\displaystyle x'=tx/m-1} impliestx/metx/m1{\displaystyle tx/m\leq e^{tx/m-1}} for anyx,t,mR{\displaystyle x,t,m\in \mathbb {R} }.Now, ift>0{\displaystyle t>0} andx,m0{\displaystyle x,m\geq 0}, this can be rearranged toxm(m/(te))metx{\displaystyle x^{m}\leq (m/(te))^{m}e^{tx}}.Taking the expectation on both sides gives the bound onE[Xm]{\displaystyle \operatorname {E} [X^{m}]} in terms ofE[etX]{\displaystyle \operatorname {E} [e^{tX}]}.

As an example, considerXChi-Squared{\displaystyle X\sim {\text{Chi-Squared}}} withk{\displaystyle k} degrees of freedom. Then from theexamplesMX(t)=(12t)k/2{\displaystyle M_{X}(t)=(1-2t)^{-k/2}}.Pickingt=m/(2m+k){\displaystyle t=m/(2m+k)} and substituting into the bound:E[Xm](1+2m/k)k/2em(k+2m)m.{\displaystyle \operatorname {E} [X^{m}]\leq {\left(1+2m/k\right)}^{k/2}e^{-m}{\left(k+2m\right)}^{m}.}We know thatin this case the correct bound isE[Xm]2mΓ(m+k/2)/Γ(k/2){\displaystyle \operatorname {E} [X^{m}]\leq 2^{m}\Gamma (m+k/2)/\Gamma (k/2)}.To compare the bounds, we can consider the asymptotics for largek{\displaystyle k}.Here the moment-generating function bound iskm(1+m2/k+O(1/k2)){\displaystyle k^{m}(1+m^{2}/k+O(1/k^{2}))},where the real bound iskm(1+(m2m)/k+O(1/k2)){\displaystyle k^{m}(1+(m^{2}-m)/k+O(1/k^{2}))}.The moment-generating function bound is thus very strong in this case.

Relation to other functions

[edit]

Related to the moment-generating function are a number of othertransforms that are common in probability theory:

Characteristic function
Thecharacteristic functionφX(t){\displaystyle \varphi _{X}(t)} is related to the moment-generating function viaφX(t)=MiX(t)=MX(it):{\displaystyle \varphi _{X}(t)=M_{iX}(t)=M_{X}(it):} the characteristic function is the moment-generating function ofiX or the moment generating function ofX evaluated on the imaginary axis. This function can also be viewed as theFourier transform of theprobability density function, which can therefore be deduced from it by inverse Fourier transform.
Cumulant-generating function
Thecumulant-generating function is defined as the logarithm of the moment-generating function; some instead define the cumulant-generating function as the logarithm of thecharacteristic function, while others call this latter thesecond cumulant-generating function.
Probability-generating function
Theprobability-generating function is defined asG(z)=E[zX].{\displaystyle G(z)=\operatorname {E} \left[z^{X}\right].} This immediately implies thatG(et)=E[etX]=MX(t).{\displaystyle G(e^{t})=\operatorname {E} \left[e^{tX}\right]=M_{X}(t).}

See also

[edit]
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(February 2010) (Learn how and when to remove this message)

References

[edit]

Citations

[edit]
  1. ^Casella, George; Berger, Roger L. (1990).Statistical Inference. Wadsworth & Brooks/Cole. p. 61.ISBN 0-534-11958-1.
  2. ^Bulmer, M. G. (1979).Principles of Statistics. Dover. pp. 75–79.ISBN 0-486-63760-3.
  3. ^Kotz et al.[full citation needed] p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution

Sources

[edit]
  • Casella, George; Berger, Roger (2002).Statistical Inference (2nd ed.). Thomson Learning. pp. 59–68.ISBN 978-0-534-24312-8.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Moment-generating_function&oldid=1282145239"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp