Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Minkowski–Steiner formula

From Wikipedia, the free encyclopedia

Inmathematics, theMinkowski–Steiner formula is a formula relating thesurface area andvolume ofcompactsubsets ofEuclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.

The Minkowski–Steiner formula is used, together with theBrunn–Minkowski theorem, to prove theisoperimetric inequality. It is named afterHermann Minkowski andJakob Steiner.

Statement of the Minkowski-Steiner formula

[edit]

Letn2{\displaystyle n\geq 2}, and letARn{\displaystyle A\subsetneq \mathbb {R} ^{n}} be a compact set. Letμ(A){\displaystyle \mu (A)} denote theLebesgue measure (volume) ofA{\displaystyle A}. Define the quantityλ(A){\displaystyle \lambda (\partial A)} by theMinkowski–Steiner formula

λ(A):=lim infδ0μ(A+Bδ¯)μ(A)δ,{\displaystyle \lambda (\partial A):=\liminf _{\delta \to 0}{\frac {\mu \left(A+{\overline {B_{\delta }}}\right)-\mu (A)}{\delta }},}

where

Bδ¯:={x=(x1,,xn)Rn||x|:=x12++xn2δ}{\displaystyle {\overline {B_{\delta }}}:=\left\{x=(x_{1},\dots ,x_{n})\in \mathbb {R} ^{n}\left||x|:={\sqrt {x_{1}^{2}+\dots +x_{n}^{2}}}\leq \delta \right.\right\}}

denotes theclosed ball ofradiusδ>0{\displaystyle \delta >0}, and

A+Bδ¯:={a+bRn|aA,bBδ¯}{\displaystyle A+{\overline {B_{\delta }}}:=\left\{a+b\in \mathbb {R} ^{n}\left|a\in A,b\in {\overline {B_{\delta }}}\right.\right\}}

is theMinkowski sum ofA{\displaystyle A} andBδ¯{\displaystyle {\overline {B_{\delta }}}}, so that

A+Bδ¯={xRn| |xa|δ for some aA}.{\displaystyle A+{\overline {B_{\delta }}}=\left\{x\in \mathbb {R} ^{n}{\mathrel {|}}\ {\mathopen {|}}x-a{\mathclose {|}}\leq \delta {\mbox{ for some }}a\in A\right\}.}

Remarks

[edit]

Surface measure

[edit]

For "sufficiently regular" setsA{\displaystyle A}, the quantityλ(A){\displaystyle \lambda (\partial A)} does indeed correspond with the(n1){\displaystyle (n-1)}-dimensional measure of theboundaryA{\displaystyle \partial A} ofA{\displaystyle A}. See Federer (1969) for a full treatment of this problem.

Convex sets

[edit]

When the setA{\displaystyle A} is aconvex set, thelim-inf above is a truelimit, and one can show that

μ(A+Bδ¯)=μ(A)+λ(A)δ+i=2n1λi(A)δi+ωnδn,{\displaystyle \mu \left(A+{\overline {B_{\delta }}}\right)=\mu (A)+\lambda (\partial A)\delta +\sum _{i=2}^{n-1}\lambda _{i}(A)\delta ^{i}+\omega _{n}\delta ^{n},}

where theλi{\displaystyle \lambda _{i}} are somecontinuous functions ofA{\displaystyle A} (seequermassintegrals) andωn{\displaystyle \omega _{n}} denotes the measure (volume) of theunit ball inRn{\displaystyle \mathbb {R} ^{n}}:

ωn=2πn/2nΓ(n/2),{\displaystyle \omega _{n}={\frac {2\pi ^{n/2}}{n\Gamma (n/2)}},}

whereΓ{\displaystyle \Gamma } denotes theGamma function.

Example: volume and surface area of a ball

[edit]

TakingA=BR¯{\displaystyle A={\overline {B_{R}}}} gives the following well-known formula for the surface area of thesphere of radiusR{\displaystyle R},SR:=BR{\displaystyle S_{R}:=\partial B_{R}}:

λ(SR)=limδ0μ(BR¯+Bδ¯)μ(BR¯)δ{\displaystyle \lambda (S_{R})=\lim _{\delta \to 0}{\frac {\mu \left({\overline {B_{R}}}+{\overline {B_{\delta }}}\right)-\mu \left({\overline {B_{R}}}\right)}{\delta }}}
=limδ0[(R+δ)nRn]ωnδ{\displaystyle =\lim _{\delta \to 0}{\frac {[(R+\delta )^{n}-R^{n}]\omega _{n}}{\delta }}}
=nRn1ωn,{\displaystyle =nR^{n-1}\omega _{n},}

whereωn{\displaystyle \omega _{n}} is as above.

References

[edit]
Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Minkowski–Steiner_formula&oldid=1149053141"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp