
Mining in Egypt has had a long history that dates back topredynastic times. Active mining began in Egypt around 3000 BCE.Egypt has substantialmineralresources, including 48 million tons oftantalite (fourth largest in the world), 50 million tons ofcoal, and an estimated 6.7 million ounces ofgold in theEastern Desert.[1] The total real value of mineralsmined was aboutE£102 million (US$18.7 million) in 1986, up fromE£60 million (US$11 million) in 1981.[2] The chief minerals in terms of volume output wereiron ore,phosphates, andsalt. The quantities produced in 1986 were estimated at 2,048, 1,310, and 1,233 tons, respectively, compared with 2,139, 691, and 883 tons in 1981. In addition, minor amounts ofasbestos (313 tons) andquartz (19 tons) were mined in 1986.[2] Preliminary exploration inSinai indicated the presence ofzinc,tin,lead, andcopper deposits.[2] Private sector exploration and exploitation activities so far have been limited.[1] Only recently,AngloGold Ashanti with its joint Venture Partner Thani Dubai and a Canadian listed exploration company,Alexander Nubia International have been undertaking exploration in Egypt's Eastern Desert with some success.Centamin Ltd., a mineral exploration company founded in Australia, started a massive mining project inSukari Hill.[3]
Gold mining inUpper Egypt can be traced back topredynastic times,[4] and the earliest map known in the world from theRamesside Period dating to about 1160 BCE, shows the route to the gold mines in theWadi Hammamat,Eastern Desert.[5] The mines in Ancient Egypt were worked by slaves who worked under difficult conditions and were often beaten if they did not work hard enough.[6] Gold mining started withalluvial workings in Egypt and was followed by shallow underground vein mining inNubia about 1300 BCE, during theNew Kingdom period.[7] The methods of working includedfire-setting to weaken rocks bythermal shock, a method described byDiodorus Siculus in hisBibliotheca historica written about 60 BCE.
The technique ofquarryinggranite andlimestone was an advanced technology by the time thepyramids were being built.[8]Marble,alabaster anddiorite were used for making statues,basalt for makingsarcophagi, anddolomite forhammers to work hard stones. A staggering amount of gold was found in the tomb of Tutankhamun, the only ancient Egyptian royal burial site to have been found in a relatively intact state.[9] Ancient texts report the vast quantities of statutory gold, silver and bronze that was used in Egyptian temple ritual, but of these, only a single gold statue of the body of Amun, minus his arms, is known to have survived.[10]
Precious and semi-precious stones that were extensively mined and worked as well includedturquoise,beryl,amethyst, andmalachite. Amethyst was incredibly rare in the ancient world, and was frequently mined during the Middle Kingdom atWadi el-Hudi.[11]Hathor was the miner'spatron goddess, and her temples, statues or inscriptions were found in many rediscovered mining locations.[8] A major temple to Hathor constructed bySeti II was found at the copper mines inTimna valley; another temple was discovered inSerabit el-Khadim, where turquoise was mined in antiquity, in an expedition led by SirFlinders Petrie.
Egypt became a major gold-producer during theOld Kingdom and remained so for the next 1,500 years, with interruptions when the kingdom broke down.[12] During theNew Kingdom, the production of gold steadily increased, and mining became more intensive as new fields were developed.[12] British historianPaul Johnson stated that it was gold rather than military power which sustained the Egyptian empire and made it the world power throughout the third quarter of the second millennium BCE.[13] Most gold mines in Egypt today were exploited for high-grade gold (15 g/t gold or greater) by theancient Egyptians;[8] however, there has been limited exploration that applies modern day techniques where deposits can be viable based on gold grades as low as 0.5 g/t (provided there is sufficient tonnage and readily available infrastructure).
The earliest knownberyl mine in the world is located in the mountain valley ofWadi Sikait, Eastern Desert. Its mining started during thePtolemaic period, although most of mining activities date to theRoman andByzantine periods.[14] All the other beryl mining sites such asGebel Zabara,Wadi Umm Debaa andWadi Gimal are Roman-Byzantine orIslamic (mid-6th century onward) in date. Beryl mining ceased in Egypt when theSpanish Empire discovered superior-qualityemeralds inColombia in the 16th century.[14]

Alteration zones are considered the most promising areas for mineral exploration in the Central Eastern Desert (CED). Ancient gold miners in Egypt only targeted the smoky quartz veins that contain large amounts of gold; however, they left the alteration areas untouched. Remote sensing and geophysical techniques can provide cost-effective tools that can give valuable information about the new mineralization sites. Mapping of thepotential mineralized alteration zones is a critical task to enhance mineral exploration in the CED. Previously, such mapping had utilized standard remote-sensing techniques such as image rationing, principal component analysis, and image classifications. Recent study implemented the Spectral Angle Mapper (SAM) classification, surface structure, aeromagnetic data, and the Multiple Criteria Decision Analysis (MCDA) to aid for better mapping results of the prospective mineralized alterations in CED.[15] For instances, Spectral Angle Mapper (SAM) classification is one of the classification techniques that can be integrated with aeromagnetic data to map the potential gold sites associated within the alteration zone in CED. The United States Geological Survey (USGS) spectral signature data for alteration minerals can be used as an end-member for the SAM classification. To aid in better mapping, the SAM result can be constrained by the structural elements that restrict the mapping to the actual alteration sites. The surface lineation layer from digitalremote sensing data and the geophysical information such as total magnetic intensities can be deployed to understand the tectonic regimes in the CED and to detect the structural patterns that control the existence of the gold deposits. For more details please see.[16]