Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Microprocessor chronology

From Wikipedia, the free encyclopedia
Timeline of microprocessors
See also:Microprocessor § History
Progress of miniaturisation, and comparison of sizes ofsemiconductor manufacturing process nodes with some microscopic objects and visible light wavelengths

1970s

[edit]

The first chips that could be consideredmicroprocessors were designed and manufactured in the late 1960s and early 1970s, including the MP944 used in theGrumman F-14CADC.[1] Intel's 4004 of 1971 is widely regarded as the first commercial microprocessor.[2]

Designers predominantly usedMOSFET transistors withpMOS logic in the early 1970s, switching tonMOS logic after the mid-1970s.Depletion-mode nMOS had the advantage that it could run on a single voltage, typically +5V, which simplified the power supply requirements and allowed it to be easily interfaced with the wide variety of +5Vtransistor-transistor logic (TTL) devices. nMOS had the disadvantage that it was more susceptible to electronic noise generated by slight impurities in the underlying silicon material, and it was not until the mid-1970s that these, sodium in particular, were successfully removed to the required levels. At that time, around 1975, nMOS quickly took over the market.[3]

This corresponded with the introduction of newsemiconductor masking systems, notably theMicralign system fromPerkin-Elmer. Micralign projected an image of the mask onto the silicon wafer, never touching it directly, which eliminated the previous problems when the mask would be lifted off the surface and take away some of thephotoresist along with it, ruining the chips on that portion of the wafer.[4] By reducing the number of flawed chips, from about 70% to 10%, the cost of complex designs like early microprocessors fell by the same amount. Systems based on contact aligners cost on the order of $300 in single-unit quantities, theMOS 6502, designed specifically to take advantage of these improvements, cost only $25.[5]

This period also saw considerable experimentation with variousword lengths. Early on,4-bit processors were common, like the Intel 4004, simply because making a wider word length could not be accomplished cost-effectively in the room available on the small wafers of the era, especially when the majority would be defective. As yields improved, wafer sizes grew, and feature size continued to be reduced, more complex8-bit designs emerged like theIntel 8080 and 6502.16-bit processors emerged early but were expensive; by the decade's end, low-cost 16-bit designs like theZilog Z8000 were becoming common. Some unusual word lengths were also produced, including12-bit and 20-bit, often matching a design that had previously been implemented in a multi-chip format in aminicomputer. These had largely disappeared by the end of the decade as minicomputers moved to32-bit formats.

DateNameDeveloperMax clock
(first version)
Word size
(bits)
ProcessChips[6]TransistorsMOSFETRef
1970AL1Four-Phase Systems1 MHz8-bit slice[a]10 μm1[b]4,000MOS[9][10]
1970TMS1802NC[c]Texas Instruments400 kHz410 μm1~5,000pMOS[11][12][13][14]
19714004Intel740 kHz410 μm12,250pMOS[6]
1972PPS-25Fairchild400 kHz4 2pMOS[15][d]
1972μPD700NEC 4 1[16]
19728008Intel500 kHz810 μm13,500pMOS
1972PPS-4Rockwell200 kHz4 1pMOS[17][18]
1973IMP-16National715 kHz16[e] 5pMOS[19][6][20]
1973μCOM-4NEC2 MHz47.5μm12,500NMOS[21][22][16][6]
1973TLCS-12Toshiba1 MHz126 μm12,800silicon gatespMOS[23][24][6]
1973Mini-DBurroughs1 MHz8 1pMOS[25]
1974IMP-8National715 kHz8 3pMOS[23]
19748080Intel2 MHz86 μm16,000NMOS
1974μCOM-8NEC2 MHz8 1NMOS[16][6]
19745065Mostek1.4 MHz8 1pMOS[26]
1974μCOM-16NEC2 MHz16 2NMOS[16][6]
1974IMP-4National500 kHz4 3pMOS[23]
19744040Intel740 kHz410 μm13,000pMOS
19746800Motorola1 MHz8-14,100NMOS[23]
1974TMS 1000Texas Instruments400 kHz48 μm18,000pMOS,nMOS,cMOS
1974IPC-16A PACENational1.33 MHz16 1pMOS[27][28]
1974ISP-8A/500 (SC/MP)National1 MHz8 1pMOS
19756100Intersil4 MHz12-14,000CMOS[29][30]
1975TLCS-12AToshiba1.2 MHz12-1pMOS[6]
19752650Signetics1.2 MHz8 1NMOS[23]
1975PPS-8Rockwell256 kHz8 1pMOS[23]
1975F-8Fairchild2 MHz8 1NMOS[23]
1975CDP 1801RCA2 MHz85 μm25,000CMOS[31][32]
19756502MOS Technology1 MHz8-13,510NMOS (dynamic)
1975PFL-16A (MN 1610)Panafacom2 MHz16-1NMOS[6]
1975BPCHewlett Packard10 MHz16-16,000 (+ROM)NMOS[33][34]
1975MCP-1600Western Digital3.3 MHz16[f]-3[g]NMOS[35]
1975CP1600General Instrument3.3 MHz16 1NMOS[27][36][37][6]
1976CDP 1802RCA6.4 MHz8 1CMOS[38][39]
1976Z80Zilog2.5 MHz84 μm18,500NMOS
1976TMS9900Texas Instruments3.3 MHz16-18,000nMOS
19768x300Signetics8 MHz8 1Bipolar[40][41]
1977Bellmac-8 (WE212)Bell Labs2.0 MHz85 μm17,000CMOS
19778085Intel3.0 MHz83 μm16,500nMOS
1977MC14500BMotorola1.0 MHz11CMOS
19786809Motorola1 MHz85 μm19,000NMOS
19788086Intel5 MHz163 μm129,000nMOS
19786801Motorola-85 μm135,000nMOS
1979Z8000Zilog-16-117,500nMOS
19798088Intel5 MHz8/16[h]3 μm129,000NMOS (HMOS)
197968000Motorola8 MHz16/32[i]3.5 μm168,000NMOS (HMOS)[42]
  1. ^The AL1 chip is an 8-bit slicearithmetic logic unit with registers. Four-Phase did not sell the AL1 individually but as part of a system combining three of these 8-bit AL1 chips to yield a multi-chip CPU with a 24-bit word size.
  2. ^A 1995 court demo combined one AL1 with ROM, RAM, and I/0 to argue that the AL1 alone be considered a microprocessor.[7] But because it requires an externalmicrocode controller, another view disagrees.[8]
  3. ^TMS1802NC is the original designation of the TMS0102, which is considered amicrocontroller because it incorporates all program ROM internally. It can't execute external code and programming is done during manufacture. The termmicroprocessor may instead be reserved for devices that can execute external code.
  4. ^According toOgdin 1975, the Fairchild PPS-25 was first delivered in 2Q 1971 and the Intel 4004 in 4Q 1971.
  5. ^The 16-bit registers and ALU were implemented by combining four identical 4-bit slice chips. TheNational Semiconductor PACE reimplemented its architecture as the first single-chip 16-bit microprocessor.
  6. ^Internally is an 8-bit processor, but ismicro-programmed to emulate a 16-bit CPU.
  7. ^Later microprocessors were based on thischipset. TheLSI-11 in 1975 used 4 chips, theWD16 in 1976 used 5 chips, and thePascal MicroEngine in 1979 used 5 chips.
  8. ^The Intel 8088 had an8-bit external data bus, but internally used a16-bit architecture.
  9. ^The Motorola 68000 had a 16-bit external data bus, but internally used32-bit registers.

1980s

[edit]

AsMoore's Law continued to drive the industry towards more complex chip designs, the expected widespread move from 8-bit designs of the 1970s to 16-bit designs almost didn't occur; instead, new32-bit designs like theMotorola 68000 andNational Semiconductor NS32000 emerged that offered far more performance. The only widespread use of 16-bit systems was in theIBM PC, which had selected theIntel 8088 in 1979 before the new designs had matured.

Another change was the move toCMOS gates as the primary method of building complex CPUs. CMOS had been available since the early 1970s;RCA introduced theCOSMAC processor using CMOS in 1975.[43] Whereas earlier systems used a singletransistor as the basis for each "gate", CMOS used a two-sided design, essentially making it twice as expensive to build. Its advantage was that its logic was not based on the voltage of a transistor compared to the silicon substrate, but thedifference in voltages between the two sides, which was detectable at much lower power levels.[citation needed] As processor complexity continued to grow, power dissipation had become a significant concern and chips were prone to overheating; CMOS greatly reduced this problem and quickly took over the market.[44] This was aided by the uptake of CMOS by Japanese firms while US firms remained on nMOS, giving the Japanese industry a major advance during the 1980s.[45]

Semiconductor fabrication techniques continued to improve throughout. The Micralign, which had "created the modern IC industry", was obsolete by the early 1980s. They were replaced by the newsteppers, which used high magnifications and extremely powerful light sources to allow a large mask to be copied onto the wafer at ever-smaller sizes. This technology allowed the industry to break below the former 1 micron limit.

Keyhome computers in the early part of the decade predominantly use processors developed in the 1970s. Versions of the 6502, first released in 1975, powered theCommodore 64,Apple II,BBC Micro, andAtari 8-bit computers. The 8-bitZilog Z80 (1976) is at the core of theZX Spectrum,MSX systems and many others. The 8086-based IBM PC, launched in 1981, started the move to 16-bit, but was soon passed by the 68000-based 16/32-bitMacintosh, then theAtari ST andAmiga. IBM PC compatibles moved to 32-bit with the introduction of theIntel 80386 in late 1985, although 386-based systems were considerably expensive at the time.

In addition to ever-growing word lengths, microprocessors began to add additional functional units that had previously been optional external parts. By the middle of the decade,memory management units (MMUs) were becoming commonplace, first appearing on designs like theIntel 80286 andMotorola 68030. By the end of the decade,floating point units (FPUs) were being added, first appearing on 1989sIntel 486 and followed the next year by theMotorola 68040.

Another change that began during the 1980s involved overall design philosophy with the emergence of thereduced instruction set computer, or RISC. Although the concept was first developed by IBM in the 1970s, the company did not introduce powerful systems based on it, largely for fear of cannibalizing their sales of largermainframe systems. Market introduction was driven by smaller companies likeMIPS Technologies,SPARC andARM. These companies did not have access to high-end fabrication like Intel and Motorola, but were able to introduce chips that were highly competitive with those companies with a fraction of the complexity. By the end of the decade, every major vendor was introducing a RISC design of their own, like theIBM POWER,Intel i860 andMotorola 88000.

DateNameDeveloperMax Clock
(first version)
Word size
(bits)
ProcessTransistors
198016032National Semiconductor-16/32-60,000
1980BELLMAC-32/WE 32000Bell Labs32150,000
19816120Harris Corporation10 MHz12-20,000 (CMOS)[46]
1981ROMPIBM10 MHz322 μm45,000
1981T-11DEC2.5 MHz165 μm17,000 (NMOS)
1982RISC-I[47]UC Berkeley1 MHz-5 μm44,420 (NMOS)
1982FOCUSHewlett Packard18 MHz321.5 μm450,000
198280186Intel6 MHz16-55,000
198280188Intel8 MHz8/16-55,000
198280286Intel6 MHz161.5 μm134,000
1983RISC-IIUC Berkeley3 MHz-3 μm40,760 (NMOS)
1983MIPS[48]Stanford University2 MHz323 μm25,000
198365816Western Design Center-16--
198468020Motorola16 MHz322 μm190,000
1984NS32032National Semiconductor-32-70,000
1984V20NEC5 MHz8/16-63,000
198580386Intel12 MHz321.5 μm275,000
1985MicroVax II 78032DEC5 MHz323.0 μm125,000
1985R2000MIPS8 MHz322 μm115,000
1985[49]Novix NC4016Harris Corporation8 MHz163 μm[50]16,000[51]
1986Z80000Zilog-32-91,000
1986SPARC MB86900Fujitsu[52][53][54]15 MHz320.8 μm800,000
1986V60[55]NEC16 MHz16/321.5 μm375,000
198780C186Intel10 MHz16-56,000 (CMOS)
1987CVAX 78034DEC12.5 MHz322.0 μm134,000
1987ARM2Acorn8 MHz322 μm25,000[56]
1987Gmicro/200[57]Hitachi--1 μm730,000
198768030Motorola16 MHz321.3 μm273,000
1987V70[55]NEC20 MHz16/321.5 μm385,000
1988R3000MIPS25 MHz321.2 μm120,000
198880386SXIntel12 MHz16/32--
1988i960Intel10 MHz33/321.5 μm250,000
1989i960CA[58]Intel16–33 MHz33/320.8 μm600,000
1989VAX DC520 "Rigel"DEC35 MHz321.5 μm320,000
198980486Intel25 MHz321 μm1,180,000
1989i860Intel25 MHz321 μm1,000,000

1990s

[edit]

The32-bit microprocessor dominated the consumer market in the 1990s. Processor clock speeds increased by more than tenfold between 1990 and 1999, and64-bit processors began to emerge later in the decade. In the 1990s, microprocessors no longer used the same clock speed for the processor and theRAM. Processors began to have afront-side bus (FSB) clock speed used in communication with RAM and other components. Typically, the processor itself ran at a clock speed that was a multiple of the FSB clock speed. Intel's Pentium III, for example, had an internal clock speed of 450–600 MHz and an FSB speed of 100–133 MHz. Only the processor's internal clock speed is shown here.

DateNameDeveloperClockWord size
(bits)
ProcessTransistors
(millions)
Threads
199068040Motorola40 MHz32-1.2
1990POWER1IBM20–30 MHz321,000 nm6.9
1991R4000MIPS Computer Systems100 MHz64800 nm1.35
1991NVAXDEC62.5–90.91 MHz32750nm1.3
1991RSCIBM33 MHz32800 nm1.0[59]
1992SH-1Hitachi20 MHz[60]32800 nm0.6[61]
1992Alpha 21064DEC100–200 MHz64750 nm1.68
1992microSPARC ISun40–50 MHz32800 nm0.8
1992PA-7100Hewlett Packard100 MHz32800 nm0.85[62]
1992486SLCCyrix40 MHz16
1993HARP-1Hitachi120 MHz-500 nm2.8[63]
1993PowerPC 601IBM,Motorola50–80 MHz32600 nm2.8
1993PentiumIntel60–66 MHz32800 nm3.1
1993POWER2IBM55–71.5 MHz32720 nm23
1994microSPARC IIFujitsu60–125 MHz-500 nm2.3
1994S/390 G1IBM-32-
199468060Motorola50 MHz32600 nm2.5
1994Alpha 21064ADEC200–300 MHz64500 nm2.85
1994R4600QED100–125 MHz64650 nm2.2
1994R8000MTI75-90 MHz64700 nm3.43
1994PA-7200Hewlett Packard125 MHz32550 nm1.26
1994PowerPC 603IBM,Motorola60–120 MHz32500 nm1.6
1994PowerPC 604IBM,Motorola100–180 MHz32500 nm3.6
1994PA-7100LCHewlett Packard100 MHz32750 nm0.90
1995Alpha 21164DEC266–333 MHz64500 nm9.3
1995S/390 G2IBM-32-
1995UltraSPARCSun143–167 MHz64470 nm5.2
1995SPARC64HAL Computer Systems101–118 MHz64400 nm-
1995Pentium ProIntel150–200 MHz32350 nm5.5
1996Alpha 21164ADEC400–500 MHz64350 nm9.7
1995S/390 G3IBM-32-
1996K5AMD75–100 MHz32500 nm4.3
1996R10000MTI150–250 MHz64350 nm6.7
1996R5000QED180–250 MHz-350 nm3.7
1996SPARC64 IIHAL Computer Systems141–161 MHz64350 nm-
1996PA-8000Hewlett-Packard160–180 MHz64500 nm3.8
1996POWER2 Super Chip (P2SC)IBM150 MHz32290 nm15
1997SH-4Hitachi200 MHz-200 nm[64]10[65]
1997RS64IBM125 MHz64? nm?
1997Pentium IIIntel233–300 MHz32350 nm7.5
1997PowerPC 620IBM,Motorola120–150 MHz64350 nm6.9
1997UltraSPARC IIsSun250–400 MHz64350 nm5.4
1997S/390 G4IBM370 MHz32500 nm7.8
1997PowerPC 750IBM,Motorola233–366 MHz32260 nm6.35
1997K6AMD166–233 MHz32350 nm8.8
1998RS64-IIIBM262 MHz64350 nm12.5
1998Alpha 21264DEC450–600 MHz64350 nm15.2
1998MIPSR12000SGI270–400 MHz64250180 nm6.9
1998RM7000QED250–300 MHz-250 nm18
1998SPARC64 IIIHAL Computer Systems250–330 MHz64240 nm17.6
1998S/390 G5IBM500 MHz32250 nm25
1998PA-8500Hewlett Packard300–440 MHz64250 nm140
1998POWER3IBM200 MHz64250 nm15
1999S/390 G6IBM550-637 MHz32-
1999Emotion EngineSony,Toshiba294–300 MHz-180–65 nm[66]13.5[67]
1999Pentium IIIIntel450–600 MHz32250 nm9.5
1999RS64-IIIIBM450 MHz64220 nm342
1999PowerPC 7400Motorola350–500 MHz32200–130 nm10.5
1999AthlonAMD500–1000 MHz32250 nm22

2000s

[edit]

64-bit processors became mainstream in the 2000s. Microprocessor clock speeds reached a ceiling because of theheat dissipation barrier[citation needed]. Instead of implementing expensive and impractical cooling systems, manufacturers turned toparallel computing in the form of themulti-core processor.Overclocking had its roots in the 1990s, but came into its own in the 2000s. Off-the-shelf cooling systems designed for overclocked processors became common, and thegaming PC had its advent as well. Over the decade, transistor counts increased by about an order of magnitude, a trend continued from previous decades. Process sizes decreased about fourfold, from 180 nm to 45 nm.

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
2000Athlon XPAMD1.33–1.73 GHz180 nm37.51 / 1
2000DuronAMD550 MHz–1.3 GHz180 nm251 / 1
2000RS64-IVIBM600–750 MHz180 nm441 / 2
2000Pentium 4Intel1.3–2 GHz180–130 nm421 / 1
2000SPARC64 IVFujitsu450–810 MHz130 nm-1 / 1
2000z900IBM918 MHz180 nm471 / 12, 20
2001MIPSR14000SGI500–600 MHz130 nm7.21 / 1
2001POWER4IBM1.1–1.4 GHz180–130 nm1742 / 1, 4
2001UltraSPARC IIISun750–1200 MHz130 nm291 / 1
2001ItaniumIntel733–800 MHz180 nm251 / 1
2001PowerPC 7450Motorola733–800 MHz180–130 nm331 / 1
2002SPARC64 VFujitsu1.1–1.35 GHz130 nm1901 / 1
2002Itanium 2Intel0.9–1 GHz180 nm4101 / 1
2003PowerPC 970IBM1.6–2.0 GHz130–90 nm521 / 1
2003Pentium MIntel0.9–1.7 GHz130–90 nm771 / 1
2003OpteronAMD1.4–2.4 GHz130 nm1061 / 1
2004POWER5IBM1.65–1.9 GHz130–90 nm2762 / 1, 2, 4
2004PowerPC BGLIBM700 MHz130 nm952 / 1
2005 IBM z9IBM
2005Opteron "Athens"AMD1.6–3.0 GHz90 nm1141 / 1
2005Pentium DIntel2.8–3.2 GHz90 nm1151 / 2
2005Athlon 64 X2AMD2–2.4 GHz90 nm2432 / 1
2005PowerPC 970MPIBM1.2–2.5 GHz90 nm1832 / 1
2005UltraSPARC IVSun1.05–1.35 GHz130 nm662 / 1
2005UltraSPARC T1Sun1–1.4 GHz90 nm3008 / 1
2005XenonIBM3.2 GHz90–45 nm1653 / 1
2006Core DuoIntel1.1–2.33 GHz90–65 nm1512 / 1
2006Core 2Intel1.06–2.67 GHz65–45 nm2912 / 1, 2
2006Cell/B.E.IBM,Sony,Toshiba3.2–4.6 GHz90–45 nm2411+8 / 1
2006Itanium "Montecito"Intel1.4–1.6 GHz90 nm17202 / 1
2007POWER6IBM3.5–4.7 GHz65 nm7902 / 1
2007SPARC64 VIFujitsu2.15–2.4 GHz90 nm5432 / 1
2007UltraSPARC T2Sun1–1.4 GHz65 nm5038 / 1
2007TILE64Tilera600–900 MHz90–45 nm?64 / 1
2007Opteron "Barcelona"AMD1.8–3.2 GHz65 nm4634 / 1
2007PowerPC BGPIBM850 MHz90 nm2084 / 1
2008PhenomAMD1.8–2.6 GHz65 nm4502, 3, 4 / 1
2008z10IBM4.4 GHz65 nm9934 / 7
2008PowerXCell 8iIBM2.8–4.0 GHz65 nm2501+8 / 1
2008SPARC64 VIIFujitsu2.4–2.88 GHz65 nm6004 / 1
2008AtomIntel0.8–1.6 GHz65–45 nm471 / 1
2008Core i7Intel2.66–3.2 GHz45–32 nm7302, 4, 6 / 1
2008TILEPro64Tilera600–866 MHz90–45 nm?64 / 1
2008Opteron "Shanghai"AMD2.3–2.9 GHz45 nm7514 / 1
2009Phenom IIAMD2.5–3.2 GHz45 nm7582, 3, 4, 6 / 1
2009Opteron "Istanbul"AMD2.2–2.8 GHz45 nm9046 / 1

2010s

[edit]

A new trend appears, themulti-chip module made of severalchiplets. This is multiple monolithic chips in a single package. This allows higher integration with several smaller and easier to manufacture chips.

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
Threads
per core
2010POWER7IBM3–4.14 GHz45 nm12004, 6, 8 / 1, 44
2010Itanium "Tukwila"Intel2 GHz65 nm20002, 4 / 12
2010Opteron "Magny-cours"AMD1.7–2.4 GHz45 nm18104, 6 / 21
2010Xeon "Nehalem-EX"Intel1.73–2.66 GHz45 nm23004, 6, 8 / 12
2010z196IBM3.8–5.2 GHz45 nm14004 / 1, 61
2010SPARC T3Sun1.6 GHz45 nm200016 / 18
2010SPARC64 VII+Fujitsu2.66–3.0 GHz45 nm?4 / 12
2010Intel "Westmere"Intel1.86–3.33 GHz32 nm11704–6 / 12
2011Intel "Sandy Bridge"Intel1.6–3.4 GHz32 nm995[68]2, 4 / 1(1,) 2
2011AMD LlanoAMD1.0–1.6 GHz40 nm380[69]1, 2 / 11
2011Xeon E7Intel1.73–2.67 GHz32 nm26004, 6, 8, 10 / 11–2
2011Power ISA BGQIBM1.6 GHz45 nm147018 / 14
2011SPARC64 VIIIfxFujitsu2.0 GHz45 nm7608 / 12
2011FX "Bulldozer" InterlagosAMD3.1–3.6 GHz32 nm1200[70]4–8 / 21
2011SPARC T4Oracle2.8–3 GHz40 nm8558 / 18
2012SPARC64 IXfxFujitsu1.848 GHz40 nm187016 / 12
2012zEC12IBM5.5 GHz32 nm27506 / 61
2012POWER7+IBM3.1–5.3 GHz32 nm21008 / 1, 24
2012Itanium "Poulson"Intel1.73–2.53 GHz32 nm31008 / 12
2013Intel "Haswell"Intel1.9–4.4 GHz22 nm14004 / 12
2013SPARC64 XFujitsu2.8–3 GHz28 nm295016 / 12
2013SPARC T5Oracle3.6 GHz28 nm150016 / 18
2014POWER8IBM2.5–5 GHz22 nm42006, 12 / 1, 28
2014Intel "Broadwell"Intel1.8-4 GHz14 nm19002, 4, 6, 8, 12, 16 / 1, 2, 42
2015z13IBM5 GHz22 nm39908 / 12
2015A8-7670KAMD3.6 GHz28 nm24104 / 11
2016RISC-V E31[71]SiFive320 MHz28 nm?11
2017ZenAMD3.2–4.1 GHz14 nm48008, 16 / 1, 2, 42
2017z14IBM5.2 GHz14 nm610010 / 12
2017POWER9IBM4 GHz14 nm800012, 24 / 14, 8
2017SPARC M8[72]Oracle5 GHz20 nm~10,000[73]328
2017RISC-V U54-MC[74]SiFive1.5 GHz28 nm25041
2018Intel "Cannon Lake"Intel2.2–3.2 GHz10 nm?2 / 12
2018Zen+AMD2.8–3.7 GHz12 nm48002, 4, 6, 8 / 1, 2, 41, 2
2018RISC-V U74-MC[75]SiFive1.5 GHz??41
2019Zen 2AMD2–4.7 GHz7 nm, 12nm39004, 6, 8 / 1, 2, 4, 6, 82
2019z15IBM5.2 GHz14 nm920012 / 12

2020s

[edit]
DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
Threads
per core
2020Zen 3AMD3.4–4.9 GHz7 nm, 12nm6240–352904, 6, 8 / 1, 2, 4, 82
2020M1 SeriesApple3.2 GHz5 nm16000–1440004–8P, 2–4E / 1, 21
2021Alder LakeIntel0.7–5.3 GHz7 nm?0–8P, 2–8E1–2
2021POWER10IBM4 GHz7 nm18000158
2022IBM TelumIBM>5 GHz7 nm2200082
2022M2 SeriesApple3.49/2.42 GHz5 nm (N5P)20000–1340004–8P, 4E / 1, 21
2022Zen 4AMD2.0–5.7 GHz5 nm, 7 nm65704, 6, 8 / 1, 2, 4, 8, 122
2023Zen 4CAMD2.0–3.1 GHz5 nm82004, 6, 8, 12, 14, 16 / 1, 2, 4, 81, 2
2023M3 SeriesApple4.05/2.75 GHz3 nm25000–920004–12P, 4–6E1
2023Meteor LakeIntel0.7–5.0 GHz5 nm, 7 nm?2–6P, 4–8E, 2LP-E1–2
2024OryonQualcomm4.3 GHz4 nm?121
2024M4 SeriesApple4.4 GHz3 nm280002–12P, 4–6E1
2024Arrow LakeIntel0.7–5.7 GHz3 nm, 5 nm?2–8P, 4–16E, 2LP-E1–2
2024Zen 5AMD2.0–5.7 GHz5 nm8315-200306, 8, 16 / 2, 32
2024IBM Telum IIIBM5.5 GHz5 nm4300082
2025POWER11IBM4.4 GHz7 nm30000168
2025M5 SeriesApple0.9-4.6 GHz3 nm?3–4P, 4–6E1

See also

[edit]

References and notes

[edit]
References
  1. ^Laws, David (2018-09-20)."Who Invented the Microprocessor?".Computer History Museum. Retrieved2024-01-19.
  2. ^"The Story of the Intel 4004".Intel.
  3. ^"NMOS versus PMOS".
  4. ^"Perkin Elmer - Micralign Projection Mask Alignment System".
  5. ^"The MOS 6502 and the Best Layout Guy in the World". swtch.com. 2011-01-03. Retrieved2014-08-09.
  6. ^abcdefghijBelzer, Jack; Holzman, Albert G.; Kent, Allen (1978).Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification.CRC Press. p. 402.ISBN 9780824722609.
  7. ^Lee Boysel (April 3, 1995)."Court Room Demonstration System 1969 AL1 Microprocessor"(PDF).Computer History Museum. RetrievedJune 11, 2010.
  8. ^Shirriff, Ken (2015)."The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor". Archived fromthe original on 2024-12-28. Retrieved2024-12-29.
  9. ^"Untold 8 Year History of the Microprocessor's Origins"(PDF). Slide #13 "Four-Phase - It works!".System announced at FJCC in Vegas in fall '70. First order from Eastern Slide #13 has arrow on year 1970.
  10. ^"Four-Phase Systems AL1 Processor – 8-bits by Lee Boysel | the CPU Shack Museum". 16 August 2014.
  11. ^"The Story of the Datamath Calculator". Retrieved2024-12-29.
  12. ^"IC_List".www.datamath.org. Retrieved2024-12-29.
  13. ^Woerner, Joerg (February 26, 2001)."Texas Instruments: They invented the Microcontroller".Datamath Calculator Museum. RetrievedMarch 22, 2016.
  14. ^Leibson, Steven (2022-11-21)."A History of Early Microcontrollers, Part 2: The Texas instruments TMS1000".EEJournal.Archived from the original on 2024-12-25. Retrieved2024-12-29.
  15. ^Ogdin 1975, pp. 57–59, 77
  16. ^abcd"1970s: Development and evolution of microprocessors"(PDF).Semiconductor History Museum of Japan. Archived fromthe original(PDF) on 2019-06-27. Retrieved16 September 2020.
  17. ^Ogdin 1975, pp. 72, 77
  18. ^"Rockwell PPS-4". The Antique Chip Collector's Page. Retrieved2010-06-14.
  19. ^Ogdin 1975, pp. 70, 77
  20. ^"National Semiconductor IMP-16". The Antique Chip Collector's Page. Archived fromthe original on 2002-02-07. Retrieved2010-06-14.
  21. ^Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan".Euromicro Newsletter.3 (4): 50–7 (51, Table 2.2).doi:10.1016/0303-1268(77)90111-0.
  22. ^"NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived fromthe original on 2011-05-25. Retrieved2010-06-11.
  23. ^abcdefgOgdin 1975, p. 77
  24. ^"1973: 12-bit engine-control microprocessor (Toshiba)"(PDF).Semiconductor History Museum of Japan. Archived fromthe original(PDF) on 2019-06-27. Retrieved16 September 2020.
  25. ^Ogdin 1975, pp. 55, 77
  26. ^Ogdin 1975, pp. 65, 77
  27. ^abDavid Russell (February 1978). "Microprocessor survey".Microprocessors.2 (1):13–20, See p. 18.doi:10.1016/0308-5953(78)90071-5.
  28. ^Allen Kent, James G. Williams, ed. (1990). "Evolution of Computerized Maintenance Management to Generation of Random Numbers".Encyclopedia of Microcomputers. Vol. 7. Marcel Dekker. p. 336.ISBN 0-8247-2706-1.
  29. ^Little, Jeff (2009-03-04)."Intersil Intercept Jr". ClassicCmp. Archived fromthe original on 2014-10-03. Retrieved2012-09-16.
  30. ^"Intersil IM6100 CMOS 12 Bit Microprocessor family databook"(PDF).
  31. ^"RCA COSMAC 1801". The Antique Chip Collector's Page. Archived fromthe original on 2013-09-03. Retrieved2010-06-14.
  32. ^"CDP 1800 μP Commercially available"(PDF).Microcomputer Digest.2 (4):1–3. October 1975. Retrieved2023-11-13.
  33. ^"Hybrid Microprocessor". Retrieved2008-06-15.
  34. ^"HP designs Custom 16-bit μC Chip"(PDF).Microcomputer Digest.2 (4): 8. October 1975. Retrieved2023-11-13.
  35. ^MCP-1600 Microprocessor Users Manual(PDF). Western Digital. 1975. Retrieved28 April 2022.
  36. ^"Microprocessors — The Early Years 1971–1974". The Antique Chip Collector's Page. Archived fromthe original on 2013-06-04. Retrieved2010-06-16.
  37. ^"CP1600 16-Bit Single-Chip Microprocessor"(PDF).data sheet. General Instrument. 1977. Archived fromthe original(PDF) on 2011-05-26. Retrieved2010-06-18.
  38. ^"RCA COSMAC 1802". The Antique Chip Collector's Page. Archived fromthe original on 2013-01-02. Retrieved2010-06-14.
  39. ^"CDP 1802"(PDF).Microcomputer Digest.2 (10): 1, 4. April 1976. Retrieved2023-11-13.
  40. ^Hans Hoffman; John Nemec (April 1977). "A fast microprocessor for control applications".Euromicro Newsletter.3 (3):53–59.doi:10.1016/0303-1268(77)90010-4.
  41. ^"Microprocessors — The Explosion 1975–1976". The Antique Chip Collector's Page. Archived fromthe original on 2009-09-09. Retrieved2010-06-18.
  42. ^"Chip Hall of Fame: Motorola MC68000 Microprocessor".IEEE Spectrum.Institute of Electrical and Electronics Engineers. 30 June 2017. Retrieved19 June 2019.
  43. ^Cass, Stephen (2 July 2018)."Chip Hall of Fame: RCA CDP 1802".IEEE Spectrum.
  44. ^Kuhn, Kelin (2018)."CMOS and Beyond CMOS: Scaling Challenges".High Mobility Materials for CMOS Applications.Woodhead Publishing. p. 1.ISBN 9780081020623.
  45. ^Gilder, George (1990).Microcosm: The Quantum Revolution In Economics And Technology.Simon and Schuster. pp. 144–5.ISBN 9780671705923.
  46. ^Harris CMOS Digital Data Book(PDF). pp. 4–3–21.
  47. ^"Berkeley Hardware Prototypes". Retrieved2008-06-15.
  48. ^Patterson, David A. (1985)."Reduced instruction set computers".Communications of the ACM.28:8–21.doi:10.1145/2465.214917.S2CID 1493886.
  49. ^"Forth chips list". UltraTechnology. 2010.
  50. ^Koopman, Philip J. (1989)."4.4 Architecture of the NOVIX NC4016".Stack Computers: the new wave. E. Horwood.ISBN 0745804187.
  51. ^Hand, Tom (1994)."The Harris RTX 2000 Microcontroller"(PDF).Journal of Forth Application and Research.6 (1).ISSN 0738-2022.
  52. ^"Fujitsu to take ARM into the realm of Super".The CPU Shack Museum. June 21, 2016. Retrieved30 June 2019.
  53. ^"Fujitsu SPARC".cpu-collection.de. Retrieved30 June 2019.
  54. ^"Timeline".SPARC International. Retrieved30 June 2019.
  55. ^abKimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function".IEEE Micro.8 (2):22–36.doi:10.1109/40.527.S2CID 9507994.
  56. ^C Green; P Gülzow; L Johnson; K Meinzer; J Miller (Mar–Apr 1999)."The Experimental IHU-2 Aboard P3D".Amsat Journal.22 (2).The first processor using these principles, called ARM-1, was fabricated by VLSI in April 1985, and gave startling performance for the time, whilst using barely 25,000 transistors
  57. ^Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200".IEEE Micro.8 (2):12–21.doi:10.1109/40.526.S2CID 36938046.
  58. ^"Intel i960 Embedded Microprocessor".National High Magnetic Field Laboratory.Florida State University. 3 March 2003. Archived fromthe original on 3 March 2003. Retrieved29 June 2019.
  59. ^Moore CR, Balser DM, Muhich JS, East RE (1992)."IBM Single Chip RISC Processor (RSC)"(PDF).Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors. IEEE Computer Society. pp. 200–4.ISBN 0-8186-3110-4. Archived fromthe original(PDF) on 2013-10-04. Retrieved2008-11-15.
  60. ^"Embedded-DSP SuperH Family and Its Applications"(PDF).Hitachi Review.47 (4).Hitachi:121–7. 1998.S2CID 43356065. Archived fromthe original(PDF) on 2019-02-25. Retrieved5 July 2019.
  61. ^"SH Microprocessor Leading the Nomadic Era"(PDF).Semiconductor History Museum of Japan. Retrieved27 June 2019.
  62. ^"PA-RISC Processors". Retrieved2008-05-11.
  63. ^"HARP-1: A 120 MHz Superscalar PA-RISC Processor"(PDF).Hitachi. Archived fromthe original(PDF) on 23 April 2016. Retrieved19 June 2019.
  64. ^"Entertainment Systems and High-Performance Processor SH-4"(PDF).Hitachi Review.48 (2).Hitachi:58–63. 1999.S2CID 44852046. Archived fromthe original(PDF) on 2019-02-21. Retrieved27 June 2019.
  65. ^"Remembering the Sega Dreamcast".Bit-Tech. September 29, 2009. Retrieved18 June 2019.
  66. ^"EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP"(PDF).Sony. April 21, 2003. Retrieved26 June 2019.
  67. ^Hennessy, John L.;Patterson, David A. (29 May 2002).Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491.ISBN 978-0-08-050252-6. Retrieved9 April 2013.
  68. ^Anand Lal Shimpi (10 January 2011)."A Closer Look at the Sandy Bridge Die". AnandTech. Archived fromthe original on January 12, 2011.
  69. ^renethx (10 November 2011)."AMD Zacate — the next great HTPC chip?".AVS Forum. Cedar (HD 5450) and Zacate (E350) are manufactured in TSMC 40 nm process.
  70. ^"AMD Revises Bulldozer Transistor Count: 1.2B, not 2B". AnandTech. 2 December 2011. Archived fromthe original on July 18, 2012.
  71. ^"SiFive - HiFive1". Archived fromthe original on 2016-11-30.
  72. ^"Sparc M8 processor"(PDF).Oracle main website. Oracle Corp. Retrieved3 March 2019.
  73. ^"Is M8 the Last Hurrah for Oracle Sparc?". 18 September 2017.
  74. ^"SiFive - HiFive1". Archived fromthe original on 2017-10-18.
  75. ^"SiFive Introduces 7 Series RISC-V Cores". 2 November 2018.
Notes
Models
Architecture
Instruction set
architectures
Types
Instruction
sets
Execution
Instruction pipelining
Hazards
Out-of-order
Speculative
Parallelism
Level
Multithreading
Flynn's taxonomy
Processor
performance
Types
By application
Systems
on chip
Hardware
accelerators
Word size
Core count
Components
Functional
units
Logic
Registers
Control unit
Datapath
Circuitry
Power
management
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Microprocessor_chronology&oldid=1321254398"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp