Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Mesoarchean

From Wikipedia, the free encyclopedia
Third era of the Archean Eon
Mesoarchean
3200 – 2800Ma
A reconstruction of the Earth's continents during the middle Mesoarchean, c. 3 Ga.[citation needed]
Artist impression of theArchean eon
Banded iron formation created during the Mesoarchean era
Chronology
−3200 —
−3150 —
−3100 —
−3050 —
−3000 —
−2950 —
−2900 —
−2850 —
−2800 —
 
 
Events of the Mesoarchean Era
Vertical axis scale:Millions of years ago
Proposed redefinition(s)3490–2780 Ma
Gradstein et al., 2012
Proposed subdivisionsVaalbaran Period, 3490–3020 Ma

Gradstein et al., 2012
Pongolan Period, 3020–2780 Ma

Gradstein et al., 2012
Etymology
Name formalityFormal
Alternate spelling(s)Mesoarchaean
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEra
Stratigraphic unitErathem
Time span formalityFormal
Lower boundary definitionDefined Chronometrically
Lower GSSA ratifiedNot formally defined
Upper boundary definitionDefined Chronometrically
Upper GSSA ratifiedNot formally defined

TheMesoarchean (/ˌmz.ɑːrˈkən,ˌmɛz-/MEE-zoh-ar-KEE-ən,MEZ-oh-, also spelledMesoarchaean) is ageologicera in theArchean Eon, spanning3,200 to 2,800 million years ago, which contains the first evidence of modern-styleplate subduction and expansion ofmicrobial life. The era is definedchronometrically and is not referenced to a specific level in a rock section on Earth.

Tectonics

[edit]

The Mesoarchean era is thought to be the birthplace of modern-style plate subduction, based on geologic evidence from thePilbara Craton in westernAustralia.[3][4] Aconvergent margin with a modern-styleoceanic arc existed at the boundary between West and East Pilbara approximately 3.12 Ga. By 2.97 Ga, theWest Pilbara Terrane converged with and accreted onto the East Pilbara Terrane.[4] Asupercontinent,Vaalbara, may have existed in the Mesoarchean.[5]

Environmental conditions

[edit]

Analysis ofoxygen isotopes in Mesoarcheancherts has been helpful in reconstructing Mesoarchean surface temperatures.[6] These cherts led researchers to draw an estimate of an oceanic temperature around 55-85°C[7] (131-185 Fahrenheit), while other studies ofweathering rates postulate average temperatures below 50°C (122 Fahrenheit).

The Mesoarchean atmosphere contained high levels of atmosphericmethane andcarbon dioxide, which could be an explanation for the high temperatures during this era.[6] Atmosphericdinitrogen content in the Mesoarchean is thought to have been similar to today, suggesting that nitrogen did not play an integral role in thethermal budget of ancient Earth.[8]

ThePongola glaciation occurred around 2.9 Ga, from which there is evidence of ice extending to a palaeolatitude (latitude based on the magnetic field recorded in the rock) of 48 degrees. This glaciation was likely not triggered by the evolution of photosynthetic cyanobacteria, which likely occurred in the interval between the Huronian glaciations and the Makganyene glaciation.[9]

Early microbial life

[edit]

Microbial life with diverse metabolisms expanded during the Mesoarchean era and produced gases that influencedearly Earth'satmospheric composition.Cyanobacteria producedoxygen gas, but oxygen did not begin to accumulate in the atmosphere until later in theArchean.[10] Small oases of relativelyoxygenated water did exist in some nearshore shallow marine environments by this era, however.[11]

See also

[edit]
  • Geologic time scale – System that relates geologic strata to time
  • Glacial period – Interval of time within an ice age that is marked by colder temperatures and glacier advances
  • Ice age – Period of long-term reduction in temperature of Earth's surface and atmosphere
  • Last glacial period – Period of major glaciations of the Northern Hemisphere (115,000–12,000 years ago)Pages displaying short descriptions of redirect targets

References

[edit]
  1. ^Raub, T. D.; Kirschvink, J. L. (2008)."A Pan-Precambrian Link Between Deglaciation and Environmental Oxidation".Antarctica: A Keystone in a Changing World. National Academies Press. pp. 86–87.ISBN 978-0-309-11854-5.LCCN 2008299902.OCLC 226299986.
  2. ^Zalasiewicz, Jan; Williams, Mark (2012)."Earth as a Snowball".The Goldilocks Planet: The Four Billion Year Story of Earth's Climate. Oxford University Press. p. 22.ISBN 978-0-19-959357-6.LCCN 2012405530.OCLC 755699420.
  3. ^Mints, M.V.; Belousova, E.A.; Konilov, A.N.; Natapov, L.M.; Shchipansky, A.A.; Griffin, W.L.; O'Reilly, S.Y.; Dokukina, K.A.; Kaulina, T.V. (2010). "Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia".Geology.38 (8):739–742.Bibcode:2010Geo....38..739M.doi:10.1130/G31219.1.ISSN 0091-7613.
  4. ^abSmithies, R. H.; Van Kranendonk, M. J.; Champion, D. C. (2007)."The Mesoarchean emergence of modern-style subduction".Gondwana Research. Island Arcs: Past and Present.11 (1):50–68.Bibcode:2007GondR..11...50S.doi:10.1016/j.gr.2006.02.001.ISSN 1342-937X.
  5. ^de Kock, Michiel O.; Evans, David A. D.; Beukes, Nicolas J. (2009)."Validating the existence of Vaalbara in the Neoarchean".Precambrian Research.174 (1):145–154.Bibcode:2009PreR..174..145D.doi:10.1016/j.precamres.2009.07.002.ISSN 0301-9268.
  6. ^abSleep, Norman H.; Hessler, Angela M. (2006). "Weathering of quartz as an Archean climatic indicator".Earth and Planetary Science Letters.241 (3–4):594–602.Bibcode:2006E&PSL.241..594S.doi:10.1016/j.epsl.2005.11.020.
  7. ^Knauth, L. Paul; Lowe, Donald R. (2003)."High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa".Geological Society of America Bulletin.115:566–580.Bibcode:2003GSAB..115..566K.doi:10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2.ISSN 0016-7606.
  8. ^Marty, Bernard; Zimmermann, Laurent; Pujol, Magali; Burgess, Ray; Philippot, Pascal (2013)."Nitrogen isotopic composition and density of the Archean atmosphere".Science.342 (6154):101–104.arXiv:1405.6337.Bibcode:2013Sci...342..101M.doi:10.1126/science.1240971.PMID 24051244.S2CID 206550098.
  9. ^Kopp, Robert E.; Kirschvink, Joseph L.; Hilburn, Isaac A.; Nash, Cody Z. (2005)."The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis".Proc. Natl. Acad. Sci. U.S.A.102 (32):11131–6.Bibcode:2005PNAS..10211131K.doi:10.1073/pnas.0504878102.PMC 1183582.PMID 16061801.
  10. ^Lepot, Kevin (2020)."Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon".Earth-Science Reviews.209 103296.Bibcode:2020ESRv..20903296L.doi:10.1016/j.earscirev.2020.103296.hdl:20.500.12210/62415.ISSN 0012-8252.S2CID 225413847.
  11. ^Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny (15 January 2018)."Isotopic evidence for oxygenated Mesoarchaean shallow oceans".Nature Geoscience.11 (2):133–138.doi:10.1038/s41561-017-0036-x.S2CID 135023426. Retrieved28 December 2022.

External links

[edit]
Wikimedia Commons has media related toMesoarchean.
Quaternary /
Late Cenozoic
Quaternary
Pliocene
Miocene
Oligocene
Paleozoic
Ediacaran
Cryogenian-Snowball Earth
Paleoproterozoic
Mesoarchean
Related topics
Cenozoic Era
(present–66.0 Ma)
Quaternary(present–2.58 Ma)
Neogene(2.58–23.0 Ma)
Paleogene(23.0–66.0 Ma)
Example of stratigraphic column
Mesozoic Era
(66.0–252 Ma)
Cretaceous(66.0–145 Ma)
Jurassic(145–201 Ma)
Triassic(201–252 Ma)
Paleozoic Era
(252–539 Ma)
Permian(252–299 Ma)
Carboniferous(299–359 Ma)
Devonian(359–419 Ma)
Silurian(419–444 Ma)
Ordovician(444–485 Ma)
Cambrian(485–539 Ma)
Proterozoic Eon
(539 Ma–2.5 Ga)
Neoproterozoic(539 Ma–1 Ga)
Mesoproterozoic(1–1.6 Ga)
Paleoproterozoic(1.6–2.5 Ga)
Archean Eon(2.5–4 Ga)
Hadean Eon(4–4.6 Ga)
 
ka = kiloannum (thousand years ago);Ma = megaannum (million years ago);Ga = gigaannum (billion years ago).
See also:Geologic time scale  • iconGeology portal  • World portal
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Mesoarchean&oldid=1317994808"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp