Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nucleocytoviricota

From Wikipedia, the free encyclopedia
(Redirected fromMegavirales)
Phylum of viruses
Nucleocytoviricota
Virus classificationEdit this classification
(unranked):Virus
Realm:Varidnaviria
Kingdom:Bamfordvirae
Phylum:Nucleocytoviricota
Classes

See text

Synonyms

Megavirales[1]

Nucleocytoviricota is a phylum ofviruses.[2] Members of the phylum are also known as thenucleocytoplasmic large DNA viruses (NCLDV), which serves as the basis of the name of the phylum with the suffix -viricota for virus phylum. These viruses are referred to as nucleocytoplasmic because they are often able to replicate in both the host'scell nucleus andcytoplasm.[3]

The phylum is notable for containing thegiant viruses.[4][1] There are nine families of NCLDVs that all share certain genomic and structural characteristics; however, it is uncertain whether the similarities of the different families of this group have a common viral ancestor.[5] One feature of this group is a largegenome and the presence of manygenes involved inDNA repair,DNA replication,transcription, andtranslation. Typically, viruses with smaller genomes do not contain genes for these processes. Most of the viruses in this family also replicate in both the host'snucleus andcytoplasm, thus the name nucleocytoplasmic.

There are 47 NCLDV core genes currently recognised. These include four key proteins involved in DNA replication and repair: theenzymesDNA polymerase family B, thetopoisomerase II A, theFLAPendonuclease and the processing factorproliferating cell nuclear antigen. Other proteins include DNA dependentRNA polymerase II andtranscription factor II B.

Taxonomy

[edit]

Nucleocytoviricota contains the following classes:[6]

Hosts

[edit]

Host organisms typically includeprotozoa,invertebrates and eukaryoticalgae. The classPokkesviricetes infects familiar vertebrates, including multiple farm animals and humans.

Phylogenetic tree of phylumNucleocytoviricota on base of Subramaniamet al. (2020).[7]

Examples

[edit]

Ascoviridae

[edit]

OrderPimascovirales. Members of the familyAscoviridae come in different shapes. Some can be rod-shaped, while others are oval. They measure up to 130 nm wide and 400 nm long. These viruses have circular double stranded DNA that have a length of about 100–200 kilobase pairs. They infect lepidopteran insect larvae and can infect through parasitoid wasps. Once they infect they replicate and cause death in insect pest.[8] Ascoviridae can have up to 180 genes in its genome. The replication of this virus takes place in the nucleus of the host cell. When it replicates, it causes the nucleus to increase in size and eventually burst. After, the virion starts to form and spread.[9]

Asfarviridae

[edit]

OrderAsfuvirales. A member of the familyAsfarviridae is known as an asfarvirus. This virus is the cause of African swine fever. Some of the symptoms for this flu include fever, high pulse, fast breathing, and it can cause death. These symptoms can be similar to those from hog cholera, the difference is that the African swine flu can not be cured. There is no vaccine developed to fight this virus.[10]

Iridoviridae

[edit]

OrderPimascovirales. TheIridoviridae have linear double stranded DNA genomes up to 220 kilobases long and can code for about 211 proteins. The capsid of this virion is icosahedral shaped and can be up to 350 nm wide. The replication cycle of this virus begins in the nucleus of the host and end in the cytoplasm. Some viruses of this family are often found infecting fish and amphibians while other are found in insect and crustaceans.[11] TheAndrias davidianusranavirus (ADRV), a member of the familyIridoviridae, encodes a protein (Rad2 homolog) that has a key role in the repair of DNA byhomologous recombination, and indouble-strand break repair.[12]

Marseilleviridae

[edit]

OrderPimascovirales. TheMarseilleviridae viruses have double stranded DNA genomes that are about 368 kilobases long. Members of the family can have about 457open reading frames (ORFs) in its genome. The host organisms areamoebae. Once it infects, viral replication takes place in virus factories in the cytoplasm. It was found that the genome of the familyMarseilleviridae codes for about 28 different proteins.[13] The capsid of the marseillevirus is about 250 nm wide with a geometry shape of an icosahedral. The replication of this virus usually occurs near the nucleus once it infects the amoeba. Once the virus infects it can cause a shape change in the host's nucleus.[14]

Mimiviridae

[edit]

OrderImitervirales. TheMegaviridae contains some of the largest viruses ever discovered. They have linear double stranded DNA genomes with a length of 1,259,197 base pairs, which is larger than some small bacteria. Within this genome 1,100 proteins are coded. 74.76% of the base pairs are represented by thymine and adenine. TheMegaviridae virus can be found infecting acanthamoeba or other protozoan clades.  Once the virus infects the host, the replication cycle takes place in the cytoplasm. Within the genome, DNA repair enzymes can be found. These are used when the DNA is harmed such as when it is exposed to ionizing radiation or UV light.[15] Three enzymes employed in DNAbase excision repair were characterized from Mimivirus.[16] The pathway of DNA base excision repair (BER) was experimentally reconstituted using the purified recombinant proteinsAP endonuclease (mvAPE),uracil-DNA glycosylase (mvUDG), andDNA polymerase X protein (mvPolX).[16] When reconstituted in vitro, mvAPE, mvUDG and mvPolX were found to function cohesively to repair uracil-containing DNA mainly by long patch base excision repair.[16] Thus these processes likely participate in the BER pathway early in the Mimivirus life cycle.[16] Cafeteria roenbergensis, a giant virus of the Mimiviridae family, also encodes enzymes for DNA repair.[17]

Traditionally only these viruses have been grouped into a familyMimiviridae. Later it appeared that the viruses of theOrganic Lake Phycodna Group (OLPG) are more related to Mimiviruses than toPhycodnaviruses. For this reason it has been proposed adding them to legacyMimiviridae as new subfamilyMesomimivirinae in order to form the more comprehensive familyMegaviridae. For this reason, the termMimiviridae was usedsensu lato synonymous withMegaviridae.[18][19][20][21][22][23] However, since the ICTV has created a new orderImitervirales officially containing the (legacy)Mimiviridae, proposedMesomimivirinae are proposed to be upgraded as a new familyMesomimiviridae, i. e. as sister family of legacyMimiviridae (within this order).

Pandoraviridae

[edit]

Possibly orderAlgavirales.Pandoraviridae Discovered in 2013 from a coastal water sample in Chile. It is mostly found infecting amoebae. It has a length of 1 micrometer long and .5 micrometer wide. Its genome can be up to 2.5 million base pairs long.[24] The replication of this virus takes place in the cytoplasm. Like other giant viruses, it affects the host's nucleus and can take up to 15 hours to start infecting.[25] Although it is found in water, it does not affect humans, it may actually help us by increasing the production of oxygen in aquatic environments.[26] 

Phycodnaviridae

[edit]

OrderAlgavirales. ThePhycodnaviridae are icosahedral in shape with a double-stranded DNA molecule. Some members of this family can have a linear double-stranded DNA while others have a circular double stranded DNA. The genome has been found to be up to 560 kilobases in length. Up to 50% of the DNA can be represented by guanine or cytosine. This virus is known to infect algae, which means it is found in the ocean.[27]

Pithoviridae

[edit]

OrderPimascovirales. ThePithoviridae have only two known representatives. These viruses infects amoebas and can survive in low temperatures. For years this virus was believed to be frozen, but due to climate change it has begun to show up again.[28] This is a double stranded DNA virus with its size being 610 kilobases long. The genome is estimated to code for 476 open reading frames. The viron is rod shaped with a length of 1,100 nm long and 500 nm in diameter.[29]

Poxviridae

[edit]

OrderChitovirales. ThePoxviridae have a linear double-stranded DNA molecule that can have a length of up to 230 kilobases. The replication of these viruses takes place in the cytoplasm.Smallpox,cowpox, and otherpox viruses belong to this family.[30] 

Mininucleoviridae

[edit]
Genome maps of the crustacean viruses PaV1, DhV1 and CmV1 (proposed familyMininucleoviridae).[7]

Possibly orderPimascovirales. A new family has been proposed —Mininucleoviridae — for a family of large viruses that replicate in crustacea.[7] Members of this proposed family includeCarcinus maenas virus 1 (CmV1),[note 1]Dikerogammarus haemobaphes virus 1 (DhV1),[note 2] andPanulirus argus virus 1 (PaV1).[note 3]

Unclassified taxa

[edit]
This section'sfactual accuracy may be compromised due to out-of-date information. Please help update this article to reflect recent events or newly available information.(May 2020)

Phylogenetics

[edit]

The general consensus is thatIridoviridaeAscoviridae are closely related sister taxa in a clade.Pithovirus,IridoviridaeAscoviridae andMarseillevirus form a PIM or MAPI clade (Pimascovirales[2]) in trees built from conserved proteins.[7] The sister clade to PIM/MAPI is a clade made out ofAlgavirales[2] (Phycodnaviridae,Pandoraviridae), and possiblyImitervirales[2]/Mimiviridae ("P2" thereafter).[36]Poxviridae is consistently treated as a basal branch.Asfarviridae is either a sister group toPoxviridae (building togetherPokkesviricetes)[2] or a member of the P2 clade.[37] The ICTV classification, as of 2019, matches the general shape of the tree.

The origin of the NCLDVs may predate that of their eukaryotic hosts, judging from theirRNA polymerase structures.[37]

See also

[edit]

Notes

[edit]
  1. ^CmV1 infectsCarcinus maenas
  2. ^DhV1 infectsDikerogammarus haemobaphes
  3. ^PaV1 infectsPanulirus argus

References

[edit]
  1. ^abColson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng XW, Federici BA, Van Etten JL, Koonin EV, La Scola B, Raoult D (2013).""Megavirales", a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses".Archives of Virology.158 (12):2517–21.doi:10.1007/s00705-013-1768-6.PMC 4066373.PMID 23812617.
  2. ^abcde"Virus Taxonomy: 2019 Release".talk.ictvonline.org. International Committee on Taxonomy of Viruses. Retrieved25 April 2020.
  3. ^Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini M, Kuhn JH (October 2019)."Create a megataxonomic framework, filling all principal taxonomic ranks, for DNA viruses encoding vertical jelly roll-type major capsid proteins".ICTV Proposal (Taxoprop): 2019.003G.doi:10.13140/RG.2.2.14886.47684.
  4. ^Colson P, de Lamballerie X, Fournous G, Raoult D (2012)."Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales".Intervirology.55 (5):321–332.doi:10.1159/000336562.PMID 22508375.
  5. ^Iyer, L. M.; Aravind, L.; Koonin, E. V. (December 2001)."Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses".Journal of Virology.75 (23):11720–34.doi:10.1128/JVI.75.23.11720-11734.2001.PMC 114758.PMID 11689653.
  6. ^"Virus Taxonomy: 2024 Release". International Commitee on Taxonomy of Viruses. Retrieved4 March 2025.
  7. ^abcdSubramaniam, K (14 January 2020)."A New Family of DNA Viruses Causing Disease in Crustaceans from Diverse Aquatic Biomes".mBio.11 (1).doi:10.1128/mBio.02938-19.PMC 6960288.PMID 31937645.
  8. ^"Ascoviridae—Ascoviridae—dsDNA Viruses—International Committee on Taxonomy of Viruses (ICTV)".International Committee on Taxonomy of Viruses (ICTV). Archived fromthe original on December 8, 2017. Retrieved2017-12-07.
  9. ^Asgari, Sassan; Bideshi, Dennis K; Bigot, Yves; Federici, Brian A; Cheng, Xiao-Wen (2017)."ICTV Virus Taxonomy Profile: Ascoviridae".The Journal of General Virology.98 (1):4–5.doi:10.1099/jgv.0.000677.PMC 5370392.PMID 28218573.
  10. ^"African swine fever (ASF) | animal disease".Encyclopedia Britannica. Retrieved2017-12-07.
  11. ^"Iridoviridae—Iridoviridae—dsDNA Viruses—International Committee on Taxonomy of Viruses (ICTV)".International Committee on Taxonomy of Viruses (ICTV). Retrieved2017-12-07.
  12. ^Ke F, Zhang QY (April 2022)."ADRV 12L: A Ranaviral Putative Rad2 Family Protein Involved in DNA Recombination and Repair".Viruses.14 (5): 908.doi:10.3390/v14050908.PMC 9146916.PMID 35632650.
  13. ^Boyer, Mickaël; Yutin, Natalya; Pagnier, Isabelle; Barrassi, Lina; Fournous, Ghislain; Espinosa, Leon; Robert, Catherine; Azza, Saïd; Sun, Siyang (2009-12-22)."Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms".Proceedings of the National Academy of Sciences of the United States of America.106 (51):21848–53.Bibcode:2009PNAS..10621848B.doi:10.1073/pnas.0911354106.PMC 2799887.PMID 20007369.
  14. ^Aherfi, Sarah (2014-10-01)."The expanding family Marseilleviridae".Virology.466–467:27–37.doi:10.1016/j.virol.2014.07.014.ISSN 0042-6822.PMID 25104553.
  15. ^Arslan, Defne; Legendre, Matthieu; Seltzer, Virginie; Abergel, Chantal; Claverie, Jean-Michel (2011-10-18)."Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae".Proceedings of the National Academy of Sciences.108 (42):17486–91.Bibcode:2011PNAS..10817486A.doi:10.1073/pnas.1110889108.PMC 3198346.PMID 21987820.
  16. ^abcdLad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Srivastava S, Pradeepkumar PI, Kondabagil K (September 2023). "Biochemical Reconstitution of the Mimiviral Base Excision Repair Pathway".J Mol Biol.435 (17): 168188.doi:10.1016/j.jmb.2023.168188.PMID 37380013.
  17. ^Fischer MG, Kelly I, Foster LJ, Suttle CA (October 2014). "The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair".Virology.466–467:82–94.doi:10.1016/j.virol.2014.05.029.PMID 24973308.
  18. ^Schulz, Frederik; Yutin, Natalya; Ivanova, Natalia N.; Ortega, Davi R.; Lee, Tae Kwon; Vierheilig, Julia; Daims, Holger; Horn, Matthias; Wagner, Michael (2017-04-07)."Giant viruses with an expanded complement of translation system components"(PDF).Science.356 (6333):82–85.Bibcode:2017Sci...356...82S.doi:10.1126/science.aal4657.ISSN 0036-8075.PMID 28386012.S2CID 206655792., UCPMS ID: 1889607,PDF
  19. ^Koonin, EV; Krupovic, M; Yutin, N (2015)."Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses".Annals of the New York Academy of Sciences.1341 (1):10–24.Bibcode:2015NYASA1341...10K.doi:10.1111/nyas.12728.PMC 4405056.PMID 25727355. Figure 3
  20. ^Yutin, Natalya; et al. (2013)."Mimiviridae: clusters of orthologous genes, reconstruction of gene repertoire evolution and proposed expansion of the giant virus family".Virology Journal.10: 106.doi:10.1186/1743-422X-10-106.PMC 3620924.PMID 23557328.
  21. ^Blog of Carolina Reyes, Kenneth Stedman:Are Phaeocystis globosa viruses (OLPG) and Organic Lake phycodnavirus a part of the Phycodnaviridae or Mimiviridae?, on ResearchGate, Jan. 8, 2016
  22. ^Maruyama, Fumito; Shoko (2016)."Evolution and Phylogeny of Large DNA Viruses,Mimiviridae andPhycodnaviridae Including Newly CharacterizedHeterosigma akashiwo Virus".Frontiers in Microbiology.7: 1942.doi:10.3389/fmicb.2016.01942.PMC 5127864.PMID 27965659.
  23. ^Zhang, W; Zhou, J; Liu, T; Yu, Y; Pan, Y; Yan, S; Wang, Y (2015)."Four novel algal virus genomes discovered from Yellowstone Lake metagenomes".Scientific Reports.5: 15131.Bibcode:2015NatSR...515131Z.doi:10.1038/srep15131.PMC 4602308.PMID 26459929. Figure 6
  24. ^Yong, Ed (2013)."Giant viruses open Pandora's box".Nature.doi:10.1038/nature.2013.13410.S2CID 88440241.
  25. ^Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier (2016-03-22)."Giant Viruses of Amoebas: An Update".Frontiers in Microbiology.7: 349.doi:10.3389/fmicb.2016.00349.ISSN 1664-302X.PMC 4801854.PMID 27047465.
  26. ^"Biggest Virus Yet Found, May Be Fourth Domain of Life?". 2013-07-19. Archived fromthe original on July 21, 2013. Retrieved2017-12-07.
  27. ^Wilson, W. H.; Van Etten, J. L.; Allen, M. J. (2009). "The Phycodnaviridae: The Story of How Tiny Giants Rule the World".Lesser Known Large dsDNA Viruses. Current Topics in Microbiology and Immunology. Vol. 328. pp. 1–42.doi:10.1007/978-3-540-68618-7_1.ISBN 978-3-540-68617-0.PMC 2908299.PMID 19216434.
  28. ^Ornes, Stephen (2017-07-31)."Return of the giant zombie virus".Science News for Students. Retrieved2017-12-07.
  29. ^"Pithovirus".viralzone.expasy.org. Retrieved2017-12-07.
  30. ^Moss, Bernard (2013)."Poxvirus DNA Replication".Cold Spring Harbor Perspectives in Biology.5 (9): a010199.doi:10.1101/cshperspect.a010199.PMC 3753712.PMID 23838441.
  31. ^Needham, David M.; Yoshizawa, Susumu; Hosaka, Toshiaki; Poirier, Camille; Choi, Chang Jae; Hehenberger, Elisabeth; Irwin, Nicholas A. T.; Wilken, Susanne; Yung, Cheuk-Man; Bachy, Charles; Kurihara, Rika; Nakajima, Yu; Kojima, Keiichi; Kimura-Someya, Tomomi; Leonard, Guy; Malmstrom, Rex R.; Mende, Daniel R.; Olson, Daniel K.; Sudo, Yuki; Sudek, Sebastian; Richards, Thomas A.; DeLong, Edward F.; Keeling, Patrick J.; Santoro, Alyson E.; Shirouzu, Mikako; Iwasaki, Wataru; Worden, Alexandra Z. (8 October 2019)."A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators".Proceedings of the National Academy of Sciences.116 (41):20574–83.Bibcode:2019PNAS..11620574N.doi:10.1073/pnas.1907517116.PMC 6789865.PMID 31548428.
  32. ^Karki, Sangita; Moniruzzaman, Mohammad; Aylward, Frank O. (2021)."Comparative Genomics and Environmental Distribution of Large dsDNA Viruses in the Family Asfarviridae".Frontiers in Microbiology.12: 657471.doi:10.3389/fmicb.2021.657471.PMC 8005611.PMID 33790885.
  33. ^Yoshikawa, Genki; Blanc-Mathieu, Romain; Song, Chihong; Kayama, Yoko; Mochizuki, Tomohiro; Murata, Kazuyoshi; Ogata, Hiroyuki; Takemura, Masaharu (2019)."Medusavirus, a novel large DNA virus discovered from hot spring water".Journal of Virology.93 (8).doi:10.1128/JVI.02130-18.PMC 6450098.PMID 30728258.
  34. ^Andreani, Julien; Khalil, Jacques Y. B.; Baptiste, Emeline; Hasni, Issam; Michelle, Caroline; Raoult, Didier; Levasseur, Anthony; La Scola, Bernard (22 January 2018)."Orpheovirus IHUMI-LCC2: A New Virus among the Giant Viruses".Frontiers in Microbiology.8: 2643.doi:10.3389/fmicb.2017.02643.PMC 5786535.PMID 29403444.
  35. ^Hauröder B, Wylezich C, Junglas L, Loch S, Eisenkolb J, Michel R (20 July 2018)."New Giant Virus in Free-Living Amoeba".Wiley Analytical Science.doi:10.1002/imaging.6224 (inactive 1 November 2024).{{cite magazine}}: CS1 maint: DOI inactive as of November 2024 (link)
  36. ^Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K, Spang A, Wolf YI, Koonin EV, Ettema TJ (2019)."Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism".mBio.10 (2): e02497-18.doi:10.1128/mBio.02497-18.PMC 6401483.PMID 30837339.
  37. ^abGuglielmini, Julien; Woo, Anthony C.; Krupovic, Mart; Forterre, Patrick; Gaia, Morgan (2019-09-10)."Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes".Proceedings of the National Academy of Sciences.116 (39):19585–92.Bibcode:2019PNAS..11619585G.doi:10.1073/pnas.1912006116.PMC 6765235.PMID 31506349.

External links

[edit]
DNA
Adnaviria
Zilligvirae
Taleaviricota
Tokiviricetes
Ligamenvirales
Primavirales
Duplodnaviria
Heunggongvirae
Peploviricota
Herviviricetes
Herpesvirales
Uroviricota
Caudoviricetes
Caudovirales
Monodnaviria
Shotokuvirae
Cossaviricota
Papovaviricetes
Sepolyvirales
Zurhausenvirales
Varidnaviria
Bamfordvirae
Nucleocytoviricota
Pokkesviricetes
Asfuvirales
Chitovirales
Megaviricetes
Algavirales
Imitervirales
Pimascovirales
Preplasmiviricota
Maveriviricetes
Priklausovirales
Polintoviricetes
Orthopolintovirales
Tectiliviricetes
Belfryvirales
Kalamavirales
Rowavirales
Vinavirales
Helvetiavirae
Dividoviricota
Laserviricetes
Halopanivirales
Unassigned
Naldaviricetes
Lefavirales
Unassigned
Unassigned
Monodnaviria
Loebvirae
Hofneiviricota
Faserviricetes
Tubulavirales
Sangervirae
Phixviricota
Malgrandaviricetes
Petitvirales
Shotokuvirae
Commensaviricota
Cardeaviricetes
Sanitavirales
Cossaviricota
Mouviricetes
Polivirales
Quintoviricetes
Piccovirales
Cressdnaviricota
Arfiviricetes
Baphyvirales
Cirlivirales
Cremevirales
Mulpavirales
Recrevirales
Repensiviricetes
Geplafuvirales
Trapavirae
Saleviricota
Huolimaviricetes
Haloruvirales
Varidnaviria
Abedenavirae
Produgelaviricota
Ainoaviricetes
Lautamovirales
Unassigned
RNA
Riboviria
Orthornavirae
Duplornaviricota
Chrymotiviricetes
Ghabrivirales
Resentoviricetes
Reovirales
Vidaverviricetes
Mindivirales
Pisuviricota
Duplopiviricetes
Durnavirales
Unassigned
Riboviria
Orthornavirae
Kitrinoviricota
Alsuviricetes
Hepelivirales
Martellivirales
Tymovirales
Flasuviricetes
Amarillovirales
Magsaviricetes
Nodamuvirales
Tolucaviricetes
Tolivirales
Lenarviricota
Leviviricetes
Norzivirales
Timlovirales
Amabiliviricetes
Wolframvirales
Howeltoviricetes
Cryppavirales
Miaviricetes
Ourlivirales
Pisuviricota
Pisoniviricetes
Nidovirales
Picornavirales
Sobelivirales
Stelpaviricetes
Patatavirales
Stellavirales
Unassigned
Riboviria
Orthornavirae
Negarnaviricota
Chunqiuviricetes
Muvirales
Ellioviricetes
Bunyavirales
Insthoviricetes
Articulavirales
Milneviricetes
Serpentovirales
Monjiviricetes
Jingchuvirales
Mononegavirales
Yunchangviricetes
Goujianvirales
Ambiviricota
Suforviricetes
Crytulvirales
RT
Riboviria
Pararnavirae
Artverviricota
Revtraviricetes
Ortervirales
Riboviria
Pararnavirae
Artverviricota
Revtraviricetes
Blubervirales
Ortervirales
Components
Viral life cycle
Genetics
By host
Other
Nucleocytoviricota
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nucleocytoviricota&oldid=1278869226"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp