Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Maxwell stress tensor

From Wikipedia, the free encyclopedia
Electromagnetic stress
Electromagnetism
Solenoid

TheMaxwell stress tensor (named afterJames Clerk Maxwell) is a symmetric second-ordertensor in three dimensions that is used inclassical electromagnetism to represent the interaction between electromagnetic forces andmechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from theLorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

In the relativistic formulation of electromagnetism, the nine components of the Maxwell stress tensor appear, negated, as components of theelectromagnetic stress–energy tensor, which is the electromagnetic component of the totalstress–energy tensor. The latter describes the density and flux of energy and momentum inspacetime.

Motivation

[edit]

As outlined below, the electromagnetic force is written in terms ofE{\displaystyle \mathbf {E} } andB{\displaystyle \mathbf {B} }. Usingvector calculus andMaxwell's equations, symmetry is sought for in the terms containingE{\displaystyle \mathbf {E} } andB{\displaystyle \mathbf {B} }, and introducing the Maxwell stress tensor simplifies the result.

Maxwell's equations in SI units invacuum
(for reference)
NameDifferential form
Gauss's law (in vacuum)E=ρε0{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}}
Gauss's law for magnetismB=0{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {B} =0}
Maxwell–Faraday equation
(Faraday's law of induction)
×E=Bt{\displaystyle {\boldsymbol {\nabla }}\times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}
Ampère's circuital law (in vacuum)
(with Maxwell's correction)
×B=μ0J+μ0ε0Et {\displaystyle {\boldsymbol {\nabla }}\times \mathbf {B} =\mu _{0}\mathbf {J} +\mu _{0}\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\ }
  1. Starting with theLorentz force law

    F=q(E+v×B)=(E+v×B)ρdτ{\displaystyle {\begin{aligned}\mathbf {F} &=q(\mathbf {E} +\mathbf {v} \times \mathbf {B} )\\[3pt]&=\int (\mathbf {E} +\mathbf {v} \times \mathbf {B} )\rho \mathrm {d} \tau \end{aligned}}}the force per unit volume is

    f=ρE+J×B{\displaystyle \mathbf {f} =\rho \mathbf {E} +\mathbf {J} \times \mathbf {B} }
  2. Next,ρ{\displaystyle \rho } andJ{\displaystyle \mathbf {J} } can be replaced by the fieldsE{\displaystyle \mathbf {E} } andB{\displaystyle \mathbf {B} }, usingGauss's law andAmpère's circuital law:f=ε0(E)E+1μ0(×B)×Bε0Et×B{\displaystyle \mathbf {f} =\varepsilon _{0}\left({\boldsymbol {\nabla }}\cdot \mathbf {E} \right)\mathbf {E} +{\frac {1}{\mu _{0}}}\left({\boldsymbol {\nabla }}\times \mathbf {B} \right)\times \mathbf {B} -\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\times \mathbf {B} }
  3. The time derivative can be rewritten to something that can be interpreted physically, namely thePoynting vector. Using theproduct rule andFaraday's law of induction givest(E×B)=Et×B+E×Bt=Et×BE×(×E){\displaystyle {\frac {\partial }{\partial t}}(\mathbf {E} \times \mathbf {B} )={\frac {\partial \mathbf {E} }{\partial t}}\times \mathbf {B} +\mathbf {E} \times {\frac {\partial \mathbf {B} }{\partial t}}={\frac {\partial \mathbf {E} }{\partial t}}\times \mathbf {B} -\mathbf {E} \times ({\boldsymbol {\nabla }}\times \mathbf {E} )}and we can now rewritef{\displaystyle \mathbf {f} } asf=ε0(E)E+1μ0(×B)×Bε0t(E×B)ε0E×(×E),{\displaystyle \mathbf {f} =\varepsilon _{0}\left({\boldsymbol {\nabla }}\cdot \mathbf {E} \right)\mathbf {E} +{\frac {1}{\mu _{0}}}\left({\boldsymbol {\nabla }}\times \mathbf {B} \right)\times \mathbf {B} -\varepsilon _{0}{\frac {\partial }{\partial t}}\left(\mathbf {E} \times \mathbf {B} \right)-\varepsilon _{0}\mathbf {E} \times ({\boldsymbol {\nabla }}\times \mathbf {E} ),}then collecting terms withE{\displaystyle \mathbf {E} } andB{\displaystyle \mathbf {B} } givesf=ε0[(E)EE×(×E)]+1μ0[B×(×B)]ε0t(E×B).{\displaystyle \mathbf {f} =\varepsilon _{0}\left[({\boldsymbol {\nabla }}\cdot \mathbf {E} )\mathbf {E} -\mathbf {E} \times ({\boldsymbol {\nabla }}\times \mathbf {E} )\right]+{\frac {1}{\mu _{0}}}\left[-\mathbf {B} \times \left({\boldsymbol {\nabla }}\times \mathbf {B} \right)\right]-\varepsilon _{0}{\frac {\partial }{\partial t}}\left(\mathbf {E} \times \mathbf {B} \right).}
  4. A term seems to be "missing" from the symmetry inE{\displaystyle \mathbf {E} } andB{\displaystyle \mathbf {B} }, which can be achieved by inserting(B)B{\displaystyle \left({\boldsymbol {\nabla }}\cdot \mathbf {B} \right)\mathbf {B} } because ofGauss's law for magnetism:f=ε0[(E)EE×(×E)]+1μ0[(B)BB×(×B)]ε0t(E×B).{\displaystyle \mathbf {f} =\varepsilon _{0}\left[({\boldsymbol {\nabla }}\cdot \mathbf {E} )\mathbf {E} -\mathbf {E} \times ({\boldsymbol {\nabla }}\times \mathbf {E} )\right]+{\frac {1}{\mu _{0}}}\left[({\boldsymbol {\nabla }}\cdot \mathbf {B} )\mathbf {B} -\mathbf {B} \times \left({\boldsymbol {\nabla }}\times \mathbf {B} \right)\right]-\varepsilon _{0}{\frac {\partial }{\partial t}}\left(\mathbf {E} \times \mathbf {B} \right).}Eliminating the curls (which are fairly complicated to calculate), using thevector calculus identity12(AA)=A×(×A)+(A)A,{\displaystyle {\frac {1}{2}}{\boldsymbol {\nabla }}(\mathbf {A} \cdot \mathbf {A} )=\mathbf {A} \times ({\boldsymbol {\nabla }}\times \mathbf {A} )+(\mathbf {A} \cdot {\boldsymbol {\nabla }})\mathbf {A} ,}leads to:f=ε0[(E)E+(E)E]+1μ0[(B)B+(B)B]12(ε0E2+1μ0B2)ε0t(E×B).{\displaystyle \mathbf {f} =\varepsilon _{0}\left[({\boldsymbol {\nabla }}\cdot \mathbf {E} )\mathbf {E} +(\mathbf {E} \cdot {\boldsymbol {\nabla }})\mathbf {E} \right]+{\frac {1}{\mu _{0}}}\left[({\boldsymbol {\nabla }}\cdot \mathbf {B} )\mathbf {B} +(\mathbf {B} \cdot {\boldsymbol {\nabla }})\mathbf {B} \right]-{\frac {1}{2}}{\boldsymbol {\nabla }}\left(\varepsilon _{0}E^{2}+{\frac {1}{\mu _{0}}}B^{2}\right)-\varepsilon _{0}{\frac {\partial }{\partial t}}\left(\mathbf {E} \times \mathbf {B} \right).}
  5. This expression contains every aspect of electromagnetism and momentum and is relatively easy to compute. It can be written more compactly by introducing theMaxwell stress tensor,σijε0(EiEj12δijE2)+1μ0(BiBj12δijB2).{\displaystyle \sigma _{ij}\equiv \varepsilon _{0}\left(E_{i}E_{j}-{\frac {1}{2}}\delta _{ij}E^{2}\right)+{\frac {1}{\mu _{0}}}\left(B_{i}B_{j}-{\frac {1}{2}}\delta _{ij}B^{2}\right).}All but the last term off{\displaystyle \mathbf {f} } can be written as the tensordivergence of the Maxwell stress tensor, giving:σ=f+ε0μ0St,{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {\sigma }}=\mathbf {f} +\varepsilon _{0}\mu _{0}{\frac {\partial \mathbf {S} }{\partial t}}\,,}As in thePoynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for the massive particles. In this way, the above equation will be the law of conservation of momentum in classical electrodynamics; where thePoynting vector has been introducedS=1μ0E×B.{\displaystyle \mathbf {S} ={\frac {1}{\mu _{0}}}\mathbf {E} \times \mathbf {B} .}

in the above relation for conservation of momentum,σ{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {\sigma }}} is themomentum flux density and plays a role similar toS{\displaystyle \mathbf {S} } inPoynting's theorem.

The above derivation assumes complete knowledge of bothρ{\displaystyle \rho } andJ{\displaystyle \mathbf {J} } (both free and bounded charges and currents). For the case of nonlinear materials (such as magnetic iron with a B–H-curve), the nonlinear Maxwell stress tensor must be used.[1]

Equation

[edit]

Inphysics, theMaxwell stress tensor is thestress tensor of anelectromagnetic field. As derived above, it is given by:

σij=ϵ0EiEj+1μ0BiBj12(ϵ0E2+1μ0B2)δij{\displaystyle \sigma _{ij}=\epsilon _{0}E_{i}E_{j}+{\frac {1}{\mu _{0}}}B_{i}B_{j}-{\frac {1}{2}}\left(\epsilon _{0}E^{2}+{\frac {1}{\mu _{0}}}B^{2}\right)\delta _{ij}},

whereϵ0{\displaystyle \epsilon _{0}} is theelectric constant andμ0{\displaystyle \mu _{0}} is themagnetic constant,E{\displaystyle \mathbf {E} } is theelectric field,B{\displaystyle \mathbf {B} } is themagnetic field andδij{\displaystyle \delta _{ij}} isKronecker's delta. In theGaussian system, it is given by:

σij=14π(EiEj+HiHj12(E2+H2)δij){\displaystyle \sigma _{ij}={\frac {1}{4\pi }}\left(E_{i}E_{j}+H_{i}H_{j}-{\frac {1}{2}}\left(E^{2}+H^{2}\right)\delta _{ij}\right)},

whereH{\displaystyle \mathbf {H} } is themagnetizing field.

An alternative way of expressing this tensor is:

σ=14π[EE+HHE2+H22I]{\displaystyle {\overset {\leftrightarrow }{\boldsymbol {\sigma }}}={\frac {1}{4\pi }}\left[\mathbf {E} \otimes \mathbf {E} +\mathbf {H} \otimes \mathbf {H} -{\frac {E^{2}+H^{2}}{2}}\mathbb {I} \right]}

where{\displaystyle \otimes } is thedyadic product, and the last tensor is the unit dyad:

I(100010001)=(x^x^+y^y^+z^z^){\displaystyle \mathbb {I} \equiv {\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}=\left(\mathbf {\hat {x}} \otimes \mathbf {\hat {x}} +\mathbf {\hat {y}} \otimes \mathbf {\hat {y}} +\mathbf {\hat {z}} \otimes \mathbf {\hat {z}} \right)}

The elementij{\displaystyle ij} of the Maxwell stress tensor has units of momentum per unit of area per unit time and gives the flux of momentum parallel to thei{\displaystyle i}th axis crossing a surface normal to thej{\displaystyle j}th axis (in the negative direction) per unit of time.

These units can also be seen as units of force per unit of area (negative pressure), and theij{\displaystyle ij} element of the tensor can also be interpreted as the force parallel to thei{\displaystyle i}th axis suffered by a surface normal to thej{\displaystyle j}th axis per unit of area. Indeed, the diagonal elements give thetension (pulling) acting on a differential area element normal to the corresponding axis. Unlike forces due to the pressure of an ideal gas, an area element in the electromagnetic field also feels a force in a direction that is not normal to the element. This shear is given by the off-diagonal elements of the stress tensor.

It has recently been shown that the Maxwell stress tensor is the real part of a more general complex electromagnetic stress tensor whose imaginary part accounts for reactive electrodynamical forces.[2]

In magnetostatics

[edit]

If the field is only magnetic (which is largely true in motors, for instance), some of the terms drop out, and the equation in SI units becomes:

σij=1μ0BiBj12μ0B2δij.{\displaystyle \sigma _{ij}={\frac {1}{\mu _{0}}}B_{i}B_{j}-{\frac {1}{2\mu _{0}}}B^{2}\delta _{ij}\,.}

For cylindrical objects, such as the rotor of a motor, this is further simplified to:

σrt=1μ0BrBt12μ0B2δrt.{\displaystyle \sigma _{rt}={\frac {1}{\mu _{0}}}B_{r}B_{t}-{\frac {1}{2\mu _{0}}}B^{2}\delta _{rt}\,.}

wherer{\displaystyle r} is the shear in the radial (outward from the cylinder) direction, andt{\displaystyle t} is the shear in the tangential (around the cylinder) direction. It is the tangential force which spins the motor.Br{\displaystyle B_{r}} is the flux density in the radial direction, andBt{\displaystyle B_{t}} is the flux density in the tangential direction.

In electrostatics

[edit]

Inelectrostatics the effects of magnetism are not present. In this case the magnetic field vanishes, i.e.B=0{\displaystyle \mathbf {B} =\mathbf {0} }, and we obtain theelectrostatic Maxwell stress tensor. It is given in component form by

σij=ε0EiEj12ε0E2δij{\displaystyle \sigma _{ij}=\varepsilon _{0}E_{i}E_{j}-{\frac {1}{2}}\varepsilon _{0}E^{2}\delta _{ij}}

and in symbolic form by

σ=ε0EE12ε0(EE)I{\displaystyle {\boldsymbol {\sigma }}=\varepsilon _{0}\mathbf {E} \otimes \mathbf {E} -{\frac {1}{2}}\varepsilon _{0}(\mathbf {E} \cdot \mathbf {E} )\mathbf {I} }

whereI{\displaystyle \mathbf {I} } is the appropriate identity tensor({\displaystyle {\big (}}usually3×3){\displaystyle 3\times 3{\big )}}.

Eigenvalue

[edit]

The eigenvalues of the Maxwell stress tensor are given by:

{λ}={(ϵ02E2+12μ0B2), ±(ϵ02E212μ0B2)2+ϵ0μ0(EB)2}{\displaystyle \{\lambda \}=\left\{-\left({\frac {\epsilon _{0}}{2}}E^{2}+{\frac {1}{2\mu _{0}}}B^{2}\right),~\pm {\sqrt {\left({\frac {\epsilon _{0}}{2}}E^{2}-{\frac {1}{2\mu _{0}}}B^{2}\right)^{2}+{\frac {\epsilon _{0}}{\mu _{0}}}\left({\boldsymbol {E}}\cdot {\boldsymbol {B}}\right)^{2}}}\right\}}

These eigenvalues are obtained by iteratively applying thematrix determinant lemma, in conjunction with theSherman–Morrison formula.

Noting that the characteristic equation matrix,σλI{\displaystyle {\overleftrightarrow {\boldsymbol {\sigma }}}-\lambda \mathbf {\mathbb {I} } }, can be written as

σλI=(λ+V)I+ϵ0EET+1μ0BBT{\displaystyle {\overleftrightarrow {\boldsymbol {\sigma }}}-\lambda \mathbf {\mathbb {I} } =-\left(\lambda +V\right)\mathbf {\mathbb {I} } +\epsilon _{0}\mathbf {E} \mathbf {E} ^{\textsf {T}}+{\frac {1}{\mu _{0}}}\mathbf {B} \mathbf {B} ^{\textsf {T}}}

where

V=12(ϵ0E2+1μ0B2){\displaystyle V={\frac {1}{2}}\left(\epsilon _{0}E^{2}+{\frac {1}{\mu _{0}}}B^{2}\right)}

we set

U=(λ+V)I+ϵ0EET{\displaystyle \mathbf {U} =-\left(\lambda +V\right)\mathbf {\mathbb {I} } +\epsilon _{0}\mathbf {E} \mathbf {E} ^{\textsf {T}}}

Applying the matrix determinant lemma once, this gives us

det(σλI)=(1+1μ0BTU1B)det(U){\displaystyle \det {\left({\overleftrightarrow {\boldsymbol {\sigma }}}-\lambda \mathbf {\mathbb {I} } \right)}=\left(1+{\frac {1}{\mu _{0}}}\mathbf {B} ^{\textsf {T}}\mathbf {U} ^{-1}\mathbf {B} \right)\det {\left(\mathbf {U} \right)}}

Applying it again yields,

det(σλI)=(1+1μ0BTU1B)(1ϵ0ETEλ+V)(λV)3{\displaystyle \det {\left({\overleftrightarrow {\boldsymbol {\sigma }}}-\lambda \mathbf {\mathbb {I} } \right)}=\left(1+{\frac {1}{\mu _{0}}}\mathbf {B} ^{\textsf {T}}\mathbf {U} ^{-1}\mathbf {B} \right)\left(1-{\frac {\epsilon _{0}\mathbf {E} ^{\textsf {T}}\mathbf {E} }{\lambda +V}}\right)\left(-\lambda -V\right)^{3}}

From the last multiplicand on the RHS, we immediately see thatλ=V{\displaystyle \lambda =-V} is one of the eigenvalues.

To find the inverse ofU{\displaystyle \mathbf {U} }, we use the Sherman-Morrison formula:

U1=(λ+V)1ϵ0EET(λ+V)2(λ+V)ϵ0ETE{\displaystyle \mathbf {U} ^{-1}=-\left(\lambda +V\right)^{-1}-{\frac {\epsilon _{0}\mathbf {E} \mathbf {E} ^{\textsf {T}}}{\left(\lambda +V\right)^{2}-\left(\lambda +V\right)\epsilon _{0}\mathbf {E} ^{\textsf {T}}\mathbf {E} }}}

Factoring out a(λV){\displaystyle \left(-\lambda -V\right)} term in the determinant, we are left with finding the zeros of the rational function:

((λ+V)ϵ0(EB)2μ0((λ+V)+ϵ0ETE))((λ+V)+ϵ0ETE){\displaystyle \left(-\left(\lambda +V\right)-{\frac {\epsilon _{0}\left(\mathbf {E} \cdot \mathbf {B} \right)^{2}}{\mu _{0}\left(-\left(\lambda +V\right)+\epsilon _{0}\mathbf {E} ^{\textsf {T}}\mathbf {E} \right)}}\right)\left(-\left(\lambda +V\right)+\epsilon _{0}\mathbf {E} ^{\textsf {T}}\mathbf {E} \right)}

Thus, once we solve

(λ+V)((λ+V)+ϵ0E2)ϵ0μ0(EB)2=0{\displaystyle -\left(\lambda +V\right)\left(-\left(\lambda +V\right)+\epsilon _{0}E^{2}\right)-{\frac {\epsilon _{0}}{\mu _{0}}}\left(\mathbf {E} \cdot \mathbf {B} \right)^{2}=0}

we obtain the other two eigenvalues.

See also

[edit]

References

[edit]
  1. ^Brauer, John R. (2014-01-13).Magnetic Actuators and Sensors. John Wiley & Sons.ISBN 9781118754979.
  2. ^Nieto-Vesperinas, Manuel; Xu, Xiaohao (12 October 2022)."The complex Maxwell stress tensor theorem: The imaginary stress tensor and the reactive strength of orbital momentum. A novel scenery underlying electromagnetic optical forces".Light: Science & Applications.11 (1): 297.doi:10.1038/s41377-022-00979-2.PMC 9556612.PMID 36224170.
  • David J. Griffiths, "Introduction to Electrodynamics" pp. 351–352, Benjamin Cummings Inc., 2008
  • John David Jackson, "Classical Electrodynamics, 3rd Ed.", John Wiley & Sons, Inc., 1999
  • Richard Becker, "Electromagnetic Fields and Interactions", Dover Publications Inc., 1964
Retrieved from "https://en.wikipedia.org/w/index.php?title=Maxwell_stress_tensor&oldid=1322625306"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp