Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Logical conjunction

From Wikipedia, the free encyclopedia
Logical connective AND
Not to be confused withCircumflex Agent (^),Capital Lambda (Λ),Turned V (Λ), orExterior Product (∧).
Logical conjunction
AND
Venn diagram of Logical conjunction
Definitionxy{\displaystyle xy}
Truth table(1000){\displaystyle (1000)}
Logic gate
Normal forms
Disjunctivexy{\displaystyle xy}
Conjunctivexy{\displaystyle xy}
Zhegalkin polynomialxy{\displaystyle xy}
Post's lattices
0-preservingyes
1-preservingyes
Monotoneyes
Affineno
Self-dualno
Logical connectives
NOT¬A,A,A¯,A{\displaystyle \neg A,-A,{\overline {A}},{\sim }A}
ANDAB,AB,AB,A&B,A&&B{\displaystyle A\land B,A\cdot B,AB,A\mathop {\&} B,A\mathop {\&\&} B}
NANDA¯B,AB,AB,AB¯{\displaystyle A\mathrel {\overline {\land }} B,A\uparrow B,A\mid B,{\overline {A\cdot B}}}
ORAB,A+B,AB,AB{\displaystyle A\lor B,A+B,A\mid B,A\parallel B}
NORA¯B,AB,A+B¯{\displaystyle A\mathrel {\overline {\lor }} B,A\downarrow B,{\overline {A+B}}}
XNORAB,A¯B¯{\displaystyle A\odot B,{\overline {A\mathrel {\overline {\lor }} B}}}
equivalentAB,AB,AB{\displaystyle A\equiv B,A\Leftrightarrow B,A\leftrightharpoons B}
XORA_B,AB{\displaystyle A\mathrel {\underline {\lor }} B,A\oplus B}
└ nonequivalentAB,AB,AB{\displaystyle A\not \equiv B,A\not \Leftrightarrow B,A\nleftrightarrow B}
impliesAB,AB,AB{\displaystyle A\Rightarrow B,A\supset B,A\rightarrow B}
nonimplication (NIMPLY)AB,AB,AB{\displaystyle A\not \Rightarrow B,A\not \supset B,A\nrightarrow B}
converseAB,AB,AB{\displaystyle A\Leftarrow B,A\subset B,A\leftarrow B}
converse nonimplicationAB,AB,AB{\displaystyle A\not \Leftarrow B,A\not \subset B,A\nleftarrow B}
Related concepts
Applications
Category
Venn diagram ofABC{\displaystyle A\wedge B\land C}

Inlogic,mathematics andlinguistics,and ({\displaystyle \wedge }) is thetruth-functional operator ofconjunction orlogical conjunction. Thelogical connective of this operator is typically represented as{\displaystyle \wedge }[1] or&{\displaystyle \&} orK{\displaystyle K} (prefix) or×{\displaystyle \times } or{\displaystyle \cdot }[2] in which{\displaystyle \wedge } is the most modern and widely used.

Theand of a set of operands is true if and only ifall of its operands are true, i.e.,AB{\displaystyle A\land B} is true if and only ifA{\displaystyle A} is true andB{\displaystyle B} is true.

An operand of a conjunction is aconjunct.[3]

Beyond logic, the term "conjunction" also refers to similar concepts in other fields:

Notation

[edit]

And is usually denoted by an infix operator: in mathematics and logic, it is denoted by a "wedge"{\displaystyle \wedge } (UnicodeU+2227 LOGICAL AND),[1]&{\displaystyle \&} or×{\displaystyle \times }; in electronics,{\displaystyle \cdot }; and in programming languages&,&&, orand. InJan Łukasiewicz'sprefix notation for logic, the operator isK{\displaystyle K}, for Polishkoniunkcja.[4]

In mathematics, the conjunction of an arbitrary number of elementsa1,,an{\displaystyle a_{1},\ldots ,a_{n}} can be denoted as aniterated binary operation using a "big wedge" ⋀ (UnicodeU+22C0 N-ARY LOGICAL AND):[5]

i=1nai=a1a2an1an{\displaystyle \bigwedge _{i=1}^{n}a_{i}=a_{1}\wedge a_{2}\wedge \ldots a_{n-1}\wedge a_{n}}

Definition

[edit]

Inclassical logic,logical conjunction is anoperation on twological values, typically the values of twopropositions, that produces a value oftrueif and only if (also known as iff) both of its operands are true.[2][1]

The conjunctiveidentity is true, which is to say that AND-ing an expression with true will never change the value of the expression. In keeping with the concept ofvacuous truth, when conjunction is defined as an operator or function of arbitraryarity, the empty conjunction (AND-ing over an empty set of operands) is often defined as having the result true.

Truth table

[edit]
Conjunctions of the arguments on the left — Thetruebits form aSierpinski triangle.

Thetruth table ofAB{\displaystyle A\land B}:[1][2]

A{\displaystyle A}B{\displaystyle B}AB{\displaystyle A\land B}
FFF
FTF
TFF
TTT

Defined by other operators

[edit]

In systems where logical conjunction is not a primitive, it may be defined as[6]

AB=¬(A¬B){\displaystyle A\land B=\neg (A\to \neg B)}

It can be checked by the following truth table (compare the last two columns):

A{\displaystyle A}B{\displaystyle B}¬B{\displaystyle \neg B}A¬B{\displaystyle A\rightarrow \neg B}¬(A¬B){\displaystyle \neg (A\rightarrow \neg B)}AB{\displaystyle A\land B}
FFTTFF
FTFTFF
TFTTFF
TTFFTT

or

AB=¬(¬A¬B).{\displaystyle A\land B=\neg (\neg A\lor \neg B).}

It can be checked by the following truth table (compare the last two columns):

A{\displaystyle A}B{\displaystyle B}¬A{\displaystyle \neg A}¬B{\displaystyle \neg B}¬A¬B{\displaystyle \neg A\lor \neg B}¬(¬A¬B){\displaystyle \neg (\neg A\lor \neg B)}AB{\displaystyle A\land B}
FFTTTFF
FTTFTFF
TFFTTFF
TTFFFTT

Introduction and elimination rules

[edit]

As a rule of inference,conjunction introduction is a classicallyvalid, simpleargument form. The argument form has two premises,A{\displaystyle A} andB{\displaystyle B}. Intuitively, it permits the inference of their conjunction.

A{\displaystyle A},
B{\displaystyle B}.
Therefore,A andB.

or inlogical operator notation, where \vdash expresses provability:

A,{\displaystyle \vdash A,}
B{\displaystyle \vdash B}
AB{\displaystyle \vdash A\land B}

Here is an example of an argument that fits the formconjunction introduction:

Bob likes apples.
Bob likes oranges.
Therefore, Bob likes apples and Bob likes oranges.

Conjunction elimination is another classicallyvalid, simpleargument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.

A{\displaystyle A} andB{\displaystyle B}.
Therefore,A{\displaystyle A}.

...or alternatively,

A{\displaystyle A} andB{\displaystyle B}.
Therefore,B{\displaystyle B}.

Inlogical operator notation:

AB{\displaystyle \vdash A\land B}
A{\displaystyle \vdash A}

...or alternatively,

AB{\displaystyle \vdash A\land B}
B{\displaystyle \vdash B}

Negation

[edit]

Definition

[edit]

A conjunctionAB{\displaystyle A\land B} is proven false by establishing either¬A{\displaystyle \neg A} or¬B{\displaystyle \neg B}. In terms of the object language, this reads

¬A¬(AB){\displaystyle \neg A\to \neg (A\land B)}

This formula can be seen as a special case of

(AC)((AB)C){\displaystyle (A\to C)\to ((A\land B)\to C)}

whenC{\displaystyle C} is a false proposition.

Other proof strategies

[edit]

IfA{\displaystyle A} implies¬B{\displaystyle \neg B}, then both¬A{\displaystyle \neg A} as well asA{\displaystyle A} prove the conjunction false:

(A¬B)¬(AB){\displaystyle (A\to \neg {}B)\to \neg (A\land B)}

In other words, a conjunction can actually be proven false just by knowing about the relation of its conjuncts, and not necessary about their truth values.

This formula can be seen as a special case of

(A(BC))((AB)C){\displaystyle (A\to (B\to C))\to ((A\land B)\to C)}

whenC{\displaystyle C} is a false proposition.

Either of the above are constructively valid proofs by contradiction.

Properties

[edit]

commutativity: yes

AB{\displaystyle A\land B}    {\displaystyle \Leftrightarrow }    BA{\displaystyle B\land A}
    {\displaystyle \Leftrightarrow }    

associativity: yes[7]

 A{\displaystyle ~A}      {\displaystyle ~~~\land ~~~}(BC){\displaystyle (B\land C)}    {\displaystyle \Leftrightarrow }    (AB){\displaystyle (A\land B)}      {\displaystyle ~~~\land ~~~} C{\displaystyle ~C}
      {\displaystyle ~~~\land ~~~}    {\displaystyle \Leftrightarrow }        {\displaystyle \Leftrightarrow }          {\displaystyle ~~~\land ~~~}

distributivity: with various operations, especially withor

 A{\displaystyle ~A}{\displaystyle \land }(BC){\displaystyle (B\lor C)}    {\displaystyle \Leftrightarrow }    (AB){\displaystyle (A\land B)}{\displaystyle \lor }(AC){\displaystyle (A\land C)}
{\displaystyle \land }    {\displaystyle \Leftrightarrow }        {\displaystyle \Leftrightarrow }    {\displaystyle \lor }
others

withexclusive or:

 A{\displaystyle ~A}{\displaystyle \land }(BC){\displaystyle (B\oplus C)}    {\displaystyle \Leftrightarrow }    (AB){\displaystyle (A\land B)}{\displaystyle \oplus }(AC){\displaystyle (A\land C)}
{\displaystyle \land }    {\displaystyle \Leftrightarrow }        {\displaystyle \Leftrightarrow }    {\displaystyle \oplus }

withmaterial nonimplication:

 A{\displaystyle ~A}{\displaystyle \land }(BC){\displaystyle (B\nrightarrow C)}    {\displaystyle \Leftrightarrow }    (AB){\displaystyle (A\land B)}{\displaystyle \nrightarrow }(AC){\displaystyle (A\land C)}
{\displaystyle \land }    {\displaystyle \Leftrightarrow }        {\displaystyle \Leftrightarrow }    {\displaystyle \nrightarrow }

with itself:

 A{\displaystyle ~A}{\displaystyle \land }(BC){\displaystyle (B\land C)}    {\displaystyle \Leftrightarrow }    (AB){\displaystyle (A\land B)}{\displaystyle \land }(AC){\displaystyle (A\land C)}
{\displaystyle \land }    {\displaystyle \Leftrightarrow }        {\displaystyle \Leftrightarrow }    {\displaystyle \land }

idempotency: yes

 A {\displaystyle ~A~}  {\displaystyle ~\land ~} A {\displaystyle ~A~}    {\displaystyle \Leftrightarrow }    A {\displaystyle A~}
  {\displaystyle ~\land ~}    {\displaystyle \Leftrightarrow }    

monotonicity: yes

AB{\displaystyle A\rightarrow B}    {\displaystyle \Rightarrow }    (AC){\displaystyle (A\land C)}{\displaystyle \rightarrow }(BC){\displaystyle (B\land C)}
    {\displaystyle \Rightarrow }        {\displaystyle \Leftrightarrow }    {\displaystyle \rightarrow }

truth-preserving: yes
When all inputs are true, the output is true.

AB{\displaystyle A\land B}    {\displaystyle \Rightarrow }    AB{\displaystyle A\land B}
    {\displaystyle \Rightarrow }    
(to be tested)

falsehood-preserving: yes
When all inputs are false, the output is false.

AB{\displaystyle A\land B}    {\displaystyle \Rightarrow }    AB{\displaystyle A\lor B}
    {\displaystyle \Rightarrow }    
(to be tested)

Walsh spectrum: (1,-1,-1,1)

Nonlinearity: 1 (the function isbent)

If usingbinary values for true (1) and false (0), thenlogical conjunction works exactly like normal arithmeticmultiplication.

Applications in computer engineering

[edit]
ANDlogic gate

In high-level computer programming anddigital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol& (sometimes doubled as in&&). Many languages also provideshort-circuit control structures corresponding to logical conjunction.

Logical conjunction is often used for bitwise operations, where0 corresponds to false and1 to true:

  • 0 AND 0  = 0,
  • 0 AND 1  = 0,
  • 1 AND 0  = 0,
  • 1 AND 1  = 1.

The operation can also be applied to two binarywords viewed asbitstrings of equal length, by taking the bitwise AND of each pair of bits at corresponding positions. For example:

  • 11000110 AND 10100011  = 10000010.

This can be used to select part of a bitstring using abit mask. For example,10011101 AND 00001000  = 00001000 extracts the fourth bit of an 8-bit bitstring.

Incomputer networking, bit masks are used to derive the network address of asubnet within an existing network from a givenIP address, by ANDing the IP address and thesubnet mask.

Logical conjunction "AND" is also used inSQL operations to formdatabase queries.

TheCurry–Howard correspondence relates logical conjunction toproduct types.

Set-theoretic correspondence

[edit]

The membership of an element of anintersection set inset theory is defined in terms of a logical conjunction:xAB{\displaystyle x\in A\cap B} if and only if(xA)(xB){\displaystyle (x\in A)\wedge (x\in B)}. Through this correspondence, set-theoretic intersection shares several properties with logical conjunction, such asassociativity,commutativity andidempotence.

Natural language

[edit]

As with other notions formalized in mathematical logic, the logical conjunctionand is related to, but not the same as, thegrammatical conjunctionand in natural languages.

English "and" has properties not captured by logical conjunction. For example, "and" sometimes implies order having the sense of "then". For example, "They got married and had a child" in common discourse means that the marriage came before the child.

The word "and" can also imply a partition of a thing into parts, as "The American flag is red, white, and blue." Here, it is not meant that the flag isat once red, white, and blue, but rather that each color is a part of the flag.

See also

[edit]

References

[edit]
  1. ^abcd"2.2: Conjunctions and Disjunctions".Mathematics LibreTexts. 2019-08-13. Retrieved2020-09-02.
  2. ^abc"Conjunction, Negation, and Disjunction".philosophy.lander.edu. Retrieved2020-09-02.
  3. ^Beall, Jeffrey C. (2010).Logic: the basics (1. publ ed.). London: Routledge. p. 17.ISBN 978-0-203-85155-5.
  4. ^Józef Maria Bocheński (1959),A Précis of Mathematical Logic, translated by Otto Bird from the French and German editions, Dordrecht, South Holland: D. Reidel, passim.
  5. ^Weisstein, Eric W."Conjunction".MathWorld--A Wolfram Web Resource. Retrieved24 September 2024.
  6. ^Smith, Peter."Types of proof system"(PDF). p. 4.
  7. ^Howson, Colin (1997).Logic with trees: an introduction to symbolic logic. London; New York: Routledge. p. 38.ISBN 978-0-415-13342-5.

External links

[edit]
Wikimedia Commons has media related toLogical conjunction.
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types ofsets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Logical_conjunction&oldid=1311132823"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp