Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of space groups

From Wikipedia, the free encyclopedia

There are 230space groups in three dimensions, given by a number index, and a full name inHermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have apoint group of the unit cell.

Symbols

[edit]

InHermann–Mauguin notation, space groups are named by a symbol combining thepoint group identifier with the uppercase letters describing thelattice type. Translations within the lattice in the form ofscrew axes andglide planes are also noted, giving a complete crystallographic space group.

These are theBravais lattices in three dimensions:

  • P primitive
  • I body centered (from the GermanInnenzentriert)
  • F face centered (from the GermanFlächenzentriert)
  • A centered on A faces only
  • B centered on B faces only
  • C centered on C faces only
  • R rhombohedral

A reflection planem within the point groups can be replaced by aglide plane, labeled asa,b, orc depending on which axis the glide is along. There is also then glide, which is a glide along the half of a diagonal ofa face, and thed glide, which is along a quarter of either a face or space diagonal of the unit cell. Thed glide is often called the diamond glide plane as it features in thediamond structure.

A gyration point can be replaced by ascrew axis denoted by a number,n, where the angle of rotation is360n{\displaystyle \color {Black}{\tfrac {360^{\circ }}{n}}}. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of1/2 of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of1/3 of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axisn and a mirror or glide planem along the same crystallographic direction, they are represented as a fractionnm{\textstyle {\frac {n}{m}}} orn/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane alonga.

InSchoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the formΓxy{\displaystyle \Gamma _{x}^{y}} which specifies the Bravais lattice. Herex{t,m,o,q,rh,h,c}{\displaystyle x\in \{t,m,o,q,rh,h,c\}} is the lattice system, andy{,b,v,f}{\displaystyle y\in \{\emptyset ,b,v,f\}} is the centering type.[2]

InFedorov symbol, the type of space group is denoted ass (symmorphic ),h (hemisymmorphic), ora (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

Symmorphic

[edit]

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups. Example for point group 4/mmm (4m2m2m{\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}): the symmorphic space groups are P4/mmm (P4m2m2m{\displaystyle P{\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}},36s) and I4/mmm (I4m2m2m{\displaystyle I{\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}},37s).

Hemisymmorphic

[edit]

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm (4m2m2m{\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}): hemisymmorphic space groups contain the axial combination 422, but at least one mirror planem will be substituted with glide plane, for example P4/mcc (P4m2c2c{\displaystyle P{\tfrac {4}{m}}{\tfrac {2}{c}}{\tfrac {2}{c}}},35h), P4/nbm (P4n2b2m{\displaystyle P{\tfrac {4}{n}}{\tfrac {2}{b}}{\tfrac {2}{m}}},36h), P4/nnc (P4n2n2c{\displaystyle P{\tfrac {4}{n}}{\tfrac {2}{n}}{\tfrac {2}{c}}},37h), and I4/mcm (I4m2c2m{\displaystyle I{\tfrac {4}{m}}{\tfrac {2}{c}}{\tfrac {2}{m}}},38h).

Asymmorphic

[edit]

The remaining 103 space groups are asymmorphic. Example for point group 4/mmm (4m2m2m{\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}): P4/mbm (P4m21b2m{\displaystyle P{\tfrac {4}{m}}{\tfrac {2_{1}}{b}}{\tfrac {2}{m}}},54a), P42/mmc (P42m2m2c{\displaystyle P{\tfrac {4_{2}}{m}}{\tfrac {2}{m}}{\tfrac {2}{c}}},60a), I41/acd (I41a2c2d{\displaystyle I{\tfrac {4_{1}}{a}}{\tfrac {2}{c}}{\tfrac {2}{d}}},58a) - none of these groups contains the axial combination 422.

List of triclinic

[edit]
Triclinic Bravais lattice
Triclinic crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
111{\displaystyle 1}P1P 1ΓtC11{\displaystyle \Gamma _{t}C_{1}^{1}}1s(a/b/c)1{\displaystyle (a/b/c)\cdot 1}(){\displaystyle (\circ )}
21×{\displaystyle \times }P1P1ΓtCi1{\displaystyle \Gamma _{t}C_{i}^{1}}2s(a/b/c)2~{\displaystyle (a/b/c)\cdot {\tilde {2}}}(2222){\displaystyle (2222)}

List of monoclinic

[edit]
Monoclinic Bravais lattice
Simple (P)Base (C)
Monoclinic crystal system
NumberPoint groupOrbifoldShort nameFull name(s)SchoenfliesFedorovShubnikovFibrifold (primary)Fibrifold (secondary)
3222{\displaystyle 22}P2P 1 2 1P 1 1 2ΓmC21{\displaystyle \Gamma _{m}C_{2}^{1}}3s(b:(c/a)):2{\displaystyle (b:(c/a)):2}(20202020){\displaystyle (2_{0}2_{0}2_{0}2_{0})}(00){\displaystyle ({*}_{0}{*}_{0})}
4P21P 1 21 1P 1 1 21ΓmC22{\displaystyle \Gamma _{m}C_{2}^{2}}1a(b:(c/a)):21{\displaystyle (b:(c/a)):2_{1}}(21212121){\displaystyle (2_{1}2_{1}2_{1}2_{1})}(ׯׯ){\displaystyle ({\bar {\times }}{\bar {\times }})}
5C2C 1 2 1B 1 1 2ΓmbC23{\displaystyle \Gamma _{m}^{b}C_{2}^{3}}4s(a+b2/b:(c/a)):2{\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right):2}(20202121){\displaystyle (2_{0}2_{0}2_{1}2_{1})}(11){\displaystyle ({*}_{1}{*}_{1})},(ׯ){\displaystyle ({*}{\bar {\times }})}
6m{\displaystyle *}PmP 1 m 1P 1 1 mΓmCs1{\displaystyle \Gamma _{m}C_{s}^{1}}5s(b:(c/a))m{\displaystyle (b:(c/a))\cdot m}[0]{\displaystyle [\circ _{0}]}(){\displaystyle ({*}{\cdot }{*}{\cdot })}
7PcP 1 c 1P 1 1 bΓmCs2{\displaystyle \Gamma _{m}C_{s}^{2}}1h(b:(c/a))c~{\displaystyle (b:(c/a))\cdot {\tilde {c}}}(¯0){\displaystyle ({\bar {\circ }}_{0})}(::){\displaystyle ({*}{:}{*}{:})},(××0){\displaystyle ({\times }{\times }_{0})}
8CmC 1 m 1B 1 1 mΓmbCs3{\displaystyle \Gamma _{m}^{b}C_{s}^{3}}6s(a+b2/b:(c/a))m{\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot m}[1]{\displaystyle [\circ _{1}]}(:){\displaystyle ({*}{\cdot }{*}{:})},(×){\displaystyle ({*}{\cdot }{\times })}
9CcC 1 c 1B 1 1 bΓmbCs4{\displaystyle \Gamma _{m}^{b}C_{s}^{4}}2h(a+b2/b:(c/a))c~{\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot {\tilde {c}}}(¯1){\displaystyle ({\bar {\circ }}_{1})}(:×){\displaystyle ({*}{:}{\times })},(××1){\displaystyle ({\times }{\times }_{1})}
102/m2{\displaystyle 2*}P2/mP 1 2/m 1P 1 1 2/mΓmC2h1{\displaystyle \Gamma _{m}C_{2h}^{1}}7s(b:(c/a))m:2{\displaystyle (b:(c/a))\cdot m:2}[20202020]{\displaystyle [2_{0}2_{0}2_{0}2_{0}]}[2222){\displaystyle [*2{\cdot }22{\cdot }2)}
11P21/mP 1 21/m 1P 1 1 21/mΓmC2h2{\displaystyle \Gamma _{m}C_{2h}^{2}}2a(b:(c/a))m:21{\displaystyle (b:(c/a))\cdot m:2_{1}}[21212121]{\displaystyle [2_{1}2_{1}2_{1}2_{1}]}(22){\displaystyle (22{*}{\cdot })}
12C2/mC 1 2/m 1B 1 1 2/mΓmbC2h3{\displaystyle \Gamma _{m}^{b}C_{2h}^{3}}8s(a+b2/b:(c/a))m:2{\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot m:2}[20202121]{\displaystyle [2_{0}2_{0}2_{1}2_{1}]}(222:2){\displaystyle (*2{\cdot }22{:}2)},(2¯22){\displaystyle (2{\bar {*}}2{\cdot }2)}
13P2/cP 1 2/c 1P 1 1 2/bΓmC2h4{\displaystyle \Gamma _{m}C_{2h}^{4}}3h(b:(c/a))c~:2{\displaystyle (b:(c/a))\cdot {\tilde {c}}:2}(202022){\displaystyle (2_{0}2_{0}22)}(2:22:2){\displaystyle (*2{:}22{:}2)},(220){\displaystyle (22{*}_{0})}
14P21/cP 1 21/c 1P 1 1 21/bΓmC2h5{\displaystyle \Gamma _{m}C_{2h}^{5}}3a(b:(c/a))c~:21{\displaystyle (b:(c/a))\cdot {\tilde {c}}:2_{1}}(212122){\displaystyle (2_{1}2_{1}22)}(22:){\displaystyle (22{*}{:})},(22×){\displaystyle (22{\times })}
15C2/cC 1 2/c 1B 1 1 2/bΓmbC2h6{\displaystyle \Gamma _{m}^{b}C_{2h}^{6}}4h(a+b2/b:(c/a))c~:2{\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot {\tilde {c}}:2}(202122){\displaystyle (2_{0}2_{1}22)}(2¯2:2){\displaystyle (2{\bar {*}}2{:}2)},(221){\displaystyle (22{*}_{1})}

List of orthorhombic

[edit]
Orthorhombic Bravais lattice
Simple (P)Body (I)Face (F)Base (A or C)
Orthorhombic crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold (primary)Fibrifold (secondary)
16222222{\displaystyle 222}P222P 2 2 2ΓoD21{\displaystyle \Gamma _{o}D_{2}^{1}}9s(c:a:b):2:2{\displaystyle (c:a:b):2:2}(20202020){\displaystyle (*2_{0}2_{0}2_{0}2_{0})}
17P2221P 2 2 21ΓoD22{\displaystyle \Gamma _{o}D_{2}^{2}}4a(c:a:b):21:2{\displaystyle (c:a:b):2_{1}:2}(21212121){\displaystyle (*2_{1}2_{1}2_{1}2_{1})}(2020){\displaystyle (2_{0}2_{0}{*})}
18P21212P 21 21 2ΓoD23{\displaystyle \Gamma _{o}D_{2}^{3}}7a(c:a:b):2{\displaystyle (c:a:b):2}21{\displaystyle 2_{1}}(2020ׯ){\displaystyle (2_{0}2_{0}{\bar {\times }})}(2121){\displaystyle (2_{1}2_{1}{*})}
19P212121P 21 21 21ΓoD24{\displaystyle \Gamma _{o}D_{2}^{4}}8a(c:a:b):21{\displaystyle (c:a:b):2_{1}}21{\displaystyle 2_{1}}(2121ׯ){\displaystyle (2_{1}2_{1}{\bar {\times }})}
20C2221C 2 2 21ΓobD25{\displaystyle \Gamma _{o}^{b}D_{2}^{5}}5a(a+b2:c:a:b):21:2{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):2_{1}:2}(212121){\displaystyle (2_{1}{*}2_{1}2_{1})}(2021){\displaystyle (2_{0}2_{1}{*})}
21C222C 2 2 2ΓobD26{\displaystyle \Gamma _{o}^{b}D_{2}^{6}}10s(a+b2:c:a:b):2:2{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):2:2}(202020){\displaystyle (2_{0}{*}2_{0}2_{0})}(20202121){\displaystyle (*2_{0}2_{0}2_{1}2_{1})}
22F222F 2 2 2ΓofD27{\displaystyle \Gamma _{o}^{f}D_{2}^{7}}12s(a+c2/b+c2/a+b2:c:a:b):2:2{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right):2:2}(20212021){\displaystyle (*2_{0}2_{1}2_{0}2_{1})}
23I222I 2 2 2ΓovD28{\displaystyle \Gamma _{o}^{v}D_{2}^{8}}11s(a+b+c2/c:a:b):2:2{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):2:2}(212020){\displaystyle (2_{1}{*}2_{0}2_{0})}
24I212121I 21 21 21ΓovD29{\displaystyle \Gamma _{o}^{v}D_{2}^{9}}6a(a+b+c2/c:a:b):2:21{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):2:2_{1}}(202121){\displaystyle (2_{0}{*}2_{1}2_{1})}
25mm222{\displaystyle *22}Pmm2P m m 2ΓoC2v1{\displaystyle \Gamma _{o}C_{2v}^{1}}13s(c:a:b):m2{\displaystyle (c:a:b):m\cdot 2}(2222){\displaystyle (*{\cdot }2{\cdot }2{\cdot }2{\cdot }2)}[00]{\displaystyle [{*}_{0}{\cdot }{*}_{0}{\cdot }]}
26Pmc21P m c 21ΓoC2v2{\displaystyle \Gamma _{o}C_{2v}^{2}}9a(c:a:b):c~21{\displaystyle (c:a:b):{\tilde {c}}\cdot 2_{1}}(2:22:2){\displaystyle (*{\cdot }2{:}2{\cdot }2{:}2)}(¯¯){\displaystyle ({\bar {*}}{\cdot }{\bar {*}}{\cdot })},[×0×0]{\displaystyle [{\times _{0}}{\times _{0}}]}
27Pcc2P c c 2ΓoC2v3{\displaystyle \Gamma _{o}C_{2v}^{3}}5h(c:a:b):c~2{\displaystyle (c:a:b):{\tilde {c}}\cdot 2}(:2:2:2:2){\displaystyle (*{:}2{:}2{:}2{:}2)}(¯0¯0){\displaystyle ({\bar {*}}_{0}{\bar {*}}_{0})}
28Pma2P m a 2ΓoC2v4{\displaystyle \Gamma _{o}C_{2v}^{4}}6h(c:a:b):a~2{\displaystyle (c:a:b):{\tilde {a}}\cdot 2}(2020){\displaystyle (2_{0}2_{0}{*}{\cdot })}[0:0:]{\displaystyle [{*}_{0}{:}{*}_{0}{:}]},(0){\displaystyle (*{\cdot }{*}_{0})}
29Pca21P c a 21ΓoC2v5{\displaystyle \Gamma _{o}C_{2v}^{5}}11a(c:a:b):a~21{\displaystyle (c:a:b):{\tilde {a}}\cdot 2_{1}}(2121:){\displaystyle (2_{1}2_{1}{*}{:})}(¯:¯:){\displaystyle ({\bar {*}}{:}{\bar {*}}{:})}
30Pnc2P n c 2ΓoC2v6{\displaystyle \Gamma _{o}C_{2v}^{6}}7h(c:a:b):c~2{\displaystyle (c:a:b):{\tilde {c}}\odot 2}(2020:){\displaystyle (2_{0}2_{0}{*}{:})}(¯1¯1){\displaystyle ({\bar {*}}_{1}{\bar {*}}_{1})},(0×0){\displaystyle ({*}_{0}{\times }_{0})}
31Pmn21P m n 21ΓoC2v7{\displaystyle \Gamma _{o}C_{2v}^{7}}10a(c:a:b):ac~21{\displaystyle (c:a:b):{\widetilde {ac}}\cdot 2_{1}}(2121){\displaystyle (2_{1}2_{1}{*}{\cdot })}(ׯ){\displaystyle (*{\cdot }{\bar {\times }})},[×0×1]{\displaystyle [{\times }_{0}{\times }_{1}]}
32Pba2P b a 2ΓoC2v8{\displaystyle \Gamma _{o}C_{2v}^{8}}9h(c:a:b):a~2{\displaystyle (c:a:b):{\tilde {a}}\odot 2}(2020×0){\displaystyle (2_{0}2_{0}{\times }_{0})}(:0){\displaystyle (*{:}{*}_{0})}
33Pna21P n a 21ΓoC2v9{\displaystyle \Gamma _{o}C_{2v}^{9}}12a(c:a:b):a~21{\displaystyle (c:a:b):{\tilde {a}}\odot 2_{1}}(2121×){\displaystyle (2_{1}2_{1}{\times })}(:×){\displaystyle (*{:}{\times })},(××1){\displaystyle ({\times }{\times }_{1})}
34Pnn2P n n 2ΓoC2v10{\displaystyle \Gamma _{o}C_{2v}^{10}}8h(c:a:b):ac~2{\displaystyle (c:a:b):{\widetilde {ac}}\odot 2}(2020×1){\displaystyle (2_{0}2_{0}{\times }_{1})}(0×1){\displaystyle (*_{0}{\times }_{1})}
35Cmm2C m m 2ΓobC2v11{\displaystyle \Gamma _{o}^{b}C_{2v}^{11}}14s(a+b2:c:a:b):m2{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):m\cdot 2}(2022){\displaystyle (2_{0}{*}{\cdot }2{\cdot }2)}[00:]{\displaystyle [*_{0}{\cdot }{*}_{0}{:}]}
36Cmc21C m c 21ΓobC2v12{\displaystyle \Gamma _{o}^{b}C_{2v}^{12}}13a(a+b2:c:a:b):c~21{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):{\tilde {c}}\cdot 2_{1}}(212:2){\displaystyle (2_{1}{*}{\cdot }2{:}2)}(¯¯:){\displaystyle ({\bar {*}}{\cdot }{\bar {*}}{:})},[×1×1]{\displaystyle [{\times }_{1}{\times }_{1}]}
37Ccc2C c c 2ΓobC2v13{\displaystyle \Gamma _{o}^{b}C_{2v}^{13}}10h(a+b2:c:a:b):c~2{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):{\tilde {c}}\cdot 2}(20:2:2){\displaystyle (2_{0}{*}{:}2{:}2)}(¯0¯1){\displaystyle ({\bar {*}}_{0}{\bar {*}}_{1})}
38Amm2A m m 2ΓobC2v14{\displaystyle \Gamma _{o}^{b}C_{2v}^{14}}15s(b+c2/c:a:b):m2{\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):m\cdot 2}(222:2){\displaystyle (*{\cdot }2{\cdot }2{\cdot }2{:}2)}[11]{\displaystyle [{*}_{1}{\cdot }{*}_{1}{\cdot }]},[×0]{\displaystyle [*{\cdot }{\times }_{0}]}
39Aem2A b m 2ΓobC2v15{\displaystyle \Gamma _{o}^{b}C_{2v}^{15}}11h(b+c2/c:a:b):m21{\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):m\cdot 2_{1}}(2:2:2:2){\displaystyle (*{\cdot }2{:}2{:}2{:}2)}[1:1:]{\displaystyle [{*}_{1}{:}{*}_{1}{:}]},(¯¯0){\displaystyle ({\bar {*}}{\cdot }{\bar {*}}_{0})}
40Ama2A m a 2ΓobC2v16{\displaystyle \Gamma _{o}^{b}C_{2v}^{16}}12h(b+c2/c:a:b):a~2{\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):{\tilde {a}}\cdot 2}(2021){\displaystyle (2_{0}2_{1}{*}{\cdot })}(1){\displaystyle (*{\cdot }{*}_{1})},[:×1]{\displaystyle [*{:}{\times }_{1}]}
41Aea2A b a 2ΓobC2v17{\displaystyle \Gamma _{o}^{b}C_{2v}^{17}}13h(b+c2/c:a:b):a~21{\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):{\tilde {a}}\cdot 2_{1}}(2021:){\displaystyle (2_{0}2_{1}{*}{:})}(:1){\displaystyle (*{:}{*}_{1})},(¯:¯1){\displaystyle ({\bar {*}}{:}{\bar {*}}_{1})}
42Fmm2F m m 2ΓofC2v18{\displaystyle \Gamma _{o}^{f}C_{2v}^{18}}17s(a+c2/b+c2/a+b2:c:a:b):m2{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right):m\cdot 2}(22:2:2){\displaystyle (*{\cdot }2{\cdot }2{:}2{:}2)}[11:]{\displaystyle [{*}_{1}{\cdot }{*}_{1}{:}]}
43Fdd2F d d 2ΓofC2v19{\displaystyle \Gamma _{o}^{f}C_{2v}^{19}}16h(a+c2/b+c2/a+b2:c:a:b):12ac~2{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right):{\tfrac {1}{2}}{\widetilde {ac}}\odot 2}(2021×){\displaystyle (2_{0}2_{1}{\times })}(1×){\displaystyle ({*}_{1}{\times })}
44Imm2I m m 2ΓovC2v20{\displaystyle \Gamma _{o}^{v}C_{2v}^{20}}16s(a+b+c2/c:a:b):m2{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):m\cdot 2}(2122){\displaystyle (2_{1}{*}{\cdot }2{\cdot }2)}[×1]{\displaystyle [*{\cdot }{\times }_{1}]}
45Iba2I b a 2ΓovC2v21{\displaystyle \Gamma _{o}^{v}C_{2v}^{21}}15h(a+b+c2/c:a:b):c~2{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):{\tilde {c}}\cdot 2}(21:2:2){\displaystyle (2_{1}{*}{:}2{:}2)}(¯:¯0){\displaystyle ({\bar {*}}{:}{\bar {*}}_{0})}
46Ima2I m a 2ΓovC2v22{\displaystyle \Gamma _{o}^{v}C_{2v}^{22}}14h(a+b+c2/c:a:b):a~2{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):{\tilde {a}}\cdot 2}(202:2){\displaystyle (2_{0}{*}{\cdot }2{:}2)}(¯¯1){\displaystyle ({\bar {*}}{\cdot }{\bar {*}}_{1})},[:×0]{\displaystyle [*{:}{\times }_{0}]}
472m2m2m{\displaystyle {\tfrac {2}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}}222{\displaystyle *222}PmmmP 2/m 2/m 2/mΓoD2h1{\displaystyle \Gamma _{o}D_{2h}^{1}}18s(c:a:b)m:2m{\displaystyle \left(c:a:b\right)\cdot m:2\cdot m}[2222]{\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]}
48PnnnP 2/n 2/n 2/nΓoD2h2{\displaystyle \Gamma _{o}D_{2h}^{2}}19h(c:a:b)ab~:2ac~{\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\odot {\widetilde {ac}}}(2¯12020){\displaystyle (2{\bar {*}}_{1}2_{0}2_{0})}
49PccmP 2/c 2/c 2/mΓoD2h3{\displaystyle \Gamma _{o}D_{2h}^{3}}17h(c:a:b)m:2c~{\displaystyle \left(c:a:b\right)\cdot m:2\cdot {\tilde {c}}}[:2:2:2:2]{\displaystyle [*{:}2{:}2{:}2{:}2]}(202022){\displaystyle (*2_{0}2_{0}2{\cdot }2)}
50PbanP 2/b 2/a 2/nΓoD2h4{\displaystyle \Gamma _{o}D_{2h}^{4}}18h(c:a:b)ab~:2a~{\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\odot {\tilde {a}}}(2¯02020){\displaystyle (2{\bar {*}}_{0}2_{0}2_{0})}(20202:2){\displaystyle (*2_{0}2_{0}2{:}2)}
51PmmaP 21/m 2/m 2/aΓoD2h5{\displaystyle \Gamma _{o}D_{2h}^{5}}14a(c:a:b)a~:2m{\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2\cdot m}[2020]{\displaystyle [2_{0}2_{0}{*}{\cdot }]}[2:22:2]{\displaystyle [*{\cdot }2{:}2{\cdot }2{:}2]},[2222]{\displaystyle [*2{\cdot }2{\cdot }2{\cdot }2]}
52PnnaP 2/n 21/n 2/aΓoD2h6{\displaystyle \Gamma _{o}D_{2h}^{6}}17a(c:a:b)a~:2ac~{\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2\odot {\widetilde {ac}}}(202¯1){\displaystyle (2_{0}2{\bar {*}}_{1})}(202:2){\displaystyle (2_{0}{*}2{:}2)},(2¯2121){\displaystyle (2{\bar {*}}2_{1}2_{1})}
53PmnaP 2/m 2/n 21/aΓoD2h7{\displaystyle \Gamma _{o}D_{2h}^{7}}15a(c:a:b)a~:21ac~{\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2_{1}\cdot {\widetilde {ac}}}[2020:]{\displaystyle [2_{0}2_{0}{*}{:}]}(212122){\displaystyle (*2_{1}2_{1}2{\cdot }2)},(2022){\displaystyle (2_{0}{*}2{\cdot }2)}
54PccaP 21/c 2/c 2/aΓoD2h8{\displaystyle \Gamma _{o}D_{2h}^{8}}16a(c:a:b)a~:2c~{\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2\cdot {\tilde {c}}}(202¯0){\displaystyle (2_{0}2{\bar {*}}_{0})}(2:2:2:2){\displaystyle (*2{:}2{:}2{:}2)},(21212:2){\displaystyle (*2_{1}2_{1}2{:}2)}
55PbamP 21/b 21/a 2/mΓoD2h9{\displaystyle \Gamma _{o}D_{2h}^{9}}22a(c:a:b)m:2a~{\displaystyle \left(c:a:b\right)\cdot m:2\odot {\tilde {a}}}[2020×0]{\displaystyle [2_{0}2_{0}{\times }_{0}]}(22:22){\displaystyle (*2{\cdot }2{:}2{\cdot }2)}
56PccnP 21/c 21/c 2/nΓoD2h10{\displaystyle \Gamma _{o}D_{2h}^{10}}27a(c:a:b)ab~:2c~{\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\cdot {\tilde {c}}}(2¯:2:2){\displaystyle (2{\bar {*}}{:}2{:}2)}(212¯0){\displaystyle (2_{1}2{\bar {*}}_{0})}
57PbcmP 2/b 21/c 21/mΓoD2h11{\displaystyle \Gamma _{o}D_{2h}^{11}}23a(c:a:b)m:21c~{\displaystyle \left(c:a:b\right)\cdot m:2_{1}\odot {\tilde {c}}}(202¯){\displaystyle (2_{0}2{\bar {*}}{\cdot })}(2:22:2){\displaystyle (*2{:}2{\cdot }2{:}2)},[2121:]{\displaystyle [2_{1}2_{1}{*}{:}]}
58PnnmP 21/n 21/n 2/mΓoD2h12{\displaystyle \Gamma _{o}D_{2h}^{12}}25a(c:a:b)m:2ac~{\displaystyle \left(c:a:b\right)\cdot m:2\odot {\widetilde {ac}}}[2020×1]{\displaystyle [2_{0}2_{0}{\times }_{1}]}(2122){\displaystyle (2_{1}{*}2{\cdot }2)}
59PmmnP 21/m 21/m 2/nΓoD2h13{\displaystyle \Gamma _{o}D_{2h}^{13}}24a(c:a:b)ab~:2m{\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\cdot m}(2¯22){\displaystyle (2{\bar {*}}{\cdot }2{\cdot }2)}[2121]{\displaystyle [2_{1}2_{1}{*}{\cdot }]}
60PbcnP 21/b 2/c 21/nΓoD2h14{\displaystyle \Gamma _{o}D_{2h}^{14}}26a(c:a:b)ab~:21c~{\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2_{1}\odot {\tilde {c}}}(202¯:){\displaystyle (2_{0}2{\bar {*}}{:})}(212:2){\displaystyle (2_{1}{*}2{:}2)},(212¯1){\displaystyle (2_{1}2{\bar {*}}_{1})}
61PbcaP 21/b 21/c 21/aΓoD2h15{\displaystyle \Gamma _{o}D_{2h}^{15}}29a(c:a:b)a~:21c~{\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2_{1}\odot {\tilde {c}}}(212¯:){\displaystyle (2_{1}2{\bar {*}}{:})}
62PnmaP 21/n 21/m 21/aΓoD2h16{\displaystyle \Gamma _{o}D_{2h}^{16}}28a(c:a:b)a~:21m{\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2_{1}\odot m}(212¯){\displaystyle (2_{1}2{\bar {*}}{\cdot })}(2¯2:2){\displaystyle (2{\bar {*}}{\cdot }2{:}2)},[2121×]{\displaystyle [2_{1}2_{1}{\times }]}
63CmcmC 2/m 2/c 21/mΓobD2h17{\displaystyle \Gamma _{o}^{b}D_{2h}^{17}}18a(a+b2:c:a:b)m:21c~{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2_{1}\cdot {\tilde {c}}}[2021]{\displaystyle [2_{0}2_{1}{*}{\cdot }]}(222:2){\displaystyle (*2{\cdot }2{\cdot }2{:}2)},[212:2]{\displaystyle [2_{1}{*}{\cdot }2{:}2]}
64CmceC 2/m 2/c 21/aΓobD2h18{\displaystyle \Gamma _{o}^{b}D_{2h}^{18}}19a(a+b2:c:a:b)a~:21c~{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tilde {a}}:2_{1}\cdot {\tilde {c}}}[2021:]{\displaystyle [2_{0}2_{1}{*}{:}]}(22:2:2){\displaystyle (*2{\cdot }2{:}2{:}2)},(2122:2){\displaystyle (*2_{1}2{\cdot }2{:}2)}
65CmmmC 2/m 2/m 2/mΓobD2h19{\displaystyle \Gamma _{o}^{b}D_{2h}^{19}}19s(a+b2:c:a:b)m:2m{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2\cdot m}[2022]{\displaystyle [2_{0}{*}{\cdot }2{\cdot }2]}[222:2]{\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{:}2]}
66CccmC 2/c 2/c 2/mΓobD2h20{\displaystyle \Gamma _{o}^{b}D_{2h}^{20}}20h(a+b2:c:a:b)m:2c~{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2\cdot {\tilde {c}}}[20:2:2]{\displaystyle [2_{0}{*}{:}2{:}2]}(202122){\displaystyle (*2_{0}2_{1}2{\cdot }2)}
67CmmeC 2/m 2/m 2/eΓobD2h21{\displaystyle \Gamma _{o}^{b}D_{2h}^{21}}21h(a+b2:c:a:b)a~:2m{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tilde {a}}:2\cdot m}(20222){\displaystyle (*2_{0}2{\cdot }2{\cdot }2)}[2:2:2:2]{\displaystyle [*{\cdot }2{:}2{:}2{:}2]}
68CcceC 2/c 2/c 2/eΓobD2h22{\displaystyle \Gamma _{o}^{b}D_{2h}^{22}}22h(a+b2:c:a:b)a~:2c~{\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tilde {a}}:2\cdot {\tilde {c}}}(202:2:2){\displaystyle (*2_{0}2{:}2{:}2)}(20212:2){\displaystyle (*2_{0}2_{1}2{:}2)}
69FmmmF 2/m 2/m 2/mΓofD2h23{\displaystyle \Gamma _{o}^{f}D_{2h}^{23}}21s(a+c2/b+c2/a+b2:c:a:b)m:2m{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2\cdot m}[22:2:2]{\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]}
70FdddF 2/d 2/d 2/dΓofD2h24{\displaystyle \Gamma _{o}^{f}D_{2h}^{24}}24h(a+c2/b+c2/a+b2:c:a:b)12ab~:212ac~{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tfrac {1}{2}}{\widetilde {ab}}:2\odot {\tfrac {1}{2}}{\widetilde {ac}}}(2¯2021){\displaystyle (2{\bar {*}}2_{0}2_{1})}
71ImmmI 2/m 2/m 2/mΓovD2h25{\displaystyle \Gamma _{o}^{v}D_{2h}^{25}}20s(a+b+c2/c:a:b)m:2m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot m:2\cdot m}[2122]{\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]}
72IbamI 2/b 2/a 2/mΓovD2h26{\displaystyle \Gamma _{o}^{v}D_{2h}^{26}}23h(a+b+c2/c:a:b)m:2c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot m:2\cdot {\tilde {c}}}[21:2:2]{\displaystyle [2_{1}{*}{:}2{:}2]}(2022:2){\displaystyle (*2_{0}2{\cdot }2{:}2)}
73IbcaI 2/b 2/c 2/aΓovD2h27{\displaystyle \Gamma _{o}^{v}D_{2h}^{27}}21a(a+b+c2/c:a:b)a~:2c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot {\tilde {a}}:2\cdot {\tilde {c}}}(212:2:2){\displaystyle (*2_{1}2{:}2{:}2)}
74ImmaI 2/m 2/m 2/aΓovD2h28{\displaystyle \Gamma _{o}^{v}D_{2h}^{28}}20a(a+b+c2/c:a:b)a~:2m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot {\tilde {a}}:2\cdot m}(21222){\displaystyle (*2_{1}2{\cdot }2{\cdot }2)}[202:2]{\displaystyle [2_{0}{*}{\cdot }2{:}2]}

List of tetragonal

[edit]
Tetragonal Bravais lattice
Simple (P)Body (I)
Tetragonal crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
75444{\displaystyle 44}P4P 4ΓqC41{\displaystyle \Gamma _{q}C_{4}^{1}}22s(c:a:a):4{\displaystyle (c:a:a):4}(404020){\displaystyle (4_{0}4_{0}2_{0})}
76P41P 41ΓqC42{\displaystyle \Gamma _{q}C_{4}^{2}}30a(c:a:a):41{\displaystyle (c:a:a):4_{1}}(414121){\displaystyle (4_{1}4_{1}2_{1})}
77P42P 42ΓqC43{\displaystyle \Gamma _{q}C_{4}^{3}}33a(c:a:a):42{\displaystyle (c:a:a):4_{2}}(424220){\displaystyle (4_{2}4_{2}2_{0})}
78P43P 43ΓqC44{\displaystyle \Gamma _{q}C_{4}^{4}}31a(c:a:a):43{\displaystyle (c:a:a):4_{3}}(414121){\displaystyle (4_{1}4_{1}2_{1})}
79I4I 4ΓqvC45{\displaystyle \Gamma _{q}^{v}C_{4}^{5}}23s(a+b+c2/c:a:a):4{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4}(424021){\displaystyle (4_{2}4_{0}2_{1})}
80I41I 41ΓqvC46{\displaystyle \Gamma _{q}^{v}C_{4}^{6}}32a(a+b+c2/c:a:a):41{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4_{1}}(434120){\displaystyle (4_{3}4_{1}2_{0})}
8142×{\displaystyle 2\times }P4P4ΓqS41{\displaystyle \Gamma _{q}S_{4}^{1}}26s(c:a:a):4~{\displaystyle (c:a:a):{\tilde {4}}}(4420){\displaystyle (442_{0})}
82I4I4ΓqvS42{\displaystyle \Gamma _{q}^{v}S_{4}^{2}}27s(a+b+c2/c:a:a):4~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}}(4421){\displaystyle (442_{1})}
834/m4{\displaystyle 4*}P4/mP 4/mΓqC4h1{\displaystyle \Gamma _{q}C_{4h}^{1}}28s(c:a:a)m:4{\displaystyle (c:a:a)\cdot m:4}[404020]{\displaystyle [4_{0}4_{0}2_{0}]}
84P42/mP 42/mΓqC4h2{\displaystyle \Gamma _{q}C_{4h}^{2}}41a(c:a:a)m:42{\displaystyle (c:a:a)\cdot m:4_{2}}[424220]{\displaystyle [4_{2}4_{2}2_{0}]}
85P4/nP 4/nΓqC4h3{\displaystyle \Gamma _{q}C_{4h}^{3}}29h(c:a:a)ab~:4{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4}(4402){\displaystyle (44_{0}2)}
86P42/nP 42/nΓqC4h4{\displaystyle \Gamma _{q}C_{4h}^{4}}42a(c:a:a)ab~:42{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}}(4422){\displaystyle (44_{2}2)}
87I4/mI 4/mΓqvC4h5{\displaystyle \Gamma _{q}^{v}C_{4h}^{5}}29s(a+b+c2/c:a:a)m:4{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot m:4}[424021]{\displaystyle [4_{2}4_{0}2_{1}]}
88I41/aI 41/aΓqvC4h6{\displaystyle \Gamma _{q}^{v}C_{4h}^{6}}40a(a+b+c2/c:a:a)a~:41{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot {\tilde {a}}:4_{1}}(4412){\displaystyle (44_{1}2)}
89422224{\displaystyle 224}P422P 4 2 2ΓqD41{\displaystyle \Gamma _{q}D_{4}^{1}}30s(c:a:a):4:2{\displaystyle (c:a:a):4:2}(404020){\displaystyle (*4_{0}4_{0}2_{0})}
90P4212P4212ΓqD42{\displaystyle \Gamma _{q}D_{4}^{2}}43a(c:a:a):4{\displaystyle (c:a:a):4}21{\displaystyle 2_{1}}(4020){\displaystyle (4_{0}{*}2_{0})}
91P4122P 41 2 2ΓqD43{\displaystyle \Gamma _{q}D_{4}^{3}}44a(c:a:a):41:2{\displaystyle (c:a:a):4_{1}:2}(414121){\displaystyle (*4_{1}4_{1}2_{1})}
92P41212P 41 21 2ΓqD44{\displaystyle \Gamma _{q}D_{4}^{4}}48a(c:a:a):41{\displaystyle (c:a:a):4_{1}}21{\displaystyle 2_{1}}(4121){\displaystyle (4_{1}{*}2_{1})}
93P4222P 42 2 2ΓqD45{\displaystyle \Gamma _{q}D_{4}^{5}}47a(c:a:a):42:2{\displaystyle (c:a:a):4_{2}:2}(424220){\displaystyle (*4_{2}4_{2}2_{0})}
94P42212P 42 21 2ΓqD46{\displaystyle \Gamma _{q}D_{4}^{6}}50a(c:a:a):42{\displaystyle (c:a:a):4_{2}}21{\displaystyle 2_{1}}(4220){\displaystyle (4_{2}{*}2_{0})}
95P4322P 43 2 2ΓqD47{\displaystyle \Gamma _{q}D_{4}^{7}}45a(c:a:a):43:2{\displaystyle (c:a:a):4_{3}:2}(414121){\displaystyle (*4_{1}4_{1}2_{1})}
96P43212P 43 21 2ΓqD48{\displaystyle \Gamma _{q}D_{4}^{8}}49a(c:a:a):43{\displaystyle (c:a:a):4_{3}}21{\displaystyle 2_{1}}(4121){\displaystyle (4_{1}{*}2_{1})}
97I422I 4 2 2ΓqvD49{\displaystyle \Gamma _{q}^{v}D_{4}^{9}}31s(a+b+c2/c:a:a):4:2{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4:2}(424021){\displaystyle (*4_{2}4_{0}2_{1})}
98I4122I 41 2 2ΓqvD410{\displaystyle \Gamma _{q}^{v}D_{4}^{10}}46a(a+b+c2/c:a:a):4:21{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4:2_{1}}(434120){\displaystyle (*4_{3}4_{1}2_{0})}
994mm44{\displaystyle *44}P4mmP 4 m mΓqC4v1{\displaystyle \Gamma _{q}C_{4v}^{1}}24s(c:a:a):4m{\displaystyle (c:a:a):4\cdot m}(442){\displaystyle (*{\cdot }4{\cdot }4{\cdot }2)}
100P4bmP 4 b mΓqC4v2{\displaystyle \Gamma _{q}C_{4v}^{2}}26h(c:a:a):4a~{\displaystyle (c:a:a):4\odot {\tilde {a}}}(402){\displaystyle (4_{0}{*}{\cdot }2)}
101P42cmP 42 c mΓqC4v3{\displaystyle \Gamma _{q}C_{4v}^{3}}37a(c:a:a):42c~{\displaystyle (c:a:a):4_{2}\cdot {\tilde {c}}}(:44:2){\displaystyle (*{:}4{\cdot }4{:}2)}
102P42nmP 42 n mΓqC4v4{\displaystyle \Gamma _{q}C_{4v}^{4}}38a(c:a:a):42ac~{\displaystyle (c:a:a):4_{2}\odot {\widetilde {ac}}}(422){\displaystyle (4_{2}{*}{\cdot }2)}
103P4ccP 4 c cΓqC4v5{\displaystyle \Gamma _{q}C_{4v}^{5}}25h(c:a:a):4c~{\displaystyle (c:a:a):4\cdot {\tilde {c}}}(:4:4:2){\displaystyle (*{:}4{:}4{:}2)}
104P4ncP 4 n cΓqC4v6{\displaystyle \Gamma _{q}C_{4v}^{6}}27h(c:a:a):4ac~{\displaystyle (c:a:a):4\odot {\widetilde {ac}}}(40:2){\displaystyle (4_{0}{*}{:}2)}
105P42mcP 42 m cΓqC4v7{\displaystyle \Gamma _{q}C_{4v}^{7}}36a(c:a:a):42m{\displaystyle (c:a:a):4_{2}\cdot m}(4:42){\displaystyle (*{\cdot }4{:}4{\cdot }2)}
106P42bcP 42 b cΓqC4v8{\displaystyle \Gamma _{q}C_{4v}^{8}}39a(c:a:a):4a~{\displaystyle (c:a:a):4\odot {\tilde {a}}}(42:2){\displaystyle (4_{2}{*}{:}2)}
107I4mmI 4 m mΓqvC4v9{\displaystyle \Gamma _{q}^{v}C_{4v}^{9}}25s(a+b+c2/c:a:a):4m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4\cdot m}(44:2){\displaystyle (*{\cdot }4{\cdot }4{:}2)}
108I4cmI 4 c mΓqvC4v10{\displaystyle \Gamma _{q}^{v}C_{4v}^{10}}28h(a+b+c2/c:a:a):4c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4\cdot {\tilde {c}}}(4:4:2){\displaystyle (*{\cdot }4{:}4{:}2)}
109I41mdI 41 m dΓqvC4v11{\displaystyle \Gamma _{q}^{v}C_{4v}^{11}}34a(a+b+c2/c:a:a):41m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4_{1}\odot m}(412){\displaystyle (4_{1}{*}{\cdot }2)}
110I41cdI 41 c dΓqvC4v12{\displaystyle \Gamma _{q}^{v}C_{4v}^{12}}35a(a+b+c2/c:a:a):41c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4_{1}\odot {\tilde {c}}}(41:2){\displaystyle (4_{1}{*}{:}2)}
11142m22{\displaystyle 2{*}2}P42mP4 2 mΓqD2d1{\displaystyle \Gamma _{q}D_{2d}^{1}}32s(c:a:a):4~:2{\displaystyle (c:a:a):{\tilde {4}}:2}(4420){\displaystyle (*4{\cdot }42_{0})}
112P42cP4 2 cΓqD2d2{\displaystyle \Gamma _{q}D_{2d}^{2}}30h(c:a:a):4~{\displaystyle (c:a:a):{\tilde {4}}}2{\displaystyle 2}(4:420){\displaystyle (*4{:}42_{0})}
113P421mP4 21 mΓqD2d3{\displaystyle \Gamma _{q}D_{2d}^{3}}52a(c:a:a):4~ab~{\displaystyle (c:a:a):{\tilde {4}}\cdot {\widetilde {ab}}}(4¯2){\displaystyle (4{\bar {*}}{\cdot }2)}
114P421cP4 21 cΓqD2d4{\displaystyle \Gamma _{q}D_{2d}^{4}}53a(c:a:a):4~abc~{\displaystyle (c:a:a):{\tilde {4}}\cdot {\widetilde {abc}}}(4¯:2){\displaystyle (4{\bar {*}}{:}2)}
115P4m2P4 m 2ΓqD2d5{\displaystyle \Gamma _{q}D_{2d}^{5}}33s(c:a:a):4~m{\displaystyle (c:a:a):{\tilde {4}}\cdot m}(442){\displaystyle (*{\cdot }44{\cdot }2)}
116P4c2P4 c 2ΓqD2d6{\displaystyle \Gamma _{q}D_{2d}^{6}}31h(c:a:a):4~c~{\displaystyle (c:a:a):{\tilde {4}}\cdot {\tilde {c}}}(:44:2){\displaystyle (*{:}44{:}2)}
117P4b2P4 b 2ΓqD2d7{\displaystyle \Gamma _{q}D_{2d}^{7}}32h(c:a:a):4~a~{\displaystyle (c:a:a):{\tilde {4}}\odot {\tilde {a}}}(4¯020){\displaystyle (4{\bar {*}}_{0}2_{0})}
118P4n2P4 n 2ΓqD2d8{\displaystyle \Gamma _{q}D_{2d}^{8}}33h(c:a:a):4~ac~{\displaystyle (c:a:a):{\tilde {4}}\cdot {\widetilde {ac}}}(4¯120){\displaystyle (4{\bar {*}}_{1}2_{0})}
119I4m2I4 m 2ΓqvD2d9{\displaystyle \Gamma _{q}^{v}D_{2d}^{9}}35s(a+b+c2/c:a:a):4~m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}\cdot m}(4421){\displaystyle (*4{\cdot }42_{1})}
120I4c2I4 c 2ΓqvD2d10{\displaystyle \Gamma _{q}^{v}D_{2d}^{10}}34h(a+b+c2/c:a:a):4~c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}\cdot {\tilde {c}}}(4:421){\displaystyle (*4{:}42_{1})}
121I42mI4 2 mΓqvD2d11{\displaystyle \Gamma _{q}^{v}D_{2d}^{11}}34s(a+b+c2/c:a:a):4~:2{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}:2}(44:2){\displaystyle (*{\cdot }44{:}2)}
122I42dI4 2 dΓqvD2d12{\displaystyle \Gamma _{q}^{v}D_{2d}^{12}}51a(a+b+c2/c:a:a):4~12abc~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}\odot {\tfrac {1}{2}}{\widetilde {abc}}}(4¯21){\displaystyle (4{\bar {*}}2_{1})}
1234/m 2/m 2/m224{\displaystyle *224}P4/mmmP 4/m 2/m 2/mΓqD4h1{\displaystyle \Gamma _{q}D_{4h}^{1}}36s(c:a:a)m:4m{\displaystyle (c:a:a)\cdot m:4\cdot m}[442]{\displaystyle [*{\cdot }4{\cdot }4{\cdot }2]}
124P4/mccP 4/m 2/c 2/cΓqD4h2{\displaystyle \Gamma _{q}D_{4h}^{2}}35h(c:a:a)m:4c~{\displaystyle (c:a:a)\cdot m:4\cdot {\tilde {c}}}[:4:4:2]{\displaystyle [*{:}4{:}4{:}2]}
125P4/nbmP 4/n 2/b 2/mΓqD4h3{\displaystyle \Gamma _{q}D_{4h}^{3}}36h(c:a:a)ab~:4a~{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\odot {\tilde {a}}}(4042){\displaystyle (*4_{0}4{\cdot }2)}
126P4/nncP 4/n 2/n 2/cΓqD4h4{\displaystyle \Gamma _{q}D_{4h}^{4}}37h(c:a:a)ab~:4ac~{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\odot {\widetilde {ac}}}(404:2){\displaystyle (*4_{0}4{:}2)}
127P4/mbmP 4/m 21/b 2/mΓqD4h5{\displaystyle \Gamma _{q}D_{4h}^{5}}54a(c:a:a)m:4a~{\displaystyle (c:a:a)\cdot m:4\odot {\tilde {a}}}[402]{\displaystyle [4_{0}{*}{\cdot }2]}
128P4/mncP 4/m 21/n 2/cΓqD4h6{\displaystyle \Gamma _{q}D_{4h}^{6}}56a(c:a:a)m:4ac~{\displaystyle (c:a:a)\cdot m:4\odot {\widetilde {ac}}}[40:2]{\displaystyle [4_{0}{*}{:}2]}
129P4/nmmP 4/n 21/m 2/mΓqD4h7{\displaystyle \Gamma _{q}D_{4h}^{7}}55a(c:a:a)ab~:4m{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\cdot m}(442){\displaystyle (*4{\cdot }4{\cdot }2)}
130P4/nccP 4/n 21/c 2/cΓqD4h8{\displaystyle \Gamma _{q}D_{4h}^{8}}57a(c:a:a)ab~:4c~{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\cdot {\tilde {c}}}(4:4:2){\displaystyle (*4{:}4{:}2)}
131P42/mmcP 42/m 2/m 2/cΓqD4h9{\displaystyle \Gamma _{q}D_{4h}^{9}}60a(c:a:a)m:42m{\displaystyle (c:a:a)\cdot m:4_{2}\cdot m}[4:42]{\displaystyle [*{\cdot }4{:}4{\cdot }2]}
132P42/mcmP 42/m 2/c 2/mΓqD4h10{\displaystyle \Gamma _{q}D_{4h}^{10}}61a(c:a:a)m:42c~{\displaystyle (c:a:a)\cdot m:4_{2}\cdot {\tilde {c}}}[:44:2]{\displaystyle [*{:}4{\cdot }4{:}2]}
133P42/nbcP 42/n 2/b 2/cΓqD4h11{\displaystyle \Gamma _{q}D_{4h}^{11}}63a(c:a:a)ab~:42a~{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\odot {\tilde {a}}}(424:2){\displaystyle (*4_{2}4{:}2)}
134P42/nnmP 42/n 2/n 2/mΓqD4h12{\displaystyle \Gamma _{q}D_{4h}^{12}}62a(c:a:a)ab~:42ac~{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\odot {\widetilde {ac}}}(4242){\displaystyle (*4_{2}4{\cdot }2)}
135P42/mbcP 42/m 21/b 2/cΓqD4h13{\displaystyle \Gamma _{q}D_{4h}^{13}}66a(c:a:a)m:42a~{\displaystyle (c:a:a)\cdot m:4_{2}\odot {\tilde {a}}}[42:2]{\displaystyle [4_{2}{*}{:}2]}
136P42/mnmP 42/m 21/n 2/mΓqD4h14{\displaystyle \Gamma _{q}D_{4h}^{14}}65a(c:a:a)m:42ac~{\displaystyle (c:a:a)\cdot m:4_{2}\odot {\widetilde {ac}}}[422]{\displaystyle [4_{2}{*}{\cdot }2]}
137P42/nmcP 42/n 21/m 2/cΓqD4h15{\displaystyle \Gamma _{q}D_{4h}^{15}}67a(c:a:a)ab~:42m{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\cdot m}(44:2){\displaystyle (*4{\cdot }4{:}2)}
138P42/ncmP 42/n 21/c 2/mΓqD4h16{\displaystyle \Gamma _{q}D_{4h}^{16}}65a(c:a:a)ab~:42c~{\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\cdot {\tilde {c}}}(4:42){\displaystyle (*4{:}4{\cdot }2)}
139I4/mmmI 4/m 2/m 2/mΓqvD4h17{\displaystyle \Gamma _{q}^{v}D_{4h}^{17}}37s(a+b+c2/c:a:a)m:4m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot m:4\cdot m}[44:2]{\displaystyle [*{\cdot }4{\cdot }4{:}2]}
140I4/mcmI 4/m 2/c 2/mΓqvD4h18{\displaystyle \Gamma _{q}^{v}D_{4h}^{18}}38h(a+b+c2/c:a:a)m:4c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot m:4\cdot {\tilde {c}}}[4:4:2]{\displaystyle [*{\cdot }4{:}4{:}2]}
141I41/amdI 41/a 2/m 2/dΓqvD4h19{\displaystyle \Gamma _{q}^{v}D_{4h}^{19}}59a(a+b+c2/c:a:a)a~:41m{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot {\tilde {a}}:4_{1}\odot m}(4142){\displaystyle (*4_{1}4{\cdot }2)}
142I41/acdI 41/a 2/c 2/dΓqvD4h20{\displaystyle \Gamma _{q}^{v}D_{4h}^{20}}58a(a+b+c2/c:a:a)a~:41c~{\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot {\tilde {a}}:4_{1}\odot {\tilde {c}}}(414:2){\displaystyle (*4_{1}4{:}2)}

List of trigonal

[edit]
Trigonal Bravais lattice
Rhombohedral (R)Hexagonal (P)
Trigonal crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
143333{\displaystyle 33}P3P 3ΓhC31{\displaystyle \Gamma _{h}C_{3}^{1}}38s(c:(a/a)):3{\displaystyle (c:(a/a)):3}(303030){\displaystyle (3_{0}3_{0}3_{0})}
144P31P 31ΓhC32{\displaystyle \Gamma _{h}C_{3}^{2}}68a(c:(a/a)):31{\displaystyle (c:(a/a)):3_{1}}(313131){\displaystyle (3_{1}3_{1}3_{1})}
145P32P 32ΓhC33{\displaystyle \Gamma _{h}C_{3}^{3}}69a(c:(a/a)):32{\displaystyle (c:(a/a)):3_{2}}(313131){\displaystyle (3_{1}3_{1}3_{1})}
146R3R 3ΓrhC34{\displaystyle \Gamma _{rh}C_{3}^{4}}39s(a/a/a)/3{\displaystyle (a/a/a)/3}(303132){\displaystyle (3_{0}3_{1}3_{2})}
14733×{\displaystyle 3\times }P3P3ΓhC3i1{\displaystyle \Gamma _{h}C_{3i}^{1}}51s(c:(a/a)):6~{\displaystyle (c:(a/a)):{\tilde {6}}}(6302){\displaystyle (63_{0}2)}
148R3R3ΓrhC3i2{\displaystyle \Gamma _{rh}C_{3i}^{2}}52s(a/a/a)/6~{\displaystyle (a/a/a)/{\tilde {6}}}(6312){\displaystyle (63_{1}2)}
14932223{\displaystyle 223}P312P 3 1 2ΓhD31{\displaystyle \Gamma _{h}D_{3}^{1}}45s(c:(a/a)):2:3{\displaystyle (c:(a/a)):2:3}(303030){\displaystyle (*3_{0}3_{0}3_{0})}
150P321P 3 2 1ΓhD32{\displaystyle \Gamma _{h}D_{3}^{2}}44s(c:(a/a))2:3{\displaystyle (c:(a/a))\cdot 2:3}(3030){\displaystyle (3_{0}{*}3_{0})}
151P3112P 31 1 2ΓhD33{\displaystyle \Gamma _{h}D_{3}^{3}}72a(c:(a/a)):2:31{\displaystyle (c:(a/a)):2:3_{1}}(313131){\displaystyle (*3_{1}3_{1}3_{1})}
152P3121P 31 2 1ΓhD34{\displaystyle \Gamma _{h}D_{3}^{4}}70a(c:(a/a))2:31{\displaystyle (c:(a/a))\cdot 2:3_{1}}(3131){\displaystyle (3_{1}{*}3_{1})}
153P3212P 32 1 2ΓhD35{\displaystyle \Gamma _{h}D_{3}^{5}}73a(c:(a/a)):2:32{\displaystyle (c:(a/a)):2:3_{2}}(313131){\displaystyle (*3_{1}3_{1}3_{1})}
154P3221P 32 2 1ΓhD36{\displaystyle \Gamma _{h}D_{3}^{6}}71a(c:(a/a))2:32{\displaystyle (c:(a/a))\cdot 2:3_{2}}(3131){\displaystyle (3_{1}{*}3_{1})}
155R32R 3 2ΓrhD37{\displaystyle \Gamma _{rh}D_{3}^{7}}46s(a/a/a)/3:2{\displaystyle (a/a/a)/3:2}(303132){\displaystyle (*3_{0}3_{1}3_{2})}
1563m33{\displaystyle *33}P3m1P 3 m 1ΓhC3v1{\displaystyle \Gamma _{h}C_{3v}^{1}}40s(c:(a/a)):m3{\displaystyle (c:(a/a)):m\cdot 3}(333){\displaystyle (*{\cdot }3{\cdot }3{\cdot }3)}
157P31mP 3 1 mΓhC3v2{\displaystyle \Gamma _{h}C_{3v}^{2}}41s(c:(a/a))m3{\displaystyle (c:(a/a))\cdot m\cdot 3}(303){\displaystyle (3_{0}{*}{\cdot }3)}
158P3c1P 3 c 1ΓhC3v3{\displaystyle \Gamma _{h}C_{3v}^{3}}39h(c:(a/a)):c~:3{\displaystyle (c:(a/a)):{\tilde {c}}:3}(:3:3:3){\displaystyle (*{:}3{:}3{:}3)}
159P31cP 3 1 cΓhC3v4{\displaystyle \Gamma _{h}C_{3v}^{4}}40h(c:(a/a))c~:3{\displaystyle (c:(a/a))\cdot {\tilde {c}}:3}(30:3){\displaystyle (3_{0}{*}{:}3)}
160R3mR 3 mΓrhC3v5{\displaystyle \Gamma _{rh}C_{3v}^{5}}42s(a/a/a)/3m{\displaystyle (a/a/a)/3\cdot m}(313){\displaystyle (3_{1}{*}{\cdot }3)}
161R3cR 3 cΓrhC3v6{\displaystyle \Gamma _{rh}C_{3v}^{6}}41h(a/a/a)/3c~{\displaystyle (a/a/a)/3\cdot {\tilde {c}}}(31:3){\displaystyle (3_{1}{*}{:}3)}
1623 2/m23{\displaystyle 2{*}3}P31mP3 1 2/mΓhD3d1{\displaystyle \Gamma _{h}D_{3d}^{1}}56s(c:(a/a))m6~{\displaystyle (c:(a/a))\cdot m\cdot {\tilde {6}}}(6302){\displaystyle (*{\cdot }63_{0}2)}
163P31cP3 1 2/cΓhD3d2{\displaystyle \Gamma _{h}D_{3d}^{2}}46h(c:(a/a))c~6~{\displaystyle (c:(a/a))\cdot {\tilde {c}}\cdot {\tilde {6}}}(:6302){\displaystyle (*{:}63_{0}2)}
164P3m1P3 2/m 1ΓhD3d3{\displaystyle \Gamma _{h}D_{3d}^{3}}55s(c:(a/a)):m6~{\displaystyle (c:(a/a)):m\cdot {\tilde {6}}}(632){\displaystyle (*6{\cdot }3{\cdot }2)}
165P3c1P3 2/c 1ΓhD3d4{\displaystyle \Gamma _{h}D_{3d}^{4}}45h(c:(a/a)):c~6~{\displaystyle (c:(a/a)):{\tilde {c}}\cdot {\tilde {6}}}(6:3:2){\displaystyle (*6{:}3{:}2)}
166R3mR3 2/mΓrhD3d5{\displaystyle \Gamma _{rh}D_{3d}^{5}}57s(a/a/a)/6~m{\displaystyle (a/a/a)/{\tilde {6}}\cdot m}(6312){\displaystyle (*{\cdot }63_{1}2)}
167R3cR3 2/cΓrhD3d6{\displaystyle \Gamma _{rh}D_{3d}^{6}}47h(a/a/a)/6~c~{\displaystyle (a/a/a)/{\tilde {6}}\cdot {\tilde {c}}}(:6312){\displaystyle (*{:}63_{1}2)}

List of hexagonal

[edit]
Hexagonal Bravais lattice
Hexagonal crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
168666{\displaystyle 66}P6P 6ΓhC61{\displaystyle \Gamma _{h}C_{6}^{1}}49s(c:(a/a)):6{\displaystyle (c:(a/a)):6}(603020){\displaystyle (6_{0}3_{0}2_{0})}
169P61P 61ΓhC62{\displaystyle \Gamma _{h}C_{6}^{2}}74a(c:(a/a)):61{\displaystyle (c:(a/a)):6_{1}}(613121){\displaystyle (6_{1}3_{1}2_{1})}
170P65P 65ΓhC63{\displaystyle \Gamma _{h}C_{6}^{3}}75a(c:(a/a)):65{\displaystyle (c:(a/a)):6_{5}}(613121){\displaystyle (6_{1}3_{1}2_{1})}
171P62P 62ΓhC64{\displaystyle \Gamma _{h}C_{6}^{4}}76a(c:(a/a)):62{\displaystyle (c:(a/a)):6_{2}}(623220){\displaystyle (6_{2}3_{2}2_{0})}
172P64P 64ΓhC65{\displaystyle \Gamma _{h}C_{6}^{5}}77a(c:(a/a)):64{\displaystyle (c:(a/a)):6_{4}}(623220){\displaystyle (6_{2}3_{2}2_{0})}
173P63P 63ΓhC66{\displaystyle \Gamma _{h}C_{6}^{6}}78a(c:(a/a)):63{\displaystyle (c:(a/a)):6_{3}}(633021){\displaystyle (6_{3}3_{0}2_{1})}
17463{\displaystyle 3*}P6P6ΓhC3h1{\displaystyle \Gamma _{h}C_{3h}^{1}}43s(c:(a/a)):3:m{\displaystyle (c:(a/a)):3:m}[303030]{\displaystyle [3_{0}3_{0}3_{0}]}
1756/m6{\displaystyle 6*}P6/mP 6/mΓhC6h1{\displaystyle \Gamma _{h}C_{6h}^{1}}53s(c:(a/a))m:6{\displaystyle (c:(a/a))\cdot m:6}[603020]{\displaystyle [6_{0}3_{0}2_{0}]}
176P63/mP 63/mΓhC6h2{\displaystyle \Gamma _{h}C_{6h}^{2}}81a(c:(a/a))m:63{\displaystyle (c:(a/a))\cdot m:6_{3}}[633021]{\displaystyle [6_{3}3_{0}2_{1}]}
177622226{\displaystyle 226}P622P 6 2 2ΓhD61{\displaystyle \Gamma _{h}D_{6}^{1}}54s(c:(a/a))2:6{\displaystyle (c:(a/a))\cdot 2:6}(603020){\displaystyle (*6_{0}3_{0}2_{0})}
178P6122P 61 2 2ΓhD62{\displaystyle \Gamma _{h}D_{6}^{2}}82a(c:(a/a))2:61{\displaystyle (c:(a/a))\cdot 2:6_{1}}(613121){\displaystyle (*6_{1}3_{1}2_{1})}
179P6522P 65 2 2ΓhD63{\displaystyle \Gamma _{h}D_{6}^{3}}83a(c:(a/a))2:65{\displaystyle (c:(a/a))\cdot 2:6_{5}}(613121){\displaystyle (*6_{1}3_{1}2_{1})}
180P6222P 62 2 2ΓhD64{\displaystyle \Gamma _{h}D_{6}^{4}}84a(c:(a/a))2:62{\displaystyle (c:(a/a))\cdot 2:6_{2}}(623220){\displaystyle (*6_{2}3_{2}2_{0})}
181P6422P 64 2 2ΓhD65{\displaystyle \Gamma _{h}D_{6}^{5}}85a(c:(a/a))2:64{\displaystyle (c:(a/a))\cdot 2:6_{4}}(623220){\displaystyle (*6_{2}3_{2}2_{0})}
182P6322P 63 2 2ΓhD66{\displaystyle \Gamma _{h}D_{6}^{6}}86a(c:(a/a))2:63{\displaystyle (c:(a/a))\cdot 2:6_{3}}(633021){\displaystyle (*6_{3}3_{0}2_{1})}
1836mm66{\displaystyle *66}P6mmP 6 m mΓhC6v1{\displaystyle \Gamma _{h}C_{6v}^{1}}50s(c:(a/a)):m6{\displaystyle (c:(a/a)):m\cdot 6}(632){\displaystyle (*{\cdot }6{\cdot }3{\cdot }2)}
184P6ccP 6 c cΓhC6v2{\displaystyle \Gamma _{h}C_{6v}^{2}}44h(c:(a/a)):c~6{\displaystyle (c:(a/a)):{\tilde {c}}\cdot 6}(:6:3:2){\displaystyle (*{:}6{:}3{:}2)}
185P63cmP 63 c mΓhC6v3{\displaystyle \Gamma _{h}C_{6v}^{3}}80a(c:(a/a)):c~63{\displaystyle (c:(a/a)):{\tilde {c}}\cdot 6_{3}}(6:3:2){\displaystyle (*{\cdot }6{:}3{:}2)}
186P63mcP 63 m cΓhC6v4{\displaystyle \Gamma _{h}C_{6v}^{4}}79a(c:(a/a)):m63{\displaystyle (c:(a/a)):m\cdot 6_{3}}(:632){\displaystyle (*{:}6{\cdot }3{\cdot }2)}
1876m2223{\displaystyle *223}P6m2P6 m 2ΓhD3h1{\displaystyle \Gamma _{h}D_{3h}^{1}}48s(c:(a/a)):m3:m{\displaystyle (c:(a/a)):m\cdot 3:m}[333]{\displaystyle [*{\cdot }3{\cdot }3{\cdot }3]}
188P6c2P6 c 2ΓhD3h2{\displaystyle \Gamma _{h}D_{3h}^{2}}43h(c:(a/a)):c~3:m{\displaystyle (c:(a/a)):{\tilde {c}}\cdot 3:m}[:3:3:3]{\displaystyle [*{:}3{:}3{:}3]}
189P62mP6 2 mΓhD3h3{\displaystyle \Gamma _{h}D_{3h}^{3}}47s(c:(a/a))m:3m{\displaystyle (c:(a/a))\cdot m:3\cdot m}[303]{\displaystyle [3_{0}{*}{\cdot }3]}
190P62cP6 2 cΓhD3h4{\displaystyle \Gamma _{h}D_{3h}^{4}}42h(c:(a/a))m:3c~{\displaystyle (c:(a/a))\cdot m:3\cdot {\tilde {c}}}[30:3]{\displaystyle [3_{0}{*}{:}3]}
1916/m 2/m 2/m226{\displaystyle *226}P6/mmmP 6/m 2/m 2/mΓhD6h1{\displaystyle \Gamma _{h}D_{6h}^{1}}58s(c:(a/a))m:6m{\displaystyle (c:(a/a))\cdot m:6\cdot m}[632]{\displaystyle [*{\cdot }6{\cdot }3{\cdot }2]}
192P6/mccP 6/m 2/c 2/cΓhD6h2{\displaystyle \Gamma _{h}D_{6h}^{2}}48h(c:(a/a))m:6c~{\displaystyle (c:(a/a))\cdot m:6\cdot {\tilde {c}}}[:6:3:2]{\displaystyle [*{:}6{:}3{:}2]}
193P63/mcmP 63/m 2/c 2/mΓhD6h3{\displaystyle \Gamma _{h}D_{6h}^{3}}87a(c:(a/a))m:63c~{\displaystyle (c:(a/a))\cdot m:6_{3}\cdot {\tilde {c}}}[6:3:2]{\displaystyle [*{\cdot }6{:}3{:}2]}
194P63/mmcP 63/m 2/m 2/cΓhD6h4{\displaystyle \Gamma _{h}D_{6h}^{4}}88a(c:(a/a))m:63m{\displaystyle (c:(a/a))\cdot m:6_{3}\cdot m}[:632]{\displaystyle [*{:}6{\cdot }3{\cdot }2]}

List of cubic

[edit]
Cubic Bravais lattice
Simple (P)Body centered (I)Face centered (F)
Example cubic structures
Cubic crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovConwayFibrifold (preservingz{\displaystyle z})Fibrifold (preservingx{\displaystyle x},y{\displaystyle y},z{\displaystyle z})
19523332{\displaystyle 332}P23P 2 3ΓcT1{\displaystyle \Gamma _{c}T^{1}}59s(a:a:a):2/3{\displaystyle \left(a:a:a\right):2/3}2{\displaystyle 2^{\circ }}(20202020):3{\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}3}(20202020):3{\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}3}
196F23F 2 3ΓcfT2{\displaystyle \Gamma _{c}^{f}T^{2}}61s(a+c2/b+c2/a+b2:a:a:a):2/3{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):2/3}1{\displaystyle 1^{\circ }}(20212021):3{\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}3}(20212021):3{\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}3}
197I23I 2 3ΓcvT3{\displaystyle \Gamma _{c}^{v}T^{3}}60s(a+b+c2/a:a:a):2/3{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):2/3}4{\displaystyle 4^{\circ \circ }}(212020):3{\displaystyle (2_{1}{*}2_{0}2_{0}){:}3}(212020):3{\displaystyle (2_{1}{*}2_{0}2_{0}){:}3}
198P213P 21 3ΓcT4{\displaystyle \Gamma _{c}T^{4}}89a(a:a:a):21/3{\displaystyle \left(a:a:a\right):2_{1}/3}1/4{\displaystyle 1^{\circ }/4}(2121ׯ):3{\displaystyle (2_{1}2_{1}{\bar {\times }}){:}3}(2121ׯ):3{\displaystyle (2_{1}2_{1}{\bar {\times }}){:}3}
199I213I 21 3ΓcvT5{\displaystyle \Gamma _{c}^{v}T^{5}}90a(a+b+c2/a:a:a):21/3{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):2_{1}/3}2/4{\displaystyle 2^{\circ }/4}(202121):3{\displaystyle (2_{0}{*}2_{1}2_{1}){:}3}(202121):3{\displaystyle (2_{0}{*}2_{1}2_{1}){:}3}
2002/m332{\displaystyle 3{*}2}Pm3P 2/m3ΓcTh1{\displaystyle \Gamma _{c}T_{h}^{1}}62s(a:a:a)m/6~{\displaystyle \left(a:a:a\right)\cdot m/{\tilde {6}}}4{\displaystyle 4^{-}}[2222]:3{\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}3}[2222]:3{\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}3}
201Pn3P 2/n3ΓcTh2{\displaystyle \Gamma _{c}T_{h}^{2}}49h(a:a:a)ab~/6~{\displaystyle \left(a:a:a\right)\cdot {\widetilde {ab}}/{\tilde {6}}}4+{\displaystyle 4^{\circ +}}(2¯12020):3{\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}3}(2¯12020):3{\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}3}
202Fm3F 2/m3ΓcfTh3{\displaystyle \Gamma _{c}^{f}T_{h}^{3}}64s(a+c2/b+c2/a+b2:a:a:a)m/6~{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right)\cdot m/{\tilde {6}}}2{\displaystyle 2^{-}}[22:2:2]:3{\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}3}[22:2:2]:3{\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}3}
203Fd3F 2/d3ΓcfTh4{\displaystyle \Gamma _{c}^{f}T_{h}^{4}}50h(a+c2/b+c2/a+b2:a:a:a)12ab~/6~{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right)\cdot {\tfrac {1}{2}}{\widetilde {ab}}/{\tilde {6}}}2+{\displaystyle 2^{\circ +}}(2¯2021):3{\displaystyle (2{\bar {*}}2_{0}2_{1}){:}3}(2¯2021):3{\displaystyle (2{\bar {*}}2_{0}2_{1}){:}3}
204Im3I 2/m3ΓcvTh5{\displaystyle \Gamma _{c}^{v}T_{h}^{5}}63s(a+b+c2/a:a:a)m/6~{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right)\cdot m/{\tilde {6}}}8{\displaystyle 8^{-\circ }}[2122]:3{\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]{:}3}[2122]:3{\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]{:}3}
205Pa3P 21/a3ΓcTh6{\displaystyle \Gamma _{c}T_{h}^{6}}91a(a:a:a)a~/6~{\displaystyle \left(a:a:a\right)\cdot {\tilde {a}}/{\tilde {6}}}2/4{\displaystyle 2^{-}/4}(212¯:):3{\displaystyle (2_{1}2{\bar {*}}{:}){:}3}(212¯:):3{\displaystyle (2_{1}2{\bar {*}}{:}){:}3}
206Ia3I 21/a3ΓcvTh7{\displaystyle \Gamma _{c}^{v}T_{h}^{7}}92a(a+b+c2/a:a:a)a~/6~{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right)\cdot {\tilde {a}}/{\tilde {6}}}4/4{\displaystyle 4^{-}/4}(212:2:2):3{\displaystyle (*2_{1}2{:}2{:}2){:}3}(212:2:2):3{\displaystyle (*2_{1}2{:}2{:}2){:}3}
207432432{\displaystyle 432}P432P 4 3 2ΓcO1{\displaystyle \Gamma _{c}O^{1}}68s(a:a:a):4/3{\displaystyle \left(a:a:a\right):4/3}4{\displaystyle 4^{\circ -}}(404020):3{\displaystyle (*4_{0}4_{0}2_{0}){:}3}(20202020):6{\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
208P4232P 42 3 2ΓcO2{\displaystyle \Gamma _{c}O^{2}}98a(a:a:a):42//3{\displaystyle \left(a:a:a\right):4_{2}//3}4+{\displaystyle 4^{+}}(424220):3{\displaystyle (*4_{2}4_{2}2_{0}){:}3}(20202020):6{\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
209F432F 4 3 2ΓcfO3{\displaystyle \Gamma _{c}^{f}O^{3}}70s(a+c2/b+c2/a+b2:a:a:a):4/3{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4/3}2{\displaystyle 2^{\circ -}}(424021):3{\displaystyle (*4_{2}4_{0}2_{1}){:}3}(20212021):6{\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
210F4132F 41 3 2ΓcfO4{\displaystyle \Gamma _{c}^{f}O^{4}}97a(a+c2/b+c2/a+b2:a:a:a):41//3{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4_{1}//3}2+{\displaystyle 2^{+}}(434120):3{\displaystyle (*4_{3}4_{1}2_{0}){:}3}(20212021):6{\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
211I432I 4 3 2ΓcvO5{\displaystyle \Gamma _{c}^{v}O^{5}}69s(a+b+c2/a:a:a):4/3{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):4/3}8+{\displaystyle 8^{+\circ }}(424021):3{\displaystyle (4_{2}4_{0}2_{1}){:}3}(212020):6{\displaystyle (2_{1}{*}2_{0}2_{0}){:}6}
212P4332P 43 3 2ΓcO6{\displaystyle \Gamma _{c}O^{6}}94a(a:a:a):43//3{\displaystyle \left(a:a:a\right):4_{3}//3}2+/4{\displaystyle 2^{+}/4}(4121):3{\displaystyle (4_{1}{*}2_{1}){:}3}(2121ׯ):6{\displaystyle (2_{1}2_{1}{\bar {\times }}){:}6}
213P4132P 41 3 2ΓcO7{\displaystyle \Gamma _{c}O^{7}}95a(a:a:a):41//3{\displaystyle \left(a:a:a\right):4_{1}//3}2+/4{\displaystyle 2^{+}/4}(4121):3{\displaystyle (4_{1}{*}2_{1}){:}3}(2121ׯ):6{\displaystyle (2_{1}2_{1}{\bar {\times }}){:}6}
214I4132I 41 3 2ΓcvO8{\displaystyle \Gamma _{c}^{v}O^{8}}96a(a+b+c2/:a:a:a):41//3{\displaystyle \left({\tfrac {a+b+c}{2}}/:a:a:a\right):4_{1}//3}4+/4{\displaystyle 4^{+}/4}(434120):3{\displaystyle (*4_{3}4_{1}2_{0}){:}3}(202121):6{\displaystyle (2_{0}{*}2_{1}2_{1}){:}6}
21543m332{\displaystyle *332}P43mP4 3 mΓcTd1{\displaystyle \Gamma _{c}T_{d}^{1}}65s(a:a:a):4~/3{\displaystyle \left(a:a:a\right):{\tilde {4}}/3}2:2{\displaystyle 2^{\circ }{:}2}(4420):3{\displaystyle (*4{\cdot }42_{0}){:}3}(20202020):6{\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
216F43mF4 3 mΓcfTd2{\displaystyle \Gamma _{c}^{f}T_{d}^{2}}67s(a+c2/b+c2/a+b2:a:a:a):4~/3{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):{\tilde {4}}/3}1:2{\displaystyle 1^{\circ }{:}2}(4421):3{\displaystyle (*4{\cdot }42_{1}){:}3}(20212021):6{\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
217I43mI4 3 mΓcvTd3{\displaystyle \Gamma _{c}^{v}T_{d}^{3}}66s(a+b+c2/a:a:a):4~/3{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):{\tilde {4}}/3}4:2{\displaystyle 4^{\circ }{:}2}(44:2):3{\displaystyle (*{\cdot }44{:}2){:}3}(212020):6{\displaystyle (2_{1}{*}2_{0}2_{0}){:}6}
218P43nP4 3 nΓcTd4{\displaystyle \Gamma _{c}T_{d}^{4}}51h(a:a:a):4~//3{\displaystyle \left(a:a:a\right):{\tilde {4}}//3}4{\displaystyle 4^{\circ }}(4:420):3{\displaystyle (*4{:}42_{0}){:}3}(20202020):6{\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
219F43cF4 3 cΓcfTd5{\displaystyle \Gamma _{c}^{f}T_{d}^{5}}52h(a+c2/b+c2/a+b2:a:a:a):4~//3{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):{\tilde {4}}//3}2{\displaystyle 2^{\circ \circ }}(4:421):3{\displaystyle (*4{:}42_{1}){:}3}(20212021):6{\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
220I43dI4 3 dΓcvTd6{\displaystyle \Gamma _{c}^{v}T_{d}^{6}}93a(a+b+c2/a:a:a):4~//3{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):{\tilde {4}}//3}4/4{\displaystyle 4^{\circ }/4}(4¯21):3{\displaystyle (4{\bar {*}}2_{1}){:}3}(202121):6{\displaystyle (2_{0}{*}2_{1}2_{1}){:}6}
2214/m3 2/m432{\displaystyle *432}Pm3mP 4/m3 2/mΓcOh1{\displaystyle \Gamma _{c}O_{h}^{1}}71s(a:a:a):4/6~m{\displaystyle \left(a:a:a\right):4/{\tilde {6}}\cdot m}4:2{\displaystyle 4^{-}{:}2}[442]:3{\displaystyle [*{\cdot }4{\cdot }4{\cdot }2]{:}3}[2222]:6{\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}6}
222Pn3nP 4/n3 2/nΓcOh2{\displaystyle \Gamma _{c}O_{h}^{2}}53h(a:a:a):4/6~abc~{\displaystyle \left(a:a:a\right):4/{\tilde {6}}\cdot {\widetilde {abc}}}8{\displaystyle 8^{\circ \circ }}(404:2):3{\displaystyle (*4_{0}4{:}2){:}3}(2¯12020):6{\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}6}
223Pm3nP 42/m3 2/nΓcOh3{\displaystyle \Gamma _{c}O_{h}^{3}}102a(a:a:a):42//6~abc~{\displaystyle \left(a:a:a\right):4_{2}//{\tilde {6}}\cdot {\widetilde {abc}}}8{\displaystyle 8^{\circ }}[4:42]:3{\displaystyle [*{\cdot }4{:}4{\cdot }2]{:}3}[2222]:6{\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}6}
224Pn3mP 42/n3 2/mΓcOh4{\displaystyle \Gamma _{c}O_{h}^{4}}103a(a:a:a):42//6~m{\displaystyle \left(a:a:a\right):4_{2}//{\tilde {6}}\cdot m}4+:2{\displaystyle 4^{+}{:}2}(4242):3{\displaystyle (*4_{2}4{\cdot }2){:}3}(2¯12020):6{\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}6}
225Fm3mF 4/m3 2/mΓcfOh5{\displaystyle \Gamma _{c}^{f}O_{h}^{5}}73s(a+c2/b+c2/a+b2:a:a:a):4/6~m{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4/{\tilde {6}}\cdot m}2:2{\displaystyle 2^{-}{:}2}[44:2]:3{\displaystyle [*{\cdot }4{\cdot }4{:}2]{:}3}[22:2:2]:6{\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}6}
226Fm3cF 4/m3 2/cΓcfOh6{\displaystyle \Gamma _{c}^{f}O_{h}^{6}}54h(a+c2/b+c2/a+b2:a:a:a):4/6~c~{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4/{\tilde {6}}\cdot {\tilde {c}}}4{\displaystyle 4^{--}}[4:4:2]:3{\displaystyle [*{\cdot }4{:}4{:}2]{:}3}[22:2:2]:6{\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}6}
227Fd3mF 41/d3 2/mΓcfOh7{\displaystyle \Gamma _{c}^{f}O_{h}^{7}}100a(a+c2/b+c2/a+b2:a:a:a):41//6~m{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4_{1}//{\tilde {6}}\cdot m}2+:2{\displaystyle 2^{+}{:}2}(4142):3{\displaystyle (*4_{1}4{\cdot }2){:}3}(2¯2021):6{\displaystyle (2{\bar {*}}2_{0}2_{1}){:}6}
228Fd3cF 41/d3 2/cΓcfOh8{\displaystyle \Gamma _{c}^{f}O_{h}^{8}}101a(a+c2/b+c2/a+b2:a:a:a):41//6~c~{\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4_{1}//{\tilde {6}}\cdot {\tilde {c}}}4++{\displaystyle 4^{++}}(414:2):3{\displaystyle (*4_{1}4{:}2){:}3}(2¯2021):6{\displaystyle (2{\bar {*}}2_{0}2_{1}){:}6}
229Im3mI 4/m3 2/mΓcvOh9{\displaystyle \Gamma _{c}^{v}O_{h}^{9}}72s(a+b+c2/a:a:a):4/6~m{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):4/{\tilde {6}}\cdot m}8:2{\displaystyle 8^{\circ }{:}2}[44:2]:3{\displaystyle [*{\cdot }4{\cdot }4{:}2]{:}3}[2122]:6{\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]{:}6}
230Ia3dI 41/a3 2/dΓcvOh10{\displaystyle \Gamma _{c}^{v}O_{h}^{10}}99a(a+b+c2/a:a:a):41//6~12abc~{\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):4_{1}//{\tilde {6}}\cdot {\tfrac {1}{2}}{\widetilde {abc}}}8/4{\displaystyle 8^{\circ }/4}(414:2):3{\displaystyle (*4_{1}4{:}2){:}3}(212:2:2):6{\displaystyle (*2_{1}2{:}2{:}2){:}6}

Notes

[edit]
  1. ^The symbole{\displaystyle e} was introduced by theIUCR in 1992. Prior to this, the space groups Aem2 (No. 39), Aea2 (No. 41), Cmce (No. 64), Cmme (No. 67), and Ccce (No. 68) were known as Abm2 (No. 39), Aba2 (No. 41), Cmca (No. 64), Cmma (No. 67), and Ccca (No. 68) respectively. Historical literature may refer to the old names, but their meaning is unchanged.[1]

References

[edit]
  1. ^de Wolff, P. M.; Billiet, Y.; Donnay, J. D. H.; Fischer, W.; Galiulin, R. B.; Glazer, A. M.; Hahn, T.; Senechal, M.; Shoemaker, D. P.; Wondratschek, H.; Wilson, A. J. C.; Abrahams, S. C. (1992-09-01)."Symbols for symmetry elements and symmetry operations. Final report of the IUCr Ad-Hoc Committee on the Nomenclature of Symmetry".Acta Crystallographica Section A.48 (5):727–732.Bibcode:1992AcCrA..48..727D.doi:10.1107/s0108767392003428.ISSN 0108-7673.
  2. ^Bradley, C. J.; Cracknell, A. P. (2010).The mathematical theory of symmetry in solids: representation theory for point groups and space groups. Oxford New York: Clarendon Press. pp. 127–134.ISBN 978-0-19-958258-7.OCLC 859155300.

External links

[edit]
Wikimedia Commons has media related toSpace groups.
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_space_groups&oldid=1269136337"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp