Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of smallest known stars

From Wikipedia, the free encyclopedia

This is a list of the smallest knownstars,brown dwarfs andstellar remnants, sorted by increasing size. The list is divided into sublists, and contain notable objects up to 350,000 km in radius, or 0.50 R, as well as all red dwarfs smaller than 0.1 R and all neutron stars with accurately measured radii.

0 to 1,000 km

[edit]

Partial list containing stars up to 0.0014R.

Star nameStar radius,kilometresStar classNotesReferences
SGR J1935+21544.35+1.95
−1.35
Magnetar[1]
RX J0720.4−31254.50+0.08
−0.09
 – 5.38+0.13
−0.14
Neutron star[2]
LMC X-48.301±0.2Pulsar[3]
Hercules X-18.10±0.41[3]
Centaurus X-39.178±0.130[3]
Vela X-19.56±0.0[3]
HESS J1731-34710.40+0.86
−0.78
Neutron starLightest neutron star ever discovered, at a mass of0.77 M.[4][5][4]
PSR J0348+0432 A11–15PulsarHas awhite dwarf companion.[6]
PSR J0437−4715>11.1Most stable known natural clock.[7]
GW170817 A11.9±0.4[3]
GW170817 B11.9±0.4[3]
PSR J1906+074611.99–12.85[8]
RX J1856.5−375412.1+1.3
−1.6
Neutron starNearest known neutron star.[7]
PSR J2043+171112.13–12.96Pulsar[8]
PSR J1933-621112.15–12.98[8]
PSR J0952–0607 A12.245+0.685
−0.315
Most massive neutron star so far discovered.[9]
4U 1702−42912.4±0.4Neutron star[10]
Vela pulsar12.52–13.30Pulsar[8]
PSR J1614−223013±2[3]
PSR J0348+043213±2[3]
PSR J0740+662013.7+2.6
−1.5
[11]
ZTF J1406+1422 A14Neutron starHas a substellar companion orbiting it closely.[12]

1,000 to 50,000 km

[edit]

Partial list containing stars from 0.0014 to 0.0718R.

Star nameStar radius,kilometresStar radius,RStar classNotesReferences
ZTF J1901+14582,1400.003076+0.000230
−0.000331
White dwarfThe most massive white dwarf so far discovered, around 1.3 times more massive than the Sun, close to the mass limit of any white dwarf (theChandrasekhar limit),[13] and is also a candidatewhite dwarf pulsar.[14][13]
RE J0317-8532,2000.0032Also among the most massive white dwarfs.[15]
WD12,2300.00321+0.00040
−0.00036
An ultramassive white dwarf ejected from theHyades. At a mass of 1.317 M, it is possibly the most massive known white dwarf consistent with single-star evolution.[a][16]
T Coronae Borealis3,1300.0045Expected to become a nova in the near future, its apparent magnitude may increase up to 2.0.[17][18]
Janus3,4000.004887+0.0010
−0.00086
A white dwarf with a side of hydrogen and another side of helium.[19]
Wolf 1130 B3,5000.005Nearestcandidate for a supernova, atype Ia supernova.[20][20]
HD 49798 B3,5800.00515[21]
BPM 370934,0600.00583±0.00008[22]
IK Pegasi B4,2000.006[23]
U Geminorum A4,4100.00634±0.00016[24]
WD 2317+18305,5170.00793±0.00021[25]
BW Sculptoris5,5700.00800+0.00014
−0.00011
[24]
Sirius B5,6340.008098±0.000046Historically first discovered white dwarf, and the closest example to Earth.[26]
GRW +70 8247
(Gliese 742)
5,9600.0086[27][b]
Gamma Cassiopeiae Ab6,0000.00862+0.00009
−0.00046
[28]
AN Ursae Majoris6,3000.0091[29]
Pi1 Gruis C6,3000.009±0.002White dwarf orK/F dwarfStatus has been inferred only from its mass of0.86+0.22
−0.20
 M
. If a K-type or F-type dwarf, its radius is expected to be0.80+0.34
−0.17
 R
.
[30]
Gliese 9156,7500.0097±0.0001White dwarf[31]
LP 658-26,7780.0097[32]
BZ Ursae Majoris A6,8800.00989[33]
AE Aquarii A7,0000.01First discovered white dwarf pulsar.[34]
AR Scorpii A7,0000.01A white dwarf pulsar. It is often mistaken as the first discovered white dwarf pulsar.[35]
QS Virginis A6,9600.010±0.001[36]
YZ Leonis Minoris7,0000.01[37]
GW Librae7,1700.0103+0.0015
−0.0010
[24]
WZ Sagittae7,3000.0105±0.0013[24]
MY Apodis7,6500.011±0.001[38]
OY Carinae A7,6500.011[39]
TMTS J0526+5934 A7,6500.011[40]
G 99-477,6500.011[32]
EX Hydrae7,6500.011[41]
RX Andromedae7,7900.0112+0.0012
−0.0008
[24]
van Maanen 27,8600.01129 ± 0.00066Third-closest white dwarf.[42]
Stein 2051 B7,9300.0114±0.0004[43]
G 107-70 B8,2240.0118[32]
Ross 548
(ZZ Ceti)
8,2090.0118±0.0002[44]
39 Ceti B
(AY Ceti B)
8,3500.012[45]
Mira B
(VZ Ceti)
8,3500.012[46]
WD 1054−2268,3500.012±0.001[47]
Gliese 4408,5500.0123 ± 0.0009Fourth-closest white dwarf.[42]
Procyon B8,5850.01234±0.00032Second-closest white dwarf.[48]
GD 165 A8,6270.0124±0.0003[32]
Epsilon2 Arae C8,6270.0124±0.0003[31]
WD 0806−661
(Maru)
8,8600.0127Has one confirmed exoplanet.[32]
SW Ursae Majoris8,9750.0129+0.0009
−0.0010
[24]
Epsilon Reticuli B8,975–9,8090.0129–0.0141[49]
G 29-388,9750.0129[42]
AM Herculis A9,0400.013+0.0017
−0.0014
[24]
40 Eridani B9,1000.01308±0.0002Fifth-closest white dwarf.[50]
TY Coronae Borealis9,1100.0131±0.0014[31]
HD 147513 B9,1440.0131[42]
GD 358
(V777 Herculis)
9,1700.0132[51]
Wolf 4899,1700.0132[32]
GALEX J2339−04249,2530.0133±0.0008[52]
G 107-70 A9,4120.0135[32]
Wolf 13469,6700.0139±0.0006[31]
WD 1032+011 A10,2300.0147±0.0013[53]
Gliese 31810,3000.0148[42]
RR Caeli A10,9090.01568±0.00009[54]
HL Tau 7611,2700.0162[55]
PG 1159-03516,140 or 17,6700.0232 or0.0254±0.005PG 1159 star
(Pre-degenerate)
PG 1159 stars are pre-white dwarfs.[56]
WD 2226−21017,3900.025±0.001White dwarfLocated inHelix Nebula[57]
WD 0032−317 A18,5100.0266±0.0012[58]
Feige 5519,4600.027965[59][c]
ZTF J1406+1422 B20,2000.029Brown dwarfA highly-irradiated brown dwarf with an orbital period of 62 minutes and a dayside surface temperature of10,462 K,[12] comparable toA-type stars such asVega andSirius.[12]
KPD 0005+510641,0000.059+0.031
−0.018
Pre-white dwarfHas one unconfirmed exoplanet.[60]
AG Pegasi B41,7000.06White dwarfIn asymbiotic binary with AG Peg A, has underwent many mass transfer events, varying in radius, luminosity and temperature.[61]
Regulus Ab42,4400.061±0.011Pre-white dwarf[62]
PSR J0348+0432 B45,2200.065±0.005White dwarfOrbiting a pulsar.[63]
TMTS J0526+5934 B45,9900.0661±0.0054Subdwarf B starSmallest known hydrogen-burning star.[40]
WISEA 1810−101046,6100.067+0.032
−0.02
Brown dwarf[64]

50,000 to 125,000 km

[edit]

Partial list containing stars from 0.0718 to 0.18R.

Star nameStar radius,kilometresStar radius,RStar classNotesReferences
SCR 1845−6357 B50,0000.0719±0.01Brown dwarf[65]
DENIS 0255−470053,9860.0776±0.0060Faintest brown dwarf with a measuredvisual magnitude.[66]
BE Ursae Majoris A54,3000.078±0.004Subdwarf O star[67]
LP 40-36554,3000.078+0.040
−0.020
White dwarfA white dwarf that might have formed in atype Iax supernova.[68]
SDSS J1007+193054,500~0.078Brown dwarfPotential member of the Regulus system, which could be one of the most widely-separated stellar systems. This brown dwarf is at 12.6 light-years from Regulus.[69][d]
WD 0032−317 B54,8900.0789+0.0085
−0.0083
A highly-irradiated brown dwarf with a dayside temperature hotter than the surface of Sun. Its dayside temperature measures 7,900 K (7,630 °C), while its nightside is much cooler, at 1,970 K (1,700 °C).[58]
WISE 1534–104355,3000.0794 ± 0.016This object has a very fast and unusual transverse velocity, and is believed to be very old and metal-poor to explain such unusual velocity.[70]
Epsilon Indi Ba55,7000.08–0.081[71]
WISE J0623-045655,800 or 79,4000.0802+0.0175
−0.0134
[72] or0.1141±0.0144[73]
LHS 6343 C56,3400.08098±0.00442[74]
Epsilon Indi Bb57,0500.082–0.083[71]
54 Piscium B57,9000.0832±0.0021[72]
Gliese 229 Ba57,9100.08324+0.00514
−0.01233
[75]
Wolf 1130 C58,6000.0843[76]
EBLM J0555−57Ab58,7200.0844+0.0131
−0.006
Red dwarfSmallest known red dwarf.[77]
Scholz's Star B58,7700.08447+0.0015
−0.0016
Brown dwarfA nearby star that passed through the Solar System'sOort cloud 80,000 years ago.[78]
EPIC 201702477b [fr]59,3400.0853±0.0041[79]
GJ 1245 C60,5300.087±0.004Red dwarf[80]
Gliese 229 Bb60,7700.0874+0.0123
−0.0051
Brown dwarf[75]
SSSPM J0829-130961,2200.088±0.003Red dwarfAn L2 dwarf that is fusing hydrogen. SSSPM J0829−1309 is one of the least luminous and massive hydrogen-fusing stars, and is smaller than Jupiter.[81][82]
HD 63754 B61,500–67,9000.0884–0.0976Brown dwarfAmong the most massive brown dwarfs.[83]
HD 72946 B61,5000.0884[84]
Gliese 570 D63,6290.09146+0.0051
−0.0041
[72]
2MASS 0243−245364,004–73,7440.092–0.106[85]
2MASS J0348−602264,7000.093+0.016
−0.010
[86]
WISE 0146+4234 A65,2700.0938+0.0024
−0.0026
[87]
Kelu-1 B65,400 to 72,5000.094 to 0.104[88][e]
SCR 1845−6357 A65,4700.0941±0.0039Red dwarf[66]
WISE 0146+4234 B65,6700.09944+0.0035
−0.0015
Brown dwarf[87]
SDSS J1416+1348 A65,7000.0945±0.0082[89]
Kelu-1 A66,000 to 74,9000.095 to 0.108[88][f]
47 Ophiuchi C66,5000.0956±0.001[73]
2MASS 0937+293167,2000.0966±0.0164[90]
2MASS J1047+2167,2000.0966±0.0164[90]
CoRoT-15b67,2000.0966±0.0123[79]
SDSS J1416+1348 B67,2000.0966±0.0164[89]
WISE 0359−540167,2000.0966±0.0021[91]
TVLM 513-4654667,480—75,8300.097–0.109Has one confirmed exoplanet.[92]
CWISEP J1935-154667,9000.0976±0.0143[93]
Eta Coronae Borealis C67,9000.0976±0.0031[73]
WISE 2150−7520 B67,9000.0976±0.0164[94]
LHS 1070 C68,1800.098Certainly abrown dwarf based on its mass.[95][96]
WASP-30B68,6700.0987±0.0031[79]
WASP-128B68,6700.0987±0.0021[79]
HD 33632 Ab69,3500.0997[97]
2MASS J0407+154669,5700.100+0.024
−0.008
[86]
2MASS J1219+312869,5700.100+0.027
−0.013
[86]
HD 114762 B69,5700.100Red dwarf[98]
R Aquarii B>70,000>0.1White dwarfMakes asymbiotic binary with its companion R Aquarii A, a red giant.[99]
EBLM J0954−2370,2660.101±0.017Red dwarf[77]
KOI-189 B70,474–71,7960.1013–0.1032[100]
Scholz's Star A70,9000.1019+0.0006
−0.0007
A nearby star that passed through the Solar System'sOort cloud 80,000 years ago.[78]
Gliese 569 Bb70,9600.102±0.020Brown dwarfFirst brown dwarf ever discovered, together with its companion Gliese 569 Ba, which were thought to be a single astronomical body at the time.[101]
Luhman 16 A70,9600.102±0.005Nearest brown dwarfs to Earth.[102]
Luhman 16 B70,9600.102±0.005[102]
HD 28736 B71,2800.1025±0.0024[103]
15 Sagittae B71,4920.1028±0.0411[104]
GD 165 B71,4920.1028±0.008[90]
LHS 1070 B72,3500.104Likely abrown dwarf based on its mass.[95][96]
WD 1032+011 B73,1900.1052±0.01A brown dwarf orbiting a white dwarf with an extremely low orbital period of 0.09 days (2.2 hours), both beingtidally locked to each other.[53][53]
WISE 2150-7520 A73,6400.1058±0.0062[94]
BW Sculptoris B73,6400.1058±0.0051[105]
Ross 614 B74,100~0.107Red dwarf[106]
LHS 292474,4400.107Was the smallest known star at its discovery.[107]
DENIS J1048−395675,1400.108[108]
VZ Piscium B75,8000.1089±0.0041Also called NLTT 56936 B[109] or HIP 115819 B.[110][73]
WISE 0607+242975,8000.1089±0.0175Brown dwarf[73]
ESO 207-6176,5000.11±0.02One of the first brown dwarfs to be identified.[111][73]
Kepler-39b76,5000.11±0.0031Kepler-39 rotates rapidly with arotation period of 1.6 hours and hence has an oblate shape, with its equator length being 22% larger than the poles.[112][79]
CoRoT-3b77,2200.111±0.0051[79]
TOI-2119 B77,2200.111±0.0031[113]
2MASS 1237+652677,9300.112±0.016Has one unconfirmed exoplanet.[73]
LHS 206578,6100.113±0.006Red dwarf[114]
WISE J004945.61+215120.080,1000.1151±0.0123Brown dwarf[73]
2MASS J0523−140380,5000.1157±0.0065Red dwarf[66]
KELT-1B80,7700.1161±0.0031Brown dwarf[79]
LHS 29280,9800.1164±0.0044Red dwarfNot to be confused with LHS 2924 (see above)[66]
WISE 1405+553482,2200.1182±0.0021Brown dwarf[115]
vB 1082,3000.1183+0.0059
−0.0057
Red dwarf[114]
2M154082,7900.119[116][g]
EI Cancri B82,7900.119±0.021[117]
Gliese 569 Ba82,7900.119±0.020Brown dwarfFirst brown dwarf ever discovered, together with its companion Gliese 569 Bb, which were thought to be a single astronomical body at the time.[101]
TRAPPIST-182,9270.1192±0.0013Red dwarfHosts a planetary system with seven confirmed planets.[118]
OGLE-TR-122B83,4800.120+0.024
−0.013
Was the smallest known star from 2005 to 2013.[119]
Teegarden's Star83,4800.120±0.012Has three confirmed exoplanets.[120]
G 196-3 B84,4000.1213±0.00719Brown dwarf[73]
Königstuhl 1 B84,4000.1213±0.0021[73]
vB 884,4580.1214+0.006
−0.0057
Red dwarf[114]
LS IV-14 11684,9000.122Subdwarf B star[121]
SPECULOOS-385,6000.123±0.0022Red dwarfHas one confirmed exoplanet.[122]
2MASS 0122-2439 B85,8000.1233±0.021[123]
DX Cancri85,9200.1235±0.0006[66]
LHS 209086,9600.125±0.005[66]
VHS J1256–1257b87,2000.125Brown dwarf[124]
LHS 28887,3800.1256±0.0042Red dwarf[66]
Gliese 412 B87,7970.1262±0.0054[125]
OY Carinae B88,3500.127[126]
AZ Cancri88,6300.1274±0.0195[73]
AS Leonis Minoris B90,400 – 355,0000.13–0.51White dwarf orSubdwarf B starAS Leonis Minoris is aneclipsing binary system made up of a luminousred giant (45–170 R) and a hot companion (AS LMi B). It has the longest period of any known eclipsing binary at 69 years.[127]
GJ 1245 B90,4000.13±0.007Red dwarf[128]
Gliese 623 B92,3500.133 ± 0.008[129][h]
Gliese 105 C92,4590.1329+0.0057
−0.0055
[130]
Teide 193,7110.1347+0.0123
−0.0077
Brown dwarfFirst brown dwarf to be confirmed.[131]
EI Cancri A94,6200.136±0.020Red dwarf[117]
Alpha Trianguli B97,4000.14[132]
LHS 1070 A97,4000.14[96]
HD 14938299,4850.143Subdwarf B star[133]
EZ Aquarii A(Luyten 789-6 A)99,4850.143±0.022Red dwarf[128]
EZ Aquarii B(Luyten 789-6 B)99,4850.143±0.022[128]
Wolf 359100,1800.144±0.004Fifth-nearest star system to Earth.[114]
DENIS-P J1058.7−1548101,5000.1459±0.001Brown dwarf[73]
GJ 1245 A101,5700.146±0.007Red dwarf[80]
LP 944-20102,9000.1479±0.0144Brown dwarfAmong the brightest brown dwarfs.[73]
Wolf 424 A104,3500.150±0.019Red dwarf[117]
NY Virginis A105,0000.151±0.001Subdwarf B star[134]
EX Hydrae B105,3000.1513Red dwarf[41]
GJ 1061105,7500.152±0.007Has three confirmed exoplanets.[114]
Wolf 424 B106,4400.153±0.019[117]
Proxima Centauri107,2800.1542±0.0045The nearest extrasolar star. Has one confirmed planet, one candidate, and one disputed[135]
85 Pegasi Bb107,8300.155[136]
Gliese 65 B(Luyten 726-8 B)110,6200.159±0.006The Gliese 65 system may host aNeptune-mass planet.[137]
NY Virginis B111,3100.16[138]
GL Virginis111,5200.1603±0.0053[139]
TZ Arietis(GJ 9066)112,0100.161±0.014Has one confirmed exoplanet.[128]
2M1510 Aa112,6000.16185Brown dwarfThe system has a candidate planet (2M1510 b) that orbits on apolar orbit around 2M1510AB, making this planet the first planet discovered orbiting polar around abinary system.[140][141][142][143]
2M1510 Ab112,6000.16185
Gliese 65 A(Luyten 726-8 A)114,7900.165±0.006Red dwarfThe Gliese 65 system may host aNeptune-mass planet.[137]
Kepler-451 B116,8800.168±0.001[144]
YZ Ceti116,8800.168±0.009Has three confirmed exoplanets.[145]
HR 858 B118,0000.17±0.04[146]
LP 791-18118,0000.17±0.018Has three confirmed exoplanets.[147]
UY Sextantis118,0000.17±0.01Subdwarf B star[148]
Z Andromedae B118,000 to 250,0000.17±0.03 to0.36±0.06White dwarfMakes asymbiotic binary with its companion Z Andromedae A, a red giant.[149]
HIP 81208 Cb122,1000.175 ± 0.009Brown dwarf[150]
AB Doradus C124,0000.178Red dwarfAmong the least massive stars confirmed.[151][i]
Gliese 22 B124,5300.179±0.009[80]

125,000 to 200,000 km

[edit]

Partial list containing stars from 0.18 to 0.287R.

Star nameStar radius,kilometresStar radius,RStar classNotesReferences
Groombridge 34 B
(Gliese 15 B)
125,2300.18±0.03Red dwarf[152]
HW Virginis A127,3100.183±0.026Subdwarf B star[153]
HU Delphini A128,0100.184±0.004Red dwarf[128]
Gliese 29 B129,4000.186±0.014[154]
GJ 3323129,5400.1862±0.0059Has two confrirmed exoplanets.[139]
Barnard's Star130,1000.187±0.001Second-nearest star system to the Solar System. The star with the highestproper motion. Has three confirmed exoplanets.[114]
Alpha Mensae B132,1800.19±0.01[155]
GJ 1128132,0000.190±0.014[128]
Ross 248
(HH Andromedae)
132,1800.19[125]
Ross 128(Gliese 447)137,7500.198±0.007Has one confirmed exoplanet.[114]
Ross 154(V1216 Sagittarii)139,1400.200±0.008[114]
GJ 1062140,5000.202±0.012Red subdwarfAnother size estimates include0.372±0.076 R[156] and0.411±0.051 R.[157][158]
Kepler-70141,2000.203±0.007Subdwarf B starHas two unconfirmed exoplanets.[159]
Kepler-451 A141,2000.203±0.001Possibly has two exoplanets.[144]
RR Caeli B141,200—149,600(0.203–0.215) ± 0.015Red dwarf[160]
GJ 1214(Orkaria)141,9200.204+0.0085
−0.0084
Has one confirmed exoplanet.[114]
LHS 1140142,6000.205±0.008Has two confirmed exoplanets.[114]
Krüger 60 B145,4000.209±0.017[117]
Ross 508147,0000.2113±0.0063Has one confirmed exoplanet.[161]
GJ 1132149,5800.215±0.009[114]
QY Aurigae A151,6600.218±0.021[128]
QY Aurigae B151,6600.218±0.021[128]
Kepler-16 B157,3880.22623±0.00059Has one confirmed exoplanet.[162]
Fomalhaut C160,0000.23 ± 0.01[163][j]
V391 Pegasi160,0000.23Subdwarf B starHas one unconfirmed exoplanet.[164]
Gliese 777 B160,7100.231±0.025Red dwarf[128]
Kepler-1649161,1900.2317±0.0049Has two confirmed exoplanets.[165]
Eta Telescopii B163,0000.234±0.003Brown dwarf[166]
CM Draconis B165,1000.23732±0.00014Red dwarf[167]
Ross 47165,5800.238±0.009[114]
Kepler-429166,9700.24Subdwarf B starHas three unconfirmed exoplanets.[168]
2M1207 A172,0000.247+0.041
−0.082
Brown dwarf[169]
PZ Telescopii B173,9000.25+0.03
−0.04
[170]
CM Draconis A174,7100.25113±0.00016Red dwarf[167]
DG Canum Venaticorum A176,0100.253[156]
Ross 614 A176,7100.254±0.028[156]
Gliese 625177,4000.255±0.034[171]
Gliese 12182,0600.2617+0.0058
−0.0070
Has one confirmed exoplanet.[172]
HIP 79098 B185,8000.2672±0.0617Brown dwarf[123]
BX Trianguli B188,0000.27±0.01Red dwarfHas one confirmed exoplanet.[173]
V846 Arae B188,0000.27±0.04Subdwarf O star[174]
Mu Herculis C189,9300.273±0.032Red dwarf[128]
40 Eridani C190,6200.274±0.011[125]
Struve 2398 B194,8000.280±0.005[175]
Gliese 402197,5800.284±0.011[114]
GJ 3991197,5800.286±0.011[114]

200,000 to 275,000 km

[edit]

Partial list containing stars from 0.29 to 0.395 solar radii.

Star nameStar radius,kilometresStar radius,RStar classNotesReferences
Gliese 105 B201,0600.289+0.012
−0.011
Red dwarf[130]
CoRoT-7 B201,8000.29[176]
Mu Cassiopeiae Ab201,8000.29[177]
AP Columbae202,4000.291±0.009The nearestpre-main sequence star to Earth.[154]
Kapteyn's Star(VZ Pictoris)202,4000.291±0.025Red subdwarfClosesthalo star to the Sun. Previously believed to host an ancient planetary system with potential habitable planets.[178]
Stein 2051 A203,1000.292±0.031Red dwarf[171]
HN Librae208,0000.299±0.009Has one confirmed exoplanet.[179]
3 Puppis B210,0000.3Hot subdwarfThis star is loosing mass to theblue supergiant 3 Puppis A, this mass transfer generates a disk of circumstellar dust around the supergiant, which is unusual for an A-type star.[180]
LS Muscae B~210,0000.3±0.1Subdwarf O star[174]
Krüger 60 A209,4000.301±0.015Red dwarf[117]
Gliese 581210,1000.302±0.005Has three confirmed exoplanets.[181]
L 98-59210,8000.303+0.026
−0.023
Has four confirmed exoplanets and one unconfirmed.[182]
EQ Pegasi B210,8000.303±0.013[125]
Luyten's Star(Gliese 273)221,9300.319±0.004Has two confirmed exoplanets and two unconfirmed.[114]
Wolf 1061221,9300.319±0.007Has three confirmed exoplanets.[114]
GJ 3929223,0000.32±0.01Has two confrirmed exoplanets.[183]
Xi Ursae Majoris Ab223,0000.32[132]
Gliese 486(Gar)228,1900.328±0.011Has one confirmed exoplanet.[184]
YZ Canis Minoris228,1900.328±0.013[114]
LHS 1678228,8900.329±0.01Has three confirmed exoplanets.[185]
Regulus C231,0000.332±0.023[154]
AM Herculis B230,0000.33[186]
Wolf 1130 A230,0000.33Nearestcandidate for a supernova, atype Ia supernova.[20][187]
EV Lacertae230,2800.331±0.013On 25 April 2008, a record-settingstellar flare was observed on its surface byNASA'sSwift, that was thousands of times more powerful than any solar flare.[188][114]
Gliese 357231,6700.333Has three confirmed exoplanets.[156]
Gliese 667 C234,4500.337±0.014Has two confirmed exoplanets.[114]
Aldebaran B241,4100.347±0.034[133]
Struve 2398 A(Gliese 725 A)244,2000.351±0.003Has one confirmed exoplanet.[175]
Gliese 251253,2300.364±0.001[139]
Ross 458 A256,0200.368±0.031Has one confirmed exoplanet.[171]
2MASS 0122–2439 A257,0000.369 ± 0.048[189]
Furuhjelm 46 B257,0000.37±0.07[156]
Furuhjelm 46 A257,0000.37±0.07[156]
Innes' star258,1000.371±0.012[154]
Gliese 876
(IL Aquarii)
258,8000.372±0.004Has four confirmed exoplanets. First red dwarf known to host exoplanets.[114]
LHS 6343 A259,5000.373±0.005[190]
LTT 3780260,1900.374±0.011Has two confirmed exoplanets.[191]
Gliese 22 C261,5800.376±0.018[80]
TOI-270262,9700.378±0.011[192]
Gliese 1263,7000.379±0.002[193]
13 Ceti Ab264,0000.38[132]
GQ Lupi B264,0000.38±0.072Brown dwarf[123]
Groombridge 34 A(Gliese 15 A)267,8400.385±0.002Red dwarf[114]
Gliese 412 A272,7100.398±0.009[139]
Lalande 21185272,7100.392±0.004[114]
Gliese 22 B274,1100.394[194]
LHS 6343 B274,1100.394±0.012[190]

275,000 to 350,000 km

[edit]

Partial list containing stars from 0.395 to 0.5 solar radii.

Star nameStar radius,kilometresStar radius,RStar classNotesReferences
Gliese 570 C277,3000.399 ± 0.028Red dwarf[129][k]
Asellus Primus B(Theta Boötis B)279,1800.4013±0.012[139]
GJ 3293281,1000.404±0.027[195]
Gliese 623 A280,9000.404 ± 0.024[129][l]
Gliese 908(Lalande 46650)284,5400.409±0.023[158]
EQ Pegasi A284,5400.409±0.016Has one confirmed exoplanet.[125]
Gliese 163284,5400.409+0.017
−0.016
[114]
SDSS J001820.5−093939.2285,9300.411+0.090
−0.011
F-type starAmong the mostmetal-poor stars.[196]
Gliese 806288,3000.4144±0.0038Red dwarfHas three confirmed exoplanets.[197]
Gliese 317290,1100.4170±0.0013Has two confirmed exoplanets.[139]
Gliese 687291,2900.4187+0.0066
−0.0063
[114]
QS Virginis B292,0000.42±0.02[36]
TOI-700292,0000.420±0.031[198]
Gliese 180294,2100.4229±0.0047Has two confirmed exoplanets and one unconfirmed.[139]
AD Leonis294,4900.4233±0.0057[199]
Gliese 686297,0600.427±0.013[200]
GJ 3634300,0000.43±0.03Has one confirmed exoplanet.[201]
Iota Ursae Majoris B300,0000.43[202]
U Geminorum B300,0000.43±0.06[203]
Gliese 436300,5400.432±0.011Has one confirmed exoplanet.[114]
Gliese 393300,5400.432±0.025[158]
Sigma Coronae Borealis C304,0200.437±0.020[125]
Kappa1 Apodis B306,0000.44±0.06Subdwarf O star[174]
WR 93b306,0000.44Wolf-Rayet[204]
Gliese 832307,5000.442±0.018Red dwarf[114]
Alpha Caeli B313,0000.45[202]
Gliese 367(Anañuca)317,9300.457±0.013Has three confirmed exoplanets.[205]
Gliese 588320,0000.46±0.019[114]
Iota Ursae Majoris C320,0000.46[202]
Gliese 849322,8000.464±0.018[114]
BAT99-123(Brey 93)327,0000.47Wolf-Rayet[206]
Gliese 176329,7600.474±0.015Red dwarf[114]
Lacaille 9352329,7600.474±0.008[114]
Tau Boötis B333,9000.48±0.05[207]
Gliese 752 A334,6300.481±0.014[200]
UScoCTIO 108 A336,7200.484Brown dwarf[208][m]
Gliese 526338,8100.487±0.008Red dwarf[114]
UX Ursae Majoris B345,070–484,9000.496–0.697[209]
Theta Persei Ab346,5000.498±0.017[125]
GJ 3470(Kaewkosin)347,1500.499±0.021[114]
Gliese 22 A~350,000~0.5[210]
Kappa Reticuli B347,9000.50[211]
TOI-2119347,9000.500±0.015[113]

Smallest stars by type

[edit]
List of the smallest stars by star type
TypeStar nameRadius
Solar radii
(Sun = 1)
Radius
Jupiter radii
(Jupiter = 1)
Radius
Earth radii
(Earth = 1)
Radius
(km /mi)
DateNotesReferences
Red dwarfEBLM J0555−57Ab0.0840.849.4160,000 km (37,000 mi)2017The red dwarf stars are considered the smallest stars known, and representative of the smallest star possible.[212][213][214]
Brown dwarfZTF J1406+1422 B0.0290.2823.1620,200 kilometres (12,600 mi)2022Brown dwarfs are not massive enough to build up the pressure in the central regions to allow nuclear fusion of hydrogen into helium. They are best described as extremely massive gas giants that were not able to ignite into a hydrogen-fusing star.[12]
White dwarfZTF J1901+14580.00310.0300.342,140 km (1,330 mi)2021White dwarfs are stellar remnants produced when a star with around 8 solar masses or less sheds its outer layers into a planetary nebula. The leftover core becomes the white dwarf. It is thought that white dwarfs cool down over quadrillions of years to produce a black dwarf.[13]
Neutron starRX J0720.4−31250.0000064683 – 0.00000773320.00006294 – 0.000075250.0007055 – 0.00084354.50+0.08
−0.09
 – 5.38+0.13
−0.14
2012Neutron stars are stellar remnants produced when stars with around 9 solar masses or more explode in supernovae at the ends of their lives. They are usually produced by stars with less than 20 solar masses, although a more massive star may produce a neutron star in certain cases.[2]

Timeline of smallest red dwarf star recordholders

[edit]

Red dwarfs are considered the smallest star known that are active fusion stars, and are the smallest stars possible that is not abrown dwarf.

List of smallest red dwarf titleholders
Star nameDateRadius
Solar radii
(Sun = 1)
Radius
Jupiter radii
(Jupiter = 1)
Radius
km
(mi)
Notes
EBLM J0555−57Ab2017-0.0840.8460,000 km (37,000 mi)This star has a size comparable to that ofSaturn.[212][213][214]
2MASS J0523−14032013-20170.1021.0170,600 km (43,900 mi)Lowest mass main sequence star as of 2020.[215][81][216][90]
OGLE-TR-122B2005-20130.1171.1681,100 km (50,400 mi)[217][218][119]

Notes

[edit]
  1. ^"Single-star evolution" refer to a star that did not accreted mass from a companion (e.g. anova) nor formed by the merger of two stars or white dwarfs (e.g. ZTF J1901).
  2. ^ Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,77211,880)4102.88=0.00857 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{11,880}}{\biggr )}^{4}\cdot 10^{-2.88}}}=0.00857\ R_{\odot }}.
  3. ^ Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,77258,280)4100.91=0.02796 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{58,280}}{\biggr )}^{4}\cdot 10^{0.91}}}=0.02796\ R_{\odot }}.
  4. ^Calculated using surface gravity and mass, via the equation log(R/R) = 2.22 + 0.5 • log(M/M) − 0.5 • log(g).
  5. ^ Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,7721,840)4103.95=0.104 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{1,840}}{\biggr )}^{4}\cdot 10^{-3.95}}}=0.104\ R_{\odot }}(5,7721,840)4104.04=0.094 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{1,840}}{\biggr )}^{4}\cdot 10^{-4.04}}}=0.094\ R_{\odot }}.
  6. ^ Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,7722,020)4103.87=0.095 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,020}}{\biggr )}^{4}\cdot 10^{-3.87}}}=0.095\ R_{\odot }}(5,7722,020)4103.76=0.108 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,020}}{\biggr )}^{4}\cdot 10^{-3.76}}}=0.108\ R_{\odot }}
  7. ^Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,7722,621)4103.22=0.11905 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,621}}{\biggr )}^{4}\cdot 10^{-3.22}}}=0.11905\ R_{\odot }}.
  8. ^Calculated, using theStefan-Boltzmann law and the star'seffective temperature and luminosity, with respect to thesolar nominal effective temperature of 5,772 K:(5,7722,840)4102.986=0.133 R.{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,840}}{\biggr )}^{4}\cdot 10^{-2.986}}}=0.133\ R_{\odot }.}
  9. ^ Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,7722,925)40.0021=0.1784 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,925}}{\biggr )}^{4}\cdot 0.0021}}=0.1784\ R_{\odot }}.
  10. ^Calculated, using theStefan-Boltzmann law and the star'seffective temperature and luminosity, with respect to thesolar nominal effective temperature of5772 K:(57723,132)4102.337=0.23 R.{\displaystyle {\sqrt {{\biggl (}{\frac {5772}{3,132}}{\biggr )}^{4}\cdot 10^{-2.337}}}=0.23\ R_{\odot }.}
  11. ^Calculated, using theStefan-Boltzmann law and the star'seffective temperature and luminosity, with respect to thesolar nominal effective temperature of5772 K:(57723304)4101.768=0.399 R.{\displaystyle {\sqrt {{\biggl (}{\frac {5772}{3304}}{\biggr )}^{4}\cdot 10^{-1.768}}}=0.399\ R_{\odot }.}
  12. ^Calculated, using theStefan-Boltzmann law and the star'seffective temperature and luminosity, with respect to thesolar nominal effective temperature of 5,772 K:(5,7723,400)4101.707=0.404 R.{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{3,400}}{\biggr )}^{4}\cdot 10^{-1.707}}}=0.404\ R_{\odot }.}
  13. ^ Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,7722,700)4101.95=0.484 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,700}}{\biggr )}^{4}\cdot 10^{-1.95}}}=0.484\ R_{\odot }}.


References

[edit]
  1. ^Shao, Yi-Xuan; Zhou, Ping; Li, Xiang-Dong; Zhang, Bin-Bin; Castro-Tirado, Alberto Javier; Wang, Pei; Li, Di; Zhang, Zeng-Hua; Zhang, Zi-Jian; Hu, You-Dong; Pandey, Shashi B. (2024-11-01)."GTC Optical/Near-infrared Upper Limits and NICER X-Ray Analysis of SGR J1935+2154 for the Outburst in 2022".The Astrophysical Journal.976 (1): 99.arXiv:2410.00635.Bibcode:2024ApJ...976...99S.doi:10.3847/1538-4357/ad822f.ISSN 0004-637X.
  2. ^abHohle, M.M.; Haberl, F.; Vink, J.; de Vries, C.P.; et al. (2012)."The Continued Spectral and Temporal Evolution of RX J0720.4-3125".Monthly Notices of the Royal Astronomical Society.423 (2):1194–99.arXiv:1203.3708.Bibcode:2012MNRAS.423.1194H.doi:10.1111/j.1365-2966.2012.20946.x.S2CID 55696761.
  3. ^abcdefghNashed, G. G. L. (June 2023)."The Effect of f(R, T) Modified Gravity on the Mass and Radius of Pulsar HerX1".The Astrophysical Journal.950 (2): 129.arXiv:2306.10273.Bibcode:2023ApJ...950..129N.doi:10.3847/1538-4357/acd182.ISSN 0004-637X.
  4. ^abDoroshenko, Victor; Suleimanov, Valery; Pühlhofer, Gerd; Santangelo, Andrea (December 2022)."A strangely light neutron star within a supernova remnant".Nature Astronomy.6 (12):1444–1451.Bibcode:2022NatAs...6.1444D.doi:10.1038/s41550-022-01800-1.ISSN 2397-3366.
  5. ^Zhang, Shu-Rui; Rueda, Jorge A.; Negreiros, Rodrigo (2024)."Can the central compact object in HESS J1731--347 be indeed the lightest neutron star observed?".The Astrophysical Journal.978 (1): 1.arXiv:2411.19382.Bibcode:2025ApJ...978....1Z.doi:10.3847/1538-4357/ad96b5.
  6. ^Demorest, P. B.; Pennucci, T.; Ransom, S. M.; Roberts, M. S. E.; Hessels, J. W. T. (October 2010)."A two-solar-mass neutron star measured using Shapiro delay".Nature.467 (7319):1081–1083.arXiv:1010.5788.Bibcode:2010Natur.467.1081D.doi:10.1038/nature09466.ISSN 1476-4687.PMID 20981094.
  7. ^abPotekhin, Alexander Y. (2014)."Atmospheres and radiating surfaces of neutron stars".Phys. Usp.57 (8):735–770.arXiv:1403.0074.Bibcode:2014PhyU...57..735P.doi:10.3367/UFNe.0184.201408a.0793. Retrieved2024-12-04.
  8. ^abcdSen, Debashree; Guha, Atanu (2024-02-21). "Estimating the dark matter halo velocity and surface temperature of some known pulsars due to dark matter capture".arXiv:2402.13795 [hep-ph].
  9. ^Kumar, R.; Kumar, M.; Thakur, V.; Kumar, S.; Kumar, P.; Sharma, A.; Agrawal, B.K.; Dhiman, S.K.; et al. (May 2023). "Observational constraint from the heaviest pulsar PSR J0952-0607 on the equation of state of dense matter in relativistic mean field model".Physical Review C.107 (5): 19.arXiv:2306.05097.Bibcode:2023PhRvC.107e5805K.doi:10.1103/PhysRevC.107.055805.
  10. ^Nättilä, J.; Miller, M. C.; Steiner, A. W.; Kajava, J. J. E.; Suleimanov, V. F.; Poutanen, J. (2017-12-01)."Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra".Astronomy & Astrophysics.608: A31.arXiv:1709.09120.Bibcode:2017A&A...608A..31N.doi:10.1051/0004-6361/201731082.ISSN 0004-6361.
  11. ^Miller, M. C.; Lamb, F. K.; Dittmann, A. J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K. C.; Guillot, S.; Ho, W. C. G.; Lattimer, J. M.; Loewenstein, M.; Morsink, S. M.; Ray, P. S.; Wolff, M. T.; Baker, C. L.; Cazeau, T. (2021-09-01)."The Radius of PSR J0740+6620 from NICER and XMM-Newton Data".The Astrophysical Journal.918 (2): L28.arXiv:2105.06979.Bibcode:2021ApJ...918L..28M.doi:10.3847/2041-8213/ac089b.ISSN 0004-637X.
  12. ^abcdBurdge, Kevin B.; Marsh, Thomas R.; Fuller, Jim; Bellm, Eric C.; Caiazzo, Ilaria; Chakrabarty, Deepto; Coughlin, Michael W.; De, Kishalay; Dhillon, V. S.; Graham, Matthew J.; Rodríguez-Gil, Pablo; Jaodand, Amruta D.; Kaplan, David L.; Kara, Erin; Kong, Albert K. H. (May 2022)."A 62-minute orbital period black widow binary in a wide hierarchical triple".Nature.605 (7908):41–45.arXiv:2205.02278.Bibcode:2022Natur.605...41B.doi:10.1038/s41586-022-04551-1.ISSN 1476-4687.PMID 35508781.
  13. ^abcCaiazzo, Ilaria; Burdge, Kevin B.; Fuller, James; Heyl, Jeremy; Kulkarni, S. R.; Prince, Thomas A.; Richer, Harvey B.; Schwab, Josiah; Andreoni, Igor; Bellm, Eric C.; Drake, Andrew; Duev, Dmitry A.; Graham, Matthew J.; Helou, George; Mahabal, Ashish A. (2021-07-01). "A highly magnetised and rapidly rotating white dwarf as small as the Moon".Nature.595 (7865):39–42.arXiv:2107.08458.Bibcode:2021Natur.595...39C.doi:10.1038/s41586-021-03615-y.ISSN 0028-0836.PMID 34194021.
  14. ^Bamba, Aya; Terada, Yukikatsu; Kashiyama, Kazumi; Kisaka, Shota; Minami, Takahiro; Takahashi, Tadayuki (2024-05-23). "On the X-ray efficiency of the white dwarf pulsar candidate ZTF J190132.9+145808.7".Publications of the Astronomical Society of Japan.76 (4):702–707.doi:10.1093/pasj/psae041.ISSN 0004-6264.
  15. ^Külebi, B.; Jordan, S.; Nelan, E.; Bastian, U.; Altmann, M. (2010-12-01). "Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317-853 from an HST parallax measurement".Astronomy & Astrophysics.524: A36.arXiv:1007.4978.Bibcode:2010A&A...524A..36K.doi:10.1051/0004-6361/201015237.ISSN 0004-6361.
  16. ^Miller, David R.; Caiazzo, Ilaria; Heyl, Jeremy; Richer, Harvey B.; El-Badry, Kareem; Rodriguez, Antonio C.; Vanderbosch, Zachary P.; van Roestel, Jan (October 2023)."An Extremely Massive White Dwarf Escaped from the Hyades Star Cluster".The Astrophysical Journal Letters.956 (2): L41.arXiv:2310.03204.Bibcode:2023ApJ...956L..41M.doi:10.3847/2041-8213/acffc4.ISSN 2041-8205.
  17. ^"Is the 'Blaze Star' about to explode? If it does, here's where to look in April".Space.com. 2 March 2025.
  18. ^Schlindwein, Wagner; Baptista, Raymundo; Gerardo Juan Manuel Luna (2025)."Modeling the High-brightness State of the Recurrent Nova T CRB as an Enhanced Mass-transfer Event".The Astrophysical Journal.989 (1): 78.arXiv:2506.05098.Bibcode:2025ApJ...989...78S.doi:10.3847/1538-4357/ade98c.
  19. ^Caiazzo, Ilaria; Burdge, Kevin B.; Tremblay, Pier-Emmanuel; Fuller, James; Ferrario, Lilia; Gänsicke, Boris T.; Hermes, J. J.; Heyl, Jeremy; Kawka, Adela; Kulkarni, S. R.; Marsh, Thomas R.; Mróz, Przemek; Prince, Thomas A.; Richer, Harvey B.; Rodriguez, Antonio C.; van Roestel, Jan; Vanderbosch, Zachary P.; Vennes, Stéphane; Wickramasinghe, Dayal; Dhillon, Vikram S.; Littlefair, Stuart P.; Munday, James; Pelisoli, Ingrid; Perley, Daniel; Bellm, Eric C.; Breedt, Elmé; Brown, Alex J.; Dekany, Richard; Drake, Andrew; Dyer, Martin J.; Graham, Matthew J.; Green, Matthew J.; Laher, Russ R.; Kerry, Paul; Parsons, Steven G.; Riddle, Reed L.; Rusholme, Ben; Sahman, Dave I. (14 August 2023)."A rotating white dwarf shows different compositions on its opposite faces"(PDF).Nature.620 (7972):61–66.arXiv:2308.07430.Bibcode:2023Natur.620...61C.doi:10.1038/s41586-023-06171-9.PMID 37468630.S2CID 259993565. Retrieved9 March 2024.
  20. ^abcMace, Gregory N.; Mann, Andrew W.; Skiff, Brian A.; Sneden, Christopher; Kirkpatrick, J. Davy; Schneider, Adam C.; Kidder, Benjamin; Gosnell, Natalie M.; Kim, Hwihyun; Mulligan, Brian W.; Prato, L.; Jaffe, Daniel (2018-02-01)."Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf".The Astrophysical Journal.854 (2): 145.arXiv:1802.04803.Bibcode:2018ApJ...854..145M.doi:10.3847/1538-4357/aaa8dd.ISSN 0004-637X.
  21. ^Rigoselli, Michela; De Grandis, Davide; Mereghetti, Sandro; Malacaria, Christian (30 May 2023)."Timing the X-ray pulsating companion of the hot subdwarf HD 49798 with NICER".Monthly Notices of the Royal Astronomical Society.523 (2):3043–3048.arXiv:2305.15845.doi:10.1093/mnras/stad1611.
  22. ^Córsico, Alejandro H.; Gerónimo, Francisco C. De; Camisassa, María E.; Althaus, Leandro G. (2019-12-01)."Asteroseismological analysis of the ultra-massive ZZ Ceti stars BPM 37093, GD 518, and SDSS J0840+5222".Astronomy & Astrophysics.632: A119.arXiv:1910.07385.Bibcode:2019A&A...632A.119C.doi:10.1051/0004-6361/201936698.ISSN 0004-6361.
  23. ^Barstow, M. A.; Holberg, J. B.; Koester, D. (1994), "Extreme Ultraviolet Spectrophotometry of HD16538 and HR:8210 Ik-Pegasi",Monthly Notices of the Royal Astronomical Society,270 (3): 516,Bibcode:1994MNRAS.270..516B,doi:10.1093/mnras/270.3.516
  24. ^abcdefgPala, A F; Gänsicke, B T; Belloni, D; Parsons, S G; Marsh, T R; Schreiber, M R; Breedt, E; Knigge, C; Sion, E M; Szkody, P; Townsley, D; Bildsten, L; Boyd, D; Cook, M J; De Martino, D (2022-03-11)."Constraining the evolution of cataclysmic variables via the masses and accretion rates of their underlying white dwarfs".Monthly Notices of the Royal Astronomical Society.510 (4):6110–6132.doi:10.1093/mnras/stab3449.ISSN 0035-8711.
  25. ^Hollands, Mark A.; Tremblay, Pier-Emmanuel; Gänsicke, Boris T.; Koester, Detlev; Gentile-Fusillo, Nicola Pietro (2021-05-01)."Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts".Nature Astronomy.5 (5):451–459.arXiv:2101.01225.Bibcode:2021NatAs...5..451H.doi:10.1038/s41550-020-01296-7.ISSN 2397-3366.
  26. ^Bond, Howard E.; Schaefer, Gail H.; Gilliland, Ronald L.; Holberg, Jay B.; Mason, Brian D.; Lindenblad, Irving W.; et al. (2017)."The Sirius system and its astrophysical puzzles: Hubble Space Telescope and ground-based astrometry".The Astrophysical Journal.840 (2): 70.arXiv:1703.10625.Bibcode:2017ApJ...840...70B.doi:10.3847/1538-4357/aa6af8.S2CID 51839102.
  27. ^"GJ 742".Montreal White Dwarf Database. Retrieved2024-05-30.
  28. ^Gunderson, Sean J.; Huenemoerder, David P.; Torrejón, José M.; Swarm, Dustin K.; Nichols, Joy S.; Pradhan, Pragati; Ignace, Richard; Guenther, Hans Moritz; Pollock, A. M. T.; Schulz, Norbert S. (December 2024)."A Time-dependent Spectral Analysis of γ Cassiopeiae".The Astrophysical Journal.978 (1): 105.doi:10.3847/1538-4357/ad944e.ISSN 0004-637X.
  29. ^Ok, S.; Yardimci, M.; Kalomeni, B.; Schwope, A. (2025-06-23)."X-ray and Optical Analysis of the Prototype Polar AN UMa".Monthly Notices of the Royal Astronomical Society.541 (2):1913–1927.arXiv:2506.18553.doi:10.1093/mnras/staf1024.
  30. ^Montargès, M.; Malfait, J.; Esseldeurs, M.; de Koter, A.; Baron, F.; Kervella, P.; Danilovich, T.; Richards, A. M. S.; Sahai, R.; McDonald, I.; Khouri, T.; Shetye, S.; Zijlstra, A.; Van de Sande, M.; El Mellah, I.; Herpin, F.; Siess, L.; Etoka, S.; Gobrecht, D.; Marinho, L.; Wallström, S. H. J.; Wong, K. T.; Yates, aJ. (2025). "An accreting dwarf star orbiting the S-type giant starπ1 Gru".Astronomy & Astrophysics.699: A22.arXiv:2504.16845.Bibcode:2025A&A...699A..22M.doi:10.1051/0004-6361/202452587.
  31. ^abcdBédard, A.; Bergeron, P.; Fontaine, G. (2017-10-10)."Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation".The Astrophysical Journal.848 (1): 11.arXiv:1709.02324.Bibcode:2017ApJ...848...11B.doi:10.3847/1538-4357/aa8bb6.ISSN 0004-637X.
  32. ^abcdefgGiammichele, Noemi; Bergeron, Pierre; Dufour, Patrick (2012-04-01). "Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs".The Astrophysical Journal Supplement Series.199 (2): 29.arXiv:1202.5581.Bibcode:2012ApJS..199...29G.doi:10.1088/0067-0049/199/2/29.
  33. ^İkis Gün, G.; et al. (December 2013), "Preliminary results of the spectral analysis of Suzaku data of SW Ursae Majoris and BZ Ursae Majoris",New Astronomy,25:1–6,Bibcode:2013NewA...25....1I,doi:10.1016/j.newast.2013.03.011.
  34. ^Itoh, Kei; et al. (2005)."Density diagnostics of the hot plasma in AE Aquarii with XMM-NEWTON"(PDF).The Astrophysical Journal.639 (1):397–404.arXiv:astro-ph/0412559.Bibcode:2006ApJ...639..397I.doi:10.1086/499152.S2CID 14578720. Archived fromthe original(PDF) on 2011-07-19. Retrieved2009-11-15.
  35. ^Singh, K. K.; Meintjes, P. J.; Yadav, K. K. (2021). "Properties of white dwarf in the binary system AR Scorpii and its observed features".Modern Physics Letters A.36 (13).arXiv:2103.11602.Bibcode:2021MPLA...3650096S.doi:10.1142/S0217732321500966.S2CID 232307204.
  36. ^abO'Donoghue; Koen, C.; Kilkenny, D.; Stobie, R. S.; et al. (2003)."The DA+dMe eclipsing binary EC13471-1258: its cup runneth over ... just".Monthly Notices of the Royal Astronomical Society.345 (2):506–528.arXiv:astro-ph/0307144.Bibcode:2003MNRAS.345..506O.doi:10.1046/j.1365-8711.2003.06973.x.S2CID 17408072.
  37. ^Sengupta, Sujan; Taam, Ronald E. (2011-09-02). "Theoretical Spectra of the Am Canum Venaticorum Binary System SDSS J0926+3624: Effects of Irradiation Onto the Donor Star".The Astrophysical Journal.739 (1): 34.arXiv:1107.1444.Bibcode:2011ApJ...739...34S.doi:10.1088/0004-637X/739/1/34.ISSN 0004-637X.
  38. ^Romero, A. D.; et al. (December 2013). "Asteroseismological Study of Massive ZZ Ceti Stars with Fully Evolutionary Models".The Astrophysical Journal.779 (1): 24.arXiv:1310.4137.Bibcode:2013ApJ...779...58R.doi:10.1088/0004-637X/779/1/58.S2CID 53707228. 58.
  39. ^Mauche, C. W.; Raymond, J. C. (2000). Arthur, Jane; Brickhouse, Nancy; Franco, José (eds.).The EUV Emission-Line spectrum of OY Carinae in superoutburst: scattering in the wind. Astrophysical Plasmas: Codes, Models, and Observations, Proceedings of the conference held in Mexico City, October 25–29, 1999.Revista Mexicana de Astronomía y Astrofísica, Serie de Conferencias. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). Vol. 9. pp. 232–233.Bibcode:2000RMxAC...9..232M.
  40. ^abLin, Jie; Wu, Chengyuan; Xiong, Heran; Wang, Xiaofeng; Németh, Péter; Han, Zhanwen; Li, Jiangdan; Elias-Rosa, Nancy; Salmaso, Irene; Filippenko, Alexei V.; Brink, Thomas G.; Yang, Yi; Chen, Xuefei; Yan, Shengyu; Zhang, Jujia (April 2024)."A seven-Earth-radius helium-burning star inside a 20.5-min detached binary".Nature Astronomy.8 (4):491–503.arXiv:2312.13612.Bibcode:2024NatAs...8..491L.doi:10.1038/s41550-023-02188-2.ISSN 2397-3366.
  41. ^abBeuermann, K.; Reinsch, K. (2024). "Current and secular accretion rates of EX Hydrae".Astronomy and Astrophysics.687: A273.arXiv:2412.13850.Bibcode:2024A&A...687A.273B.doi:10.1051/0004-6361/202450486.
  42. ^abcdeSubasavage, John P.; et al. (July 2017)."The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 parsec White Dwarf Sample".The Astronomical Journal.154 (1): 24.arXiv:1706.00709.Bibcode:2017AJ....154...32S.doi:10.3847/1538-3881/aa76e0.S2CID 119189852. 32.
  43. ^Sahu, Kailash C.; et al. (June 2017), "Relativistic deflection of background starlight measures the mass of a nearby white dwarf star",Science,356 (6342):1046–1050,arXiv:1706.02037,Bibcode:2017Sci...356.1046S,doi:10.1126/science.aal2879,PMID 28592430,S2CID 206654918.
  44. ^Giammichele, N.; Fontaine, G.; Brassard, P.; Charpinet, S. (March 2016)."A New Analysis of the Two Classical ZZ Ceti White Dwarfs GD 165 and Ross 548. II. Seismic Modeling".Astrophysical Journal Supplement Series.223 (1): 10.Bibcode:2016ApJS..223...10G.doi:10.3847/0067-0049/223/1/10.ISSN 0067-0049.S2CID 124354534.
  45. ^Simon, T.; Fekel, F. C. Jr.; Gibson, D. M. (August 1985)."AY Ceti: a flaring, spotted star with a hot companion".Astrophysical Journal.295:153–161.Bibcode:1985ApJ...295..153S.doi:10.1086/163360.
  46. ^J. L. Sokoloski; Lars Bildsten (2010). "Evidence for the White Dwarf Nature of Mira B".The Astrophysical Journal.723 (2):1188–1194.arXiv:1009.2509.Bibcode:2010ApJ...723.1188S.doi:10.1088/0004-637X/723/2/1188.S2CID 119247560.
  47. ^Farihi, J. (April 2022)."Relentless and complex transits from a planetesimal debris disc".Monthly Notices of the Royal Astronomical Society.511 (2):1647–1666.arXiv:2109.06183.Bibcode:2022MNRAS.511.1647F.doi:10.1093/mnras/stab3475.hdl:10023/24937.
  48. ^Provencal, J. L.; et al. (2002)."Procyon B: Outside the Iron Box".The Astrophysical Journal.568 (1):324–334.Bibcode:2002ApJ...568..324P.doi:10.1086/338769.
  49. ^Farihi, J.; Burleigh, M. R.; Holberg, J. B.; Casewell, S. L.; Barstow, M. A. (November 2011)."Evolutionary constraints on the planet-hosting subgiant ε Reticulum from its white dwarf companion".Monthly Notices of the Royal Astronomical Society.417 (3):1735–1741.arXiv:1104.0925.Bibcode:2011MNRAS.417.1735F.doi:10.1111/j.1365-2966.2011.19354.x.S2CID 119248128.
  50. ^Bond, Howard E.; Bergeron, P.; Bedard, A. (2017-10-10)."Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B".The Astrophysical Journal.848 (1): 16.arXiv:1709.00478.Bibcode:2017ApJ...848...16B.doi:10.3847/1538-4357/aa8a63.ISSN 0004-637X.
  51. ^Córsico, A. H.; Uzundag, M.; Kepler, S. O.; Silvotti, R.; Althaus, L. G.; Koester, D.; Baran, A. S.; Bell, K. J.; Bischoff-Kim, A.; Hermes, J. J.; Kawaler, S. D.; Provencal, J. L.; Winget, D. E.; Montgomery, M. H.; Bradley, P. A. (2022-03-01). "Pulsating hydrogen-deficient white dwarfs and pre-white dwarfs observed with TESS. III. Asteroseismology of the DBV star GD 358".Astronomy and Astrophysics.659: A30.arXiv:2111.15551.Bibcode:2022A&A...659A..30C.doi:10.1051/0004-6361/202142153.ISSN 0004-6361.
  52. ^Klein, Beth L.; Doyle, Alexandra E.; Zuckerman, B.; Dufour, P.; Blouin, Simon; Melis, Carl; Weinberger, Alycia J.; Young, Edward D. (2021-06-01)."Discovery of Beryllium in White Dwarfs Polluted by Planetesimal Accretion".The Astrophysical Journal.914 (1): 61.arXiv:2102.01834.Bibcode:2021ApJ...914...61K.doi:10.3847/1538-4357/abe40b.ISSN 0004-637X.
  53. ^abcFrench, Jenni R; Casewell, Sarah L; Amaro, Rachael C; Lothringer, Joshua D; Mayorga, L C; Littlefair, Stuart P; Lew, Ben W P; Zhou, Yifan; Apai, Daniel; Marley, Mark S; Parmentier, Vivien; Tan, Xianyu (2024-09-13)."The only inflated brown dwarf in an eclipsing white dwarf–brown dwarf binary: WD1032+011B".Monthly Notices of the Royal Astronomical Society.534 (3):2244–2262.doi:10.1093/mnras/stae2121.ISSN 0035-8711.
  54. ^Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R. (2017)."Testing the white dwarf mass–radius relationship with eclipsing binaries".Monthly Notices of the Royal Astronomical Society.470 (4):4473–4492.arXiv:1706.05016.doi:10.1093/mnras/stx1522.
  55. ^Pech, D.; Vauclair, G.; Dolez, N. (2006)."Asteroseismological constraints on the structure of the ZZ Ceti star HL Tau 76".Astronomy and Astrophysics.446 (1): 223.Bibcode:2006A&A...446..223P.doi:10.1051/0004-6361:20053150.
  56. ^Kawaler, Steven D.; Bradley, Paul A. (1994-05-01). "Precision Asteroseismology of Pulsating PG 1159 Stars".The Astrophysical Journal.427: 415.Bibcode:1994ApJ...427..415K.doi:10.1086/174152.ISSN 0004-637X.
  57. ^Iskandarli, Leyla; Farihi, Jay; Lothringer, Joshua D.; Parsons, Steven G.; De Marco, Orsola; Rauch, Thomas (2024-10-04)."Novel Constraints on Companions to the Helix Nebula Central Star".Monthly Notices of the Royal Astronomical Society.534 (4): 3498.arXiv:2410.03288.Bibcode:2024MNRAS.534.3498I.doi:10.1093/mnras/stae2286.
  58. ^abHallakoun, Na'ama; Maoz, Dan; Istrate, Alina G.; Badenes, Carles; Breedt, Elmé; Gänsicke, Boris T.; Jha, Saurabh W.; Leibundgut, Bruno; Mannucci, Filippo; Marsh, Thomas R.; Nelemans, Gijs; Patat, Ferdinando; Rebassa-Mansergas, Alberto (2023-08-14). "An irradiated-Jupiter analogue hotter than the Sun".Nature Astronomy.7 (11):1329–1340.arXiv:2306.08672.Bibcode:2023NatAs...7.1329H.doi:10.1038/s41550-023-02048-z.ISSN 2397-3366.
  59. ^"Feige 55".Montreal White Dwarf Database. Retrieved2024-05-30.
  60. ^Wassermann, D.; Werner, K.; Rauch, T.; Kruk, J. W. (2010-12-01)."Metal abundances in the hottest known DO white dwarf (KPD 0005+5106)".Astronomy & Astrophysics.524: A9.Bibcode:2010A&A...524A...9W.doi:10.1051/0004-6361/201015007.hdl:2060/20110020824.ISSN 0004-6361.S2CID 121234030.
  61. ^Sion, Edward M.; Godon, Patrick; Mikolajewska, Joanna; Katynski, Marcus (2019-04-05)."FUSE Spectroscopic Analysis of the Slowest Symbiotic Nova AG Peg During Quiescence".The Astrophysical Journal.874 (2): 178.arXiv:1902.10002.Bibcode:2019ApJ...874..178S.doi:10.3847/1538-4357/ab0c0a.ISSN 0004-637X.
  62. ^Gies, Douglas R.; et al. (2020)."Spectroscopic Detection of the Pre-White Dwarf Companion of Regulus".The Astrophysical Journal.902 (1). Table 3.arXiv:2009.02409.Bibcode:2020ApJ...902...25G.doi:10.3847/1538-4357/abb372.
  63. ^Antoniadis, J.; Freire, P. C. C.; Wex, N.; Tauris, T. M.; Lynch, R. S.; Van Kerkwijk, M. H.; Kramer, M.; Bassa, C.; Dhillon, V. S.; Driebe, T.; Hessels, J. W. T.; Kaspi, V. M.; Kondratiev, V. I.; Langer, N.; Marsh, T. R.; McLaughlin, M. A.; Pennucci, T. T.; Ransom, S. M.; Stairs, I. H.; Van Leeuwen, J.; Verbiest, J. P. W.; Whelan, D. G. (2013). "A Massive Pulsar in a Compact Relativistic Binary".Science.340 (6131) 1233232.arXiv:1304.6875.Bibcode:2013Sci...340..448A.doi:10.1126/science.1233232.PMID 23620056.S2CID 15221098.
  64. ^Lodieu, N.; Zapatero Osorio, M. R.; Martín, E. L.; Rebolo López, R.; Gauza, B. (1 July 2022)."Physical properties and trigonometric distance of the peculiar dwarf WISE J181005.5−101002.3".Astronomy and Astrophysics.663: A84.arXiv:2206.13097.Bibcode:2022A&A...663A..84L.doi:10.1051/0004-6361/202243516.ISSN 0004-6361.S2CID 249836684.
  65. ^Vigan, A.; Bonnefoy, M.; Chauvin, G.; Moutou, C.; Montagnier, G. (2012-04-01)."High-contrast spectroscopy of SCR J1845-6357 B".Astronomy & Astrophysics.540: A131.arXiv:1204.0241.Bibcode:2012A&A...540A.131V.doi:10.1051/0004-6361/201118426.ISSN 0004-6361.
  66. ^abcdefgCifuentes, C.; Caballero, J. A.; Cortés-Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J. (2020-10-01). "CARMENES input catalogue of M dwarfs. V. Luminosities, colours, and spectral energy distributions".Astronomy and Astrophysics.642: A115.arXiv:2007.15077.Bibcode:2020A&A...642A.115C.doi:10.1051/0004-6361/202038295.ISSN 0004-6361.
  67. ^Ferguson, Donald H.; et al. (June 1999), "Masses and Other Parameters of the Post-Common Envelope Binary BE Ursae Majoris",The Astrophysical Journal,518 (2):866–872,Bibcode:1999ApJ...518..866F,doi:10.1086/307289,hdl:2299/1230,S2CID 17318851.
  68. ^Vennes, S.; Nemeth, P.; Kawka, A.; Thorstensen, J. R.; Khalack, V.; Ferrario, L.; Alper, E. H. (2017-08-01). "An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova".Science.357 (6352):680–683.arXiv:1708.05568.Bibcode:2017Sci...357..680V.doi:10.1126/science.aam8378.ISSN 0036-8075.PMID 28818942.
  69. ^Mamajek, Eric E.; Burgasser, Adam J. (2024-12-05)."SDSS J100711.74+193056.2: A Candidate Common Motion Substellar Companion to the Nearest B-Type Star Regulus".The Astronomical Journal.169 (2): 77.arXiv:2412.04599.Bibcode:2025AJ....169...77M.doi:10.3847/1538-3881/ad991b.
  70. ^Burgasser, Adam J.; Schneider, Adam C.; Meisner, Aaron M.; Caselden, Dan; Hsu, Chih-Chun; Gerasimov, Roman; Aganze, Christian; Softich, Emma; Karpoor, Preethi (2024-11-02)."New Cold Subdwarf Discoveries from Backyard Worlds and a Metallicity Classification System for T Subdwarfs".The Astrophysical Journal.982 (2): 79.arXiv:2411.01378.Bibcode:2025ApJ...982...79B.doi:10.3847/1538-4357/adb39f.
  71. ^abKing, R. R.; et al. (February 2010). "ɛ Indi Ba, Bb: a detailed study of the nearest known brown dwarfs".Astronomy and Astrophysics.510: A99.arXiv:0911.3143.Bibcode:2010A&A...510A..99K.doi:10.1051/0004-6361/200912981.S2CID 53550866.
  72. ^abcZhang, Zhoujian; Liu, Michael C.; Marley, Mark S.; Line, Michael R.; Best, William M. J. (2021-07-01)."Uniform Forward-Modeling Analysis of Ultracool Dwarfs. I. Methodology and Benchmarking".The Astrophysical Journal.916 (1): 53.arXiv:2011.12294.Bibcode:2021ApJ...916...53Z.doi:10.3847/1538-4357/abf8b2.ISSN 0004-637X.
  73. ^abcdefghijklmSanghi, Aniket; Liu, Michael C.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A.; Aller, Kimberly M.; Deacon, Niall R. (2023-12-06)."The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-infrared Spectral Energy Distributions and Comparison to BT-Settl and ATMO 2020 Model Atmospheres".The Astrophysical Journal.959 (1): 63.Bibcode:2023AAS...24120311S.doi:10.3847/1538-4357/acff66.ISSN 0004-637X.
  74. ^Frost, William; Albert, Loïc; Doyon, René; Gagné, Jonathan; Montet, Benjamin T.; Fontanive, Clémence; Artigau, Étienne; Johnson, John Asher; Edwards, Billy (2024-08-09). "Revisiting physical parameters of the benchmark brown dwarf LHS 6343 C through a HST/WFC3 secondary eclipse observation".arXiv:2408.05173 [astro-ph.SR].
  75. ^abXuan, Jerry W.; Perrin, Marshall D.; Mawet, Dimitri; Knutson, Heather A.; Mukherjee, Sagnick; Zhang, Yapeng; Hoch, Kielan K.; Wang, Jason J.; Inglis, Julie (2024-11-15)."Atmospheric abundances and bulk properties of the binary brown dwarf Gliese 229 Bab from JWST/MIRI spectroscopy".The Astrophysical Journal.977 (2): L32.arXiv:2411.10571.Bibcode:2024ApJ...977L..32X.doi:10.3847/2041-8213/ad92f9.
  76. ^Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J. (2021-04-01)."The Hawaii Infrared Parallax Program. V. New T-dwarf Members and Candidate Members of Nearby Young Moving Groups".The Astrophysical Journal.911 (1): 7.arXiv:2102.05045.Bibcode:2021ApJ...911....7Z.doi:10.3847/1538-4357/abe3fa.hdl:20.500.11820/e04ec38e-f54d-46a9-8839-cc38fbf8b9f4.ISSN 0004-637X.
  77. ^abBoetticher, Alexander von; Triaud, Amaury H. M. J.; Queloz, Didier; Gill, Sam; Maxted, Pierre F. L.; Almleaky, Yaseen; Anderson, David R.; Bouchy, François; Burdanov, Artem; Cameron, Andrew Collier; Delrez, Laetitia; Ducrot, Elsa; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gómez Maqueo (2019-05-01)."The EBLM Project - V. Physical properties of ten fully convective, very-low-mass stars".Astronomy & Astrophysics.625: A150.arXiv:1903.10808.Bibcode:2019A&A...625A.150V.doi:10.1051/0004-6361/201834539.ISSN 0004-6361.
  78. ^abDupuy, Trent J.; Liu, Michael C.; Best, William M. J.; Mann, Andrew W.; Tucker, Michael A.; Zhang, Zhoujian; Baraffe, Isabelle; Chabrier, Gilles; Forveille, Thierry; Metchev, Stanimir A.; Tremblin, Pascal; Do, Aaron; Payne, Anna V.; Shappee, B. J.; Bond, Charlotte Z.; Cetre, Sylvain; Chun, Mark; Delorme, Jacques-Robert; Jovanovic, Nemanja; Lilley, Scott; Mawet, Dimitri; Ragland, Sam; Wetherell, Ed; Wizinowich, Peter (10 October 2019)."WISE J072003.20-084651.2B is a Massive T Dwarf".The Astronomical Journal.158 (5): 174.arXiv:1908.06994.Bibcode:2019AJ....158..174D.doi:10.3847/1538-3881/ab3cd1.S2CID 201103740.
  79. ^abcdefgCarmichael, Theron W (March 2023)."Improved radius determinations for the transiting brown dwarf population in the era ofGaia andTESS".Monthly Notices of the Royal Astronomical Society.519 (4):5177–5190.arXiv:2212.02502.Bibcode:2023MNRAS.519.5177C.doi:10.1093/mnras/stac3720.ISSN 0035-8711.
  80. ^abcdDieterich, Serge B.; Simler, Andrew; Henry, Todd J.; Jao, Wei-Chun (April 2021)."The Solar Neighborhood. XLVII. Comparing M-dwarf Models with Hubble Space Telescope Dynamical Masses and Spectroscopy".The Astronomical Journal.161 (4): 172.arXiv:2012.00915.Bibcode:2021AJ....161..172D.doi:10.3847/1538-3881/abd2c2.
  81. ^abDieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P. (May 2014). "The Solar Neighborhood XXXII. The Hydrogen Burning Limit".The Astronomical Journal.147 (5). article id 94.arXiv:1312.1736.Bibcode:2014AJ....147...94D.doi:10.1088/0004-6256/147/5/94.S2CID 21036959.
  82. ^"SSSPM J0829-1309: A New nearby L dwarf detected in superCOSMOS Sky Surveys".inspirehep.net. RetrievedNovember 21, 2021.
  83. ^Li, Yiting; Brandt, Timothy D.; Franson, Kyle; An, Qier; Tobin, Taylor; Currie, Thayne; Chen, Minghan; Wang, Lanxuan; Dupuy, Trent J. (2024-08-02)."The Keck-HGCA Pilot Survey II: Direct Imaging Discovery of HD 63754 B, a ~20 au Massive Companion Near the Hydrogen Burning Limit".Monthly Notices of the Royal Astronomical Society.533 (3): 3501.arXiv:2408.01546.Bibcode:2024MNRAS.533.3501L.doi:10.1093/mnras/stae1903.
  84. ^Balmer, William O.; Pueyo, Laurent; Stolker, Tomas; Reggiani, Henrique; Maire, A.-L.; Lacour, S.; Mollière, P.; Nowak, M.; Sing, D.; Pourré, N.; Blunt, S.; Wang, J. J.; Rickman, E.; Kammerer, J.; Henning, Th. (2023-10-01)."VLTI/GRAVITY Observations and Characterization of the Brown Dwarf Companion HD 72946 B".The Astrophysical Journal.956 (2): 99.arXiv:2309.04403.Bibcode:2023ApJ...956...99B.doi:10.3847/1538-4357/acf761.ISSN 0004-637X.
  85. ^Burgasser, Adam J.; Burrows, Adam; Kirkpatrick, J. Davy (2006). "Method for Determining the Physical Properties of the Coldest Known Brown Dwarfs".The Astrophysical Journal.639 (2):1095–1113.arXiv:astro-ph/0510707.Bibcode:2006ApJ...639.1095B.doi:10.1086/499344.S2CID 9291848.
  86. ^abcTannock, Megan E.; Metchev, Stanimir; Heinze, Aren; Miles-Páez, Paulo A.; Gagné, Jonathan; Burgasser, Adam; et al. (March 2021)."Weather on Other Worlds. V. The Three Most Rapidly Rotating Ultra-cool Dwarfs".The Astronomical Journal.161 (5): 224.arXiv:2103.01990.Bibcode:2021AJ....161..224T.doi:10.3847/1538-3881/abeb67.S2CID 232105126.
  87. ^abDupuy, Trent J.; et al. (2015). "Discovery of a Low-luminosity, Tight Substellar Binary at the T/Y Transition".The Astrophysical Journal.803 (2). 102.arXiv:1502.04707.Bibcode:2015ApJ...803..102D.doi:10.1088/0004-637X/803/2/102.S2CID 118507808.
  88. ^abLiu, Michael C.; Leggett, S. K. (2005). "Kelu-1 Is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics".The Astrophysical Journal.634 (1):616–624.arXiv:astro-ph/0508082.Bibcode:2005ApJ...634..616L.doi:10.1086/496915.S2CID 16185006.
  89. ^abGonzales, Eileen C.; Burningham, Ben; Faherty, Jacqueline K.; Cleary, Colleen; Visscher, Channon; Marley, Mark S.; Lupu, Roxana; Freedman, Richard (2020-12-10)."Retrieval of the d/sdL7+T7.5p Binary SDSS J1416+1348AB".The Astrophysical Journal.905 (1): 46.arXiv:2010.01224.Bibcode:2020ApJ...905...46G.doi:10.3847/1538-4357/abbee2.ISSN 0004-637X.
  90. ^abcdFilippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (2015-09-10). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime".The Astrophysical Journal.810 (2): 158.arXiv:1508.01767.Bibcode:2015ApJ...810..158F.doi:10.1088/0004-637X/810/2/158.ISSN 1538-4357.
  91. ^Kothari, Harshil; Cushing, Michael C.; Burningham, Ben; Beiler, Samuel A.; Kirkpatrick, J. Davy; Schneider, Adam C.; Mukherjee, Sagnick; Marley, Mark S. (10 June 2024)."Probing the Heights and Depths of Y Dwarf Atmospheres: A Retrieval Analysis of the JWST Spectral Energy Distribution of WISE J035934.06−540154.6".The Astrophysical Journal.971 (2): 121.arXiv:2406.06493.Bibcode:2024ApJ...971..121K.doi:10.3847/1538-4357/ad583b.
  92. ^Hallinan, G.; Antonova, A.; Doyle, J. G.; Bourke, S.; Lane, C.; Golden, A. (2008-09-01)."Confirmation of the Electron Cyclotron Maser Instability as the Dominant Source of Radio Emission from Very Low Mass Stars and Brown Dwarfs".The Astrophysical Journal.684 (1): 644.arXiv:0805.4010.Bibcode:2008ApJ...684..644H.doi:10.1086/590360.ISSN 0004-637X.
  93. ^Faherty, Jacqueline K.; Burningham, Ben; Gagné, Jonathan; Suárez, Genaro; Vos, Johanna M.; Alejandro Merchan, Sherelyn; Morley, Caroline V.; Rowland, Melanie; Lacy, Brianna; Kiman, Rocio; Caselden, Dan; Kirkpatrick, J. Davy; Meisner, Aaron; Schneider, Adam C.; Kuchner, Marc Jason; Bardalez Gagliuffi, Daniella Carolina; Beichman, Charles; Eisenhardt, Peter; Gelino, Christopher R.; Gharib-Nezhad, Ehsan; Gonzales, Eileen; Marocco, Federico; Rothermich, Austin James; Whiteford, Niall (2024-04-17)."Methane emission from a cool brown dwarf".Nature.628 (8008):511–514.arXiv:2404.10977.Bibcode:2024Natur.628..511F.doi:10.1038/s41586-024-07190-w.ISSN 1476-4687.PMC 11023930.PMID 38632480.
  94. ^abFaherty, Jacqueline K.; Goodman, Sam; Caselden, Dan; Colin, Guillaume; Kuchner, Marc J.; Meisner, Aaron M.; Gagné, Jonathan; Schneider, Adam C.; Gonzales, Eileen C.; Bardalez Gagliuffi, Daniella C.; Logsdon, Sarah E.; Allers, Katelyn; Burgasser, Adam J.; The Backyard Worlds Planet 9 Collaboration (February 2020)."WISE 2150-7520AB: A Very Low-mass, Wide Comoving Brown Dwarf System Discovered through the Citizen Science Project Backyard Worlds: Planet 9".Astrophysical Journal.889 (2): 176.arXiv:1911.04600.Bibcode:2020ApJ...889..176F.doi:10.3847/1538-4357/ab5303.ISSN 0004-637X.S2CID 207863267.
  95. ^abKöhler, R.; Ratzka, T.; Leinert, Ch (2012-05-01)."Orbits and masses in the multiple system LHS 1070".Astronomy & Astrophysics.541: A29.arXiv:1203.6270.Bibcode:2012A&A...541A..29K.doi:10.1051/0004-6361/201118707.ISSN 0004-6361.
  96. ^abcRajpurohit, A. S.; Reyle, C.; Schultheis, M.; Leinert, Ch; Allard, F.; Homeier, D.; Ratzka, T.; Abraham, P.; Moster, B. (2012-08-02). "The very low mass multiple system LHS\,1070 -- a testbed for model atmospheres for the lower end of the main sequence".Astronomy & Astrophysics.545: A85.arXiv:1208.0452.Bibcode:2012A&A...545A..85R.doi:10.1051/0004-6361/201219029.
  97. ^Morsy, Mona El; Currie, Thayne; Bovie, Danielle; Kuzuhara, Masayuki; Lacy, Brianna; Li, Yiting; Tobin, Taylor; Brandt, Timothy; Chilcote, Jeffrey (2024-07-29). "Dynamical and Atmospheric Characterization of the Substellar Companion HD 33632 Ab from Direct Imaging, Astrometry, and Radial-Velocity Data".arXiv:2407.20322v1 [astro-ph.EP].
  98. ^Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C. (2009). "The Benchmark Ultracool Subdwarf HD 114762B: A Test of Low-metallicity Atmospheric and Evolutionary Models".The Astrophysical Journal.706 (2): 1114.arXiv:0910.1604.Bibcode:2009ApJ...706.1114B.doi:10.1088/0004-637X/706/2/1114.S2CID 119112746.
  99. ^Burgarella, D.; Vogel, M.; Paresce, F. (1992). "R Aquarii: An attempt at a unified model".Astronomy and Astrophysics.262: 83.Bibcode:1992A&A...262...83B.
  100. ^Díaz, R. F.; Montagnier, G.; Leconte, J.; Bonomo, A. S.; Deleuil, M.; Almenara, J. M.; Barros, S. C. C.; Bouchy, F.; Bruno, G.; Damiani, C.; Hébrard, G.; Moutou, C.; Santerne, A. (2014-12-01)."SOPHIE velocimetry of Kepler transit candidates - XIII. KOI-189 b and KOI-686 b: two very low-mass stars in long-period orbits".Astronomy & Astrophysics.572: A109.arXiv:1410.5248.Bibcode:2014A&A...572A.109D.doi:10.1051/0004-6361/201424406.ISSN 0004-6361.
  101. ^abZapatero Osorio, M. R.; Lane, B. F.; Pavlenko, Ya.; Martin, E. L.; Britton, M.; Kulkarni, S. R. (2004-11-10). "Dynamical Masses of the Binary Brown Dwarf GJ 569 Bab".The Astrophysical Journal.615 (2):958–971.arXiv:astro-ph/0407334.Bibcode:2004ApJ...615..958Z.doi:10.1086/424507.ISSN 0004-637X.
  102. ^abLodieu, N.; Zapatero Osorio, M. R.; Rebolo, R.; Béjar, V. J. S.; Pavlenko, Y.; Pérez-Garrido, A. (September 2015)."VLT X-Shooter spectroscopy of the nearest brown dwarf binary".Astronomy & Astrophysics.581: A73.arXiv:1506.08848.Bibcode:2015A&A...581A..73L.doi:10.1051/0004-6361/201424933.ISSN 0004-6361.
  103. ^Franson, Kyle; Bowler, Brendan P.; Bonavita, Mariangela; et al. (2023-01-09)."Astrometric Accelerations as Dynamical Beacons: Discovery and Characterization of HIP 21152 B, the First T-dwarf Companion in the Hyades*".The Astronomical Journal.165 (2). American Astronomical Society: 39.arXiv:2211.09840.Bibcode:2023AJ....165...39F.doi:10.3847/1538-3881/aca408.ISSN 0004-6256.
  104. ^Crepp, Justin R.; et al. (June 2012). "The Dynamical Mass and Three-Dimensional Orbit of HR7672B: A Benchmark Brown Dwarf with High Eccentricity".The Astrophysical Journal.751 (2): 14.arXiv:1112.1725.Bibcode:2012ApJ...751...97C.doi:10.1088/0004-637X/751/2/97.S2CID 16113054. 97.
  105. ^Neustroev, Vitaly V.; Mäntynen, Iikka (2023-08-01)."A brown dwarf donor and an optically thin accretion disc with a complex stream impact region in the period-bouncer candidate BW Sculptoris".Monthly Notices of the Royal Astronomical Society.523 (4):6114–6137.arXiv:2212.03264.Bibcode:2023MNRAS.523.6114N.doi:10.1093/mnras/stad1730.ISSN 0035-8711.
  106. ^Eggl, S.; Pilat-Lohinger, E.; Funk, B.; Georgakarakos, N.; Haghighipour, N. (2013-02-01)."Circumstellar habitable zones of binary-star systems in the solar neighbourhood".Monthly Notices of the Royal Astronomical Society.428 (4):3104–3113.arXiv:1210.5411.Bibcode:2013MNRAS.428.3104E.doi:10.1093/mnras/sts257.ISSN 0035-8711.
  107. ^Tsuji, Takashi; Nakajima, Tadashi (2016-02-01)."Near-infrared spectroscopy of M dwarfs. III. Carbon and oxygen abundances in late M dwarfs, including the dusty rapid rotator 2MASSI J1835379+325954†".Publications of the Astronomical Society of Japan.68 (1): 13.arXiv:1511.04682.Bibcode:2016PASJ...68...13T.doi:10.1093/pasj/psv119.ISSN 0004-6264.
  108. ^Lienhard, F.; Queloz, D.; Gillon, M.; Burdanov, A.; Delrez, L.; Ducrot, E.; Handley, W.; Jehin, E.; Murray, C. A.; Triaud, A H M J.; Gillen, E.; Mortier, A.; Rackham, B. V. (2020)."Global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey".Monthly Notices of the Royal Astronomical Society.497 (3):3790–3808.arXiv:2007.07278.Bibcode:2020MNRAS.497.3790L.doi:10.1093/mnras/staa2054.
  109. ^Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Davison, Cassy L.; Malo, Lison; Robert, Jasmin; Nadeau, Daniel; Reylé, Céline (2015-03-01). "Discovery and Characterization of Wide Binary Systems with a Very Low Mass Component".The Astrophysical Journal.802 (1): 37.arXiv:1501.05925.Bibcode:2015ApJ...802...37B.doi:10.1088/0004-637X/802/1/37.ISSN 0004-637X.
  110. ^Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Best, William M. J.; Dupuy, Trent; Bowler, Brendan P.; Mann, Andrew W.; Redstone, Joshua A.; Burgett, William S.; Chambers, Kenneth C.; Draper, Peter W.; Flewelling, H.; Hodapp, Klaus W.; Kaiser, Nick (2014-09-01). "Wide Cool and Ultracool Companions to Nearby Stars from Pan-STARRS 1".The Astrophysical Journal.792 (2): 119.arXiv:1407.2938.Bibcode:2014ApJ...792..119D.doi:10.1088/0004-637X/792/2/119.ISSN 0004-637X.
  111. ^Ruiz, Maria Teresa; Takamiya, Marianne Y.; Roth, Miguel (1991)."ESO 207-61: A Brown Dwarf Candidate in the Hyades Moving Group".The Astrophysical Journal.367: L59.Bibcode:1991ApJ...367L..59R.doi:10.1086/185931.
  112. ^Zhu, Wei; Huang, Chelsea; Zhou, George; Lin, D.N.C. (2014). "Constraining the Oblateness of Kepler Planets".The Astrophysical Journal.796 (1): 67.arXiv:1410.0361.Bibcode:2014ApJ...796...67Z.doi:10.1088/0004-637X/796/1/67.S2CID 119280657.
  113. ^abCarmichael, Theron W.; et al. (August 2022)."TOI-2119: a transiting brown dwarf orbiting an active M-dwarf from NASA's TESS mission".Monthly Notices of the Royal Astronomical Society.514 (4):4944–4957.arXiv:2202.08842.Bibcode:2022MNRAS.514.4944C.doi:10.1093/mnras/stac1666.S2CID 246996780.
  114. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafPineda, J. Sebastian; et al. (September 2021)."The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars".The Astrophysical Journal.918 (1): 23.arXiv:2106.07656.Bibcode:2021ApJ...918...40P.doi:10.3847/1538-4357/ac0aea.S2CID 235435757. 40.
  115. ^Tu, Zhijun; Wang, Shu; Liu, Jifeng (2024-09-27)."Physical Parameters and Properties of 20 Cold Brown Dwarfs in JWST".The Astrophysical Journal.976 (1): 82.arXiv:2409.19191.Bibcode:2024ApJ...976...82T.doi:10.3847/1538-4357/ad815a.
  116. ^Pérez Garrido, A.; Lodieu, N.; Béjar, V. J. S.; Ruiz, M. T.; Gauza, B.; Rebolo, R.; Zapatero Osorio, M. R. (2014). "2MASS J154043.42-510135.7: a new addition to the 5 pc population".Astronomy & Astrophysics.567: A6.arXiv:1405.5439.Bibcode:2014A&A...567A...6P.doi:10.1051/0004-6361/201423615.S2CID 118704532.
  117. ^abcdefCifuentes, C.; Caballero, J. A.; González-Payo, J.; Amado, P. J.; Béjar, V. J. S.; Burgasser, A. J.; Cortés-Contreras, M.; Lodieu, N.; Montes, D.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J.; Seifert, W.; Zapatero Osorio, M. R. (January 2025). "CARMENES input catalogue of M dwarfs. IX. Multiplicity from close spectroscopic binaries to ultra-wide systems".Astronomy and Astrophysics.693: A228.arXiv:2412.12264.Bibcode:2025A&A...693A.228C.doi:10.1051/0004-6361/202452527.ISSN 0004-6361.
  118. ^Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michaël; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien; Fabrycky, Daniel; Foreman-Mackey, Daniel; Haldemann, Jonas; Hernandez, David M.; Ingalls, James; Jehin, Emmanuel; Langford, Zachary; Leconte, Jérémy; Lederer, Susan M.; Luger, Rodrigo; Malhotra, Renu; Meadows, Victoria S.; Morris, Brett M.; Pozuelos, Francisco J.; Queloz, Didier; Raymond, Sean N.; Selsis, Franck; Sestovic, Marko; Triaud, Amaury H. M. J.; Van Grootel, Valérie (1 February 2021)."Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides".The Planetary Science Journal.2 (1): 1.arXiv:2010.01074.Bibcode:2021PSJ.....2....1A.doi:10.3847/psj/abd022.ISSN 2632-3338.S2CID 222125312.
  119. ^abPont, F.; Melo, C. H. F.; Bouchy, F.; Udry, S.; Queloz, D.; Mayor, M.; Santos, N. C. (2005). "A planet-sized transiting star around OGLE-TR-122".Astronomy and Astrophysics.433 (2): L21.arXiv:astro-ph/0501611.Bibcode:2005A&A...433L..21P.doi:10.1051/0004-6361:200500025.S2CID 14799999.
  120. ^Dreizler, S.; Luque, R.; et al. (April 2024). "Teegarden's Star revisited: A nearby planetary system with at least three planets".Astronomy & Astrophysics.684: A117.arXiv:2402.00923.Bibcode:2024A&A...684A.117D.doi:10.1051/0004-6361/202348033.
  121. ^Dorsch, M.; Latour, M.; Heber, U.; Irrgang, A.; Charpinet, S.; Jeffery, C. S. (2020). "Heavy-metal enrichment of intermediate He-sdOB stars: The pulsators Feige 46 and LS IV-14°116 revisited".Astronomy and Astrophysics.643: A22.arXiv:2009.09032.Bibcode:2020A&A...643A..22D.doi:10.1051/0004-6361/202038859.
  122. ^Gillon, Michaël; Pedersen, Peter P.; Rackham, Benjamin V.; Dransfield, Georgina; Ducrot, Elsa; Barkaoui, Khalid; Burdanov, Artem Y.; Schroffenegger, Urs; Gómez Maqueo Chew, Yilen; Lederer, Susan M.; Alonso, Roi; Burgasser, Adam J.; Howell, Steve B.; Narita, Norio; de Wit, Julien (2024-05-15)."Detection of an Earth-sized exoplanet orbiting the nearby ultracool dwarf star SPECULOOS-3".Nature Astronomy.8 (7):865–878.arXiv:2406.00794.Bibcode:2024NatAs...8..865G.doi:10.1038/s41550-024-02271-2.ISSN 2397-3366.
  123. ^abcXuan, Jerry W.; Hsu, Chih-Chun; Finnerty, Luke; Wang, Jason; Ruffio, Jean-Baptiste; Zhang, Yapeng; Knutson, Heather A.; Mawet, Dimitri; Mamajek, Eric E.; Inglis, Julie; Wallack, Nicole L.; Bryan, Marta L.; Blake, Geoffrey A.; Mollière, Paul; Hejazi, Neda (2024-07-01)."Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ∼10–30 M Jup Companions".The Astrophysical Journal.970 (1): 71.arXiv:2405.13128.Bibcode:2024ApJ...970...71X.doi:10.3847/1538-4357/ad4796.ISSN 0004-637X.
  124. ^Dupuy, Trent J; Liu, Michael C; Evans, Elise L; Best, William M J; Pearce, Logan A; Sanghi, Aniket; Phillips, Mark W; Bardalez Gagliuffi, Daniella C (2022-12-06)."On the masses, age, and architecture of the VHS J1256−1257AB b system".Monthly Notices of the Royal Astronomical Society.519 (2):1688–1694.Bibcode:2023MNRAS.519.1688D.doi:10.1093/mnras/stac3557.ISSN 0035-8711.
  125. ^abcdefgMann, Andrew W.; et al. (May 2015). "How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius".The Astrophysical Journal.804 (1): 38.arXiv:1501.01635.Bibcode:2015ApJ...804...64M.doi:10.1088/0004-637X/804/1/64.S2CID 19269312. 64.
  126. ^Wood, Janet H.; et al. (1989). "Eclipse studies of the dwarf nova OY Carinae in quiescence".Astrophysical Journal.341:974–994.Bibcode:1989ApJ...341..974W.doi:10.1086/167557.
  127. ^Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, B. Scott; Conroy, Kyle E.; Beatty, Thomas G.; Stevens, Daniel J.; Shappee, Benjamin J.; Kochanek, Christopher S. (April 2016)."AN EXTREME ANALOGUE OF ϵ AURIGAE: AN M-GIANT ECLIPSED EVERY 69 YEARS BY A LARGE OPAQUE DISK SURROUNDING A SMALL HOT SOURCE".The Astronomical Journal.151 (5): 123.arXiv:1601.00135.Bibcode:2016AJ....151..123R.doi:10.3847/0004-6256/151/5/123.ISSN 1538-3881.
  128. ^abcdefghijHoudebine, Éric R.; Mullan, D. J.; Doyle, J. G.; de la Vieuville, Geoffroy; Butler, C. J.; Paletou, F. (2019)."The Mass–Activity Relationships in M and K Dwarfs. I. Stellar Parameters of Our Sample of M and K Dwarfs".The Astronomical Journal.158 (2): 56.arXiv:1905.07921.Bibcode:2019AJ....158...56H.doi:10.3847/1538-3881/ab23fe.S2CID 159041104.
  129. ^abcHillenbrand, Lynne A.; White, Russel J. (2004-04-01). "An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks".The Astrophysical Journal.604 (2): 741.arXiv:astro-ph/0312189.Bibcode:2004ApJ...604..741H.doi:10.1086/382021.ISSN 0004-637X.
  130. ^abDedrick, Cayla M.; Wright, Jason T.; et al. (May 2025)."Three-dimensional Orbit and Dynamical Masses of GJ 105 AC".The Astrophysical Journal.985 (2): 255.arXiv:2505.08042.Bibcode:2025ApJ...985..255D.doi:10.3847/1538-4357/adc564.
  131. ^Hurt, Spencer A.; Liu, Michael C.; et al. (January 2024)."Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades".The Astrophysical Journal.961 (1): 121.arXiv:2311.04268.Bibcode:2024ApJ...961..121H.doi:10.3847/1538-4357/ad0b12. Parameters taken from Table 6. The parameters in other tables derived from atmospheric modeling are unreliable, as discussed in the text.
  132. ^abcFuhrmann, Klaus (2008)."Nearby stars of the Galactic disc and halo - IV".Monthly Notices of the Royal Astronomical Society.384 (1):173–224.Bibcode:2008MNRAS.384..173F.doi:10.1111/j.1365-2966.2007.12671.x.
  133. ^abStassun, Keivan G.; et al. (September 2018)."The TESS Input Catalog and Candidate Target List".The Astronomical Journal.156 (3): 102.arXiv:1706.00495.Bibcode:2018AJ....156..102S.doi:10.3847/1538-3881/aad050.ISSN 0004-6256.
  134. ^Charpinet, S.; Van Grootel, V.; Reese, D.; Fontaine, G.; Green, E. M.; Brassard, P.; Chayer, P. (2008)."Testing the forward modeling approach in asteroseismology. II. Structure and internal dynamics of the hot B subdwarf component in the close eclipsing binary system PG 1336-018".Astronomy and Astrophysics.489 (1): 377.Bibcode:2008A&A...489..377C.doi:10.1051/0004-6361:200809907.
  135. ^Kervella, P.; Thévenin, F.; Lovis, C. (2017). "Proxima's orbit around α Centauri".Astronomy & Astrophysics.598: L7.arXiv:1611.03495.Bibcode:2017A&A...598L...7K.doi:10.1051/0004-6361/201629930.ISSN 0004-6361.S2CID 50867264. Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  136. ^Bach, K.; Lee, J.; Demarque, P.; Kim, Y.-C. (2009-09-20). "Evolutionary status of 85 Pegasi".The Astrophysical Journal.703 (1):362–369.Bibcode:2009ApJ...703..362B.doi:10.1088/0004-637X/703/1/362.ISSN 0004-637X.
  137. ^abKervella, Pierre; et al. (October 2016). "The red dwarf pair GJ65 AB: inflated, spinning twins of Proxima. Fundamental parameters from PIONIER, NACO, and UVES observations".Astronomy & Astrophysics.593.arXiv:1607.04351.Bibcode:2016A&A...593A.127K.doi:10.1051/0004-6361/201628631.
  138. ^Vučković, M.; Aerts, C.; Østensen, R.; Nelemans, G.; Hu, H.; Jeffery, C. S.; Dhillon, V. S.; Marsh, T. R. (2007)."The binary properties of the pulsating subdwarf B eclipsing binary PG 1336-018 (NY Virginis)".Astronomy & Astrophysics.471 (2):605–615.arXiv:0706.3363.Bibcode:2007A&A...471..605V.doi:10.1051/0004-6361:20077179.S2CID 17812329.
  139. ^abcdefgSchweitzer, A.; et al. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars".Astronomy & Astrophysics.625: 16.arXiv:1904.03231.Bibcode:2019A&A...625A..68S.doi:10.1051/0004-6361/201834965.S2CID 102351979. A68.
  140. ^Baycroft, Thomas A.; Sairam, Lalitha; Triaud, Amaury H. M. J.; Correia, Alexandre C. M. (2025-04-16)."Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brown dwarfs".Science Advances.11 (16) eadu0627.arXiv:2504.12209.Bibcode:2025SciA...11..627B.doi:10.1126/sciadv.adu0627.PMC 12002110.PMID 40238865.
  141. ^information@eso.org.""Big surprise": astronomers find planet in perpendicular orbit around pair of stars".www.eso.org. Retrieved2025-04-16.
  142. ^"Scientists discover bizarre double-star system with exoplanet on a sideways orbit (video)".SPACE.com. 16 April 2025. Retrieved17 April 2025.
  143. ^Calissendorff, Per; Janson, Markus; Asensio-Torres, Rubén; Köhler, Rainer (July 2019). "Spectral characterization of newly detected young substellar binaries with SINFONI".Astronomy & Astrophysics.627: A167.arXiv:1906.05871.Bibcode:2019A&A...627A.167C.doi:10.1051/0004-6361/201935319.ISSN 0004-6361.S2CID 189898015.
  144. ^abEkrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022)."Detection of two additional circumbinary planets around Kepler-451".Monthly Notices of the Royal Astronomical Society.511 (4):5207–5216.arXiv:2202.02118.Bibcode:2022MNRAS.511.5207E.doi:10.1093/mnras/stac357.
  145. ^Astudillo-Defru, Nicola; Díaz, Rodrigo F.; Bonfils, Xavier; Almenara, José M.; Delisle, Jean-Baptiste; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C.; Ségransan, Damien; Udry, Stéphane; Wünsche, Anaël (2017). "The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti".Astronomy & Astrophysics.605: L11.arXiv:1708.03336.Bibcode:2017A&A...605L..11A.doi:10.1051/0004-6361/201731581.S2CID 119393757.
  146. ^Vanderburg, Andrew; et al. (2019)."TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858".The Astrophysical Journal.881 (1): L19.arXiv:1905.05193.Bibcode:2019ApJ...881L..19V.doi:10.3847/2041-8213/ab322d.S2CID 153311715.
  147. ^Crossfield, Ian J. M.; Waalkes, William; Newton, Elisabeth R.; Narita, Norio; Muirhead, Philip; Ment, Kristo; et al. (2019)."A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18".The Astrophysical Journal Letters.883 (1): L16.arXiv:1906.09267.Bibcode:2019ApJ...883L..16C.doi:10.3847/2041-8213/ab3d30.
  148. ^Reed, M. D.; et al. (March 2020)."K2 observations of the pulsating subdwarf B stars UY Sex and V1405 Ori".Monthly Notices of the Royal Astronomical Society.492 (4):5202–5217.Bibcode:2020MNRAS.492.5202R.doi:10.1093/mnras/staa144.
  149. ^Sokoloski, J. L.; Kenyon, S. J.; Espey, B. R.; Keyes, Charles D; McCandliss, S. R.; Kong, A. K. H; Aufdenberg, J. P.; Filippenko, A. V.; Li, W; Brocksopp, C; Kaiser, Christian R; Charles, P. A.; Rupen, M. P.; Stone, R. P. S (2006). "ACombination Nova Outburst in Z Andromedae: Nuclear Shell Burning Triggered by a Disk Instability".The Astrophysical Journal.636 (2):1002–1019.arXiv:astro-ph/0509638.Bibcode:2006ApJ...636.1002S.doi:10.1086/498206.S2CID 8941207.
  150. ^Chomez, A.; Squicciarini, V.; Lagrange, A.-M.; Delorme, P.; Viswanath, G.; Janson, M.; Flasseur, O.; Chauvin, G.; Langlois, M.; Rubini, P.; Bergeon, S.; Albert, D.; Bonnefoy, M.; Desidera, S.; Engler, N. (August 2023). "An imaged 15MJup companion within a hierarchical quadruple system".Astronomy & Astrophysics.676: L10.arXiv:2307.01195.Bibcode:2023A&A...676L..10C.doi:10.1051/0004-6361/202347044.ISSN 0004-6361.
  151. ^Close, Laird M.; Thatte, Niranjan; Nielsen, Eric L.; Abuter, Roberto; Clarke, Fraser; Tecza, Matthias (2007-08-01)."New Photometry and Spectra of AB Doradus C: An Accurate Mass Determination of a Young Low-Mass Object with Theoretical Evolutionary Tracks".The Astrophysical Journal.665 (1):736–743.arXiv:astro-ph/0703564.Bibcode:2007ApJ...665..736C.doi:10.1086/518207.ISSN 0004-637X.
  152. ^Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction".Astronomy and Astrophysics.617: A104.arXiv:1804.03476.Bibcode:2018A&A...617A.104P.doi:10.1051/0004-6361/201732535.S2CID 54990041.
  153. ^Brown-Sevilla, S. B.; Nascimbeni, V.; Borsato, L.; Tartaglia, L.; Nardiello, D.; Granata, V.; Libralato, M.; Damasso, M.; Piotto, G.; Pollacco, D.; West, R. G.; Colombo, L. S.; Cunial, A.; Piazza, G.; Scaggiante, F. (2021)."A new photometric and dynamical study of the eclipsing binary star HW Virginis".Monthly Notices of the Royal Astronomical Society.506 (2):2122–2135.arXiv:2106.15632.doi:10.1093/mnras/stab1843.ISSN 0035-8711.
  154. ^abcdHardegree-Ullman, Kevin K.; Apai, Dániel; Bergsten, Galen J.; Pascucci, Ilaria; López-Morales, Mercedes (2023-06-01)."Bioverse: A Comprehensive Assessment of the Capabilities of Extremely Large Telescopes to Probe Earth-like O2 Levels in Nearby Transiting Habitable-zone Exoplanets".The Astronomical Journal.165 (6): 267.arXiv:2304.12490.Bibcode:2023AJ....165..267H.doi:10.3847/1538-3881/acd1ec.ISSN 0004-6256.
  155. ^Chontos, Ashley; et al. (2021)."TESS Asteroseismology of α Mensae: Benchmark Ages for a G7 Dwarf and its M-dwarf Companion".The Astrophysical Journal.922 (2): 229.arXiv:2012.10797.Bibcode:2021ApJ...922..229C.doi:10.3847/1538-4357/ac1269.S2CID 229340231.
  156. ^abcdefHoudebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.; Bubar, E. J.; McGahee, C. E.; O'Donoghue, A. A.; Knox, E. R. (2016)."Rotation-Activity Correlations in K and M Dwarfs. I. Stellar Parameters and Compilations of v sin I and P/Sin I for a Large Sample of Late-K and M Dwarfs".The Astrophysical Journal.822 (2): 97.arXiv:1604.07920.Bibcode:2016ApJ...822...97H.doi:10.3847/0004-637X/822/2/97.S2CID 119118088.
  157. ^Houdebine, E. R. (2010)."Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars".Monthly Notices of the Royal Astronomical Society.407 (3): 1657.Bibcode:2010MNRAS.407.1657H.doi:10.1111/j.1365-2966.2010.16827.x.
  158. ^abcKesseli, Aurora Y.; et al. (February 2019)."Radii of 88 M Subdwarfs and Updated Radius Relations for Low-metallicity M-dwarf Stars".The Astronomical Journal.157 (2): 17.arXiv:1810.07702.Bibcode:2019AJ....157...63K.doi:10.3847/1538-3881/aae982.S2CID 119325209. 63.
  159. ^"Notes for Planet KOI-55 b".Extrasolar Planets Encyclopaedia.Archived from the original on 19 January 2012. Retrieved1 January 2012.
  160. ^Maxted, P. F. L.; O'Donoghue, D.; Morales-Rueda, L.; Napiwotzki, R.; Smalley, B. (2007)."The mass and radius of the M-dwarf in the short-period eclipsing binary RR Caeli".Monthly Notices of the Royal Astronomical Society.376 (2):919–928.arXiv:astro-ph/0702005.Bibcode:2007MNRAS.376..919M.doi:10.1111/j.1365-2966.2007.11564.x.S2CID 3569936.
  161. ^Harakawa, Hiroki; et al. (2022). "A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508".Publications of the Astronomical Society of Japan.74 (4):904–922.arXiv:2205.11986.Bibcode:2022PASJ...74..904H.doi:10.1093/pasj/psac044.
  162. ^Doyle, Laurance R.; Carter, Joshua A.; Fabrycky, Daniel C.; Slawson, Robert W.; Howell, Steve B.; Winn, Joshua N.; Orosz, Jerome A.; Prša, Andrej; Welsh, William F.; et al. (2011). "Kepler-16: A Transiting Circumbinary Planet".Science.333 (6049):1602–6.arXiv:1109.3432.Bibcode:2011Sci...333.1602D.doi:10.1126/science.1210923.PMID 21921192.S2CID 206536332.
  163. ^Mamajek, Eric E.; et al. (2013). "The Solar Neighborhood. XXX. Fomalhaut C".The Astronomical Journal.146 (6):154–163.arXiv:1310.0764.Bibcode:2013AJ....146..154M.doi:10.1088/0004-6256/146/6/154.S2CID 67821813.
  164. ^Silvotti, R.; Schuh, S.; Kim, S.L.; Lutz, R.; Reed, M.; Benatti, S.; Janulis, R.; Lanteri, L.; Østensen, R.; Marsh, T.R.; Dhillon, V.S. (March 2018). "The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data".Astronomy & Astrophysics.611: A85.arXiv:1711.10942.Bibcode:2018A&A...611A..85S.doi:10.1051/0004-6361/201731473.S2CID 119492634.
  165. ^Vanderburg, Andrew; Rowden, Pamela; Bryson, Steve; Coughlin, Jeffrey; Batalha, Natalie; Collins, Karen A.; Latham, David W.; Mullally, Susan E.; Colón, Knicole D.; Henze, Chris; Huang, Chelsea X.; Quinn, Samuel N. (April 2020)."A Habitable-zone Earth-sized Planet Rescued from False Positive Status".The Astrophysical Journal.893 (1): L27.arXiv:2004.06725.Bibcode:2020ApJ...893L..27V.doi:10.3847/2041-8213/ab84e5.ISSN 0004-637X.
  166. ^Chai, Yiwei; Chen, Christine H.; Worthen, Kadin; Li, Alexis; Sefilian, Antranik; Balmer, William; Hines, Dean C.; Law, David R.; Sargent, B. A. (2024-08-21)."A JWST MIRI MRS View of the eta Tel Debris Disk and its Brown Dwarf Companion".The Astrophysical Journal.976 (2): 167.arXiv:2408.11692.Bibcode:2024ApJ...976..167C.doi:10.3847/1538-4357/ad74f4.
  167. ^abMartin, David V.; Sethi, Ritika; et al. (February 2024)."The benchmark M dwarf eclipsing binary CM Draconis with TESS: spots, flares, and ultra-precise parameters".Monthly Notices of the Royal Astronomical Society.528 (1):963–975.arXiv:2301.10858.Bibcode:2024MNRAS.528..963M.doi:10.1093/mnras/stae015.
  168. ^Mathur, Savita; Huber, Daniel; Batalha, Natalie M.; Ciardi, David R.; Bastien, Fabienne A.; Bieryla, Allyson; Buchhave, Lars A.; Cochran, William D.; Endl, Michael; Esquerdo, Gilbert A.; Furlan, Elise; Howard, Andrew; Howell, Steve B.; Isaacson, Howard; Latham, David W.; MacQueen, Phillip J.; Silva, David R. (2017)."Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run".The Astrophysical Journal Supplement Series.229 (2): 30.arXiv:1609.04128.Bibcode:2017ApJS..229...30M.doi:10.3847/1538-4365/229/2/30.S2CID 39426786.
  169. ^Bonnefoy, M.; Chauvin, G.; Lagrange, A. -M.; Rojo, P.; Allard, F.; Pinte, C.; Dumas, C.; Homeier, D. (2014-02-01). "A library of near-infrared integral field spectra of young M-L dwarfs".Astronomy and Astrophysics.562: A127.arXiv:1306.3709.Bibcode:2014A&A...562A.127B.doi:10.1051/0004-6361/201118270.ISSN 0004-6361.
  170. ^Schmidt, T. O. B.; Mugrauer, M.; Neuhäuser, R.; Vogt, N.; Witte, S.; Hauschildt, P. H.; Helling, Ch.; Seifahrt, A. (2014-06-01). "First spectroscopic observations of the substellar companion of the young debris disk star PZ Telescopii".Astronomy and Astrophysics.566: A85.arXiv:1404.2870.Bibcode:2014A&A...566A..85S.doi:10.1051/0004-6361/201321625.ISSN 0004-6361.
  171. ^abcKhata, Dhrimadri; et al. (April 2020)."Understanding the physical properties of young M dwarfs: NIR spectroscopic studies".Monthly Notices of the Royal Astronomical Society.493 (3):4533–4550.arXiv:2002.05762.Bibcode:2020MNRAS.493.4533K.doi:10.1093/mnras/staa427.
  172. ^Kuzuhara, Masayuki; Fukui, Akihiko; et al. (23 May 2024)."Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Transmission Spectroscopy".The Astrophysical Journal Letters.967 (2): L21.arXiv:2405.14708.Bibcode:2024ApJ...967L..21K.doi:10.3847/2041-8213/ad3642.
  173. ^Perdelwitz, V.; Czesla, S.; Robrade, J.; Pribulla, T.; Schmitt, J. H. M. M. (2018-11-01). "X-ray and UV emission of the ultrashort-period, low-mass eclipsing binary system BX Trianguli".Astronomy and Astrophysics.619: A138.arXiv:1809.00971.Bibcode:2018A&A...619A.138P.doi:10.1051/0004-6361/201834116.ISSN 0004-6361.
  174. ^abcWang, Luqian; Gies, Douglas R.; Peters, Geraldine J.; Han, Zhanwen (April 2023)."The Orbital and Physical Properties of Five Southern Be+sdO Binary Systems".The Astronomical Journal.165 (5): 203.arXiv:2303.12616.Bibcode:2023AJ....165..203W.doi:10.3847/1538-3881/acc6ca.ISSN 1538-3881.
  175. ^abCortes-Zuleta, P.; Boisse, I.; et al. (2025). "Gl 725A b: a potential super-Earth detected with SOPHIE and SPIRou in an M dwarf binary system at 3.5 pc".Astronomy & Astrophysics.693: A164.arXiv:2411.09506.Bibcode:2025A&A...693A.164C.doi:10.1051/0004-6361/202451646.
  176. ^Vallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  177. ^Drummond, Jack D; Christou, Julian C; Fugate, Robert Q (1995). "Full Adaptive Optics Images of ADS 9731 and MU Cassiopeiae: Orbits and Masses".Astrophysical Journal.450: 380.Bibcode:1995ApJ...450..380D.doi:10.1086/176148.
  178. ^Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn (April 2016)."Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn's Star".The Astrophysical Journal.821 (2): 14.arXiv:1602.01912.Bibcode:2016ApJ...821...81G.doi:10.3847/0004-637X/821/2/81.S2CID 119283541. 81.
  179. ^González-Álvarez, E.; Kemmer, J.; et al. (July 2023). "The CARMENES search for exoplanets around M dwarfs. A sub-Neptunian mass planet in the habitable zone of HN Lib".Astronomy & Astrophysics.675: A141.arXiv:2305.19677.Bibcode:2023A&A...675A.141G.doi:10.1051/0004-6361/202346276.
  180. ^Miroshnichenko, A. S.; Danford, S.; Zharikov, S. V.; Klochkova, V. G.; Chentsov, E. L.; Vanbeveren, D.; Zakhozhay, O. V.; Manset, N.; Pogodin, M. A.; Omarov, C. T.; Kuratova, A. K.; Khokhlov, S. A. (July 2020)."Properties of Galactic B[e] Supergiants. V. 3 Pup–Constraining the Orbital Parameters and Modeling the Circumstellar Environments".The Astrophysical Journal.897 (1): 48.arXiv:2005.07754.Bibcode:2020ApJ...897...48M.doi:10.3847/1538-4357/ab93d9.ISSN 0004-637X.
  181. ^von Stauffenberg, A.; Trifonov, T.; Quirrenbach, A.; et al. (2024-06-05). "The CARMENES search for exoplanets around M dwarfs. Revisiting the GJ 581 multi-planetary system with new Doppler measurements from CARMENES, HARPS, and HIRES".Astronomy & Astrophysics.688.arXiv:2407.11520.Bibcode:2024A&A...688A.112V.doi:10.1051/0004-6361/202449375.ISSN 0004-6361.
  182. ^Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y.; Barros, S. C. C.; Adibekyan, V.; Tabernero, H. M.; et al. (July 2021)."A warm terrestrial planet with half the mass of Venus transiting a nearby star"(PDF).Astronomy & Astrophysics.653: 38.arXiv:2108.03323.Bibcode:2021A&A...653A..41D.doi:10.1051/0004-6361/202140728.S2CID 236957385.
  183. ^Beard, Corey; Robertson, Paul; Kanodia, Shubham; Lubin, Jack; Cañas, Caleb I.; Gupta, Arvind F.; Holcomb, Rae; Jones, Sinclaire; Libby-Roberts, Jessica E.; Lin, Andrea S. J.; Mahadevan, Suvrath; Stefánsson, Guðmundur; Bender, Chad F.; Blake, Cullen H.; Cochran, William D. (2022-09-01)."GJ 3929: High Precision Photometric and Doppler Characterization of an Exo-Venus and its Hot, Mini-Neptune-mass Companion".The Astrophysical Journal.936 (1): 55.arXiv:2207.10672.Bibcode:2022ApJ...936...55B.doi:10.3847/1538-4357/ac8480.ISSN 0004-637X.
  184. ^Trifonov, T.; et al. (2021). "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation".Science.371 (6533):1038–1041.arXiv:2103.04950.Bibcode:2021Sci...371.1038T.doi:10.1126/science.abd7645.PMID 33674491.S2CID 232124642.
  185. ^Silverstein, Michele L.; Schlieder, Joshua E.; Barclay, Thomas; Hord, Benjamin J.; Jao, Wei-Chun; Vrijmoet, Eliot Halley; Henry, Todd J.; Cloutier, Ryan; Kostov, Veselin B.; Kruse, Ethan; Winters, Jennifer G.; Irwin, Jonathan M.; Kane, Stephen R.; Stassun, Keivan G.; Huang, Chelsea (2022-04-01)."The LHS 1678 System: Two Earth-Sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc".The Astronomical Journal.163 (4): 151.arXiv:2110.12079.Bibcode:2022AJ....163..151S.doi:10.3847/1538-3881/ac32e3.ISSN 0004-6256.
  186. ^Dai, Zhibin; Qian, Shengbang; Li, Linjia; Rycyk, G. (2013). "Updated Photometry and Orbital Period Analysis for the Polar Am Herculis on the Upper Edge of the Period Gap".The Astrophysical Journal.774 (2): 153.arXiv:1307.5135.Bibcode:2013ApJ...774..153D.doi:10.1088/0004-637X/774/2/153.S2CID 118843221.
  187. ^Honaker, Easton J.; Mace, Gregory N.; Han, Eunkyu; Hussaini, Maryam; Lubar, Emily (2020-11-01)."TESS Photometry of the Precataclysmic Variable Wolf 1130AB".Research Notes of the American Astronomical Society.4 (11): 197.Bibcode:2020RNAAS...4..197H.doi:10.3847/2515-5172/abc6a4.ISSN 2515-5172.
  188. ^"Pipsqueak Star Unleashes Monster Flare - NASA". Retrieved2024-01-12.
  189. ^Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J. (2013). "Planets Around Low-Mass Stars. III. A Young Dusty L Dwarf Companion at the Deuterium-Burning Limit".The Astrophysical Journal.774 (1): 55.arXiv:1307.2237.Bibcode:2013ApJ...774...55B.doi:10.1088/0004-637X/774/1/55.S2CID 119107288.
  190. ^abMontet, Benjamin T.; Johnson, John Asher; Muirhead, Philip S.; Villar, Ashley; Vassallo, Corinne; Baranec, Christoph; Law, Nicholas M.; Riddle, Reed; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard (2015). "Characterizing the Cool KOIs. VII. Refined Physical Properties of the Transiting Brown Dwarf LHS 6343 C".The Astrophysical Journal.800 (2): 134.arXiv:1411.4047.Bibcode:2015ApJ...800..134M.doi:10.1088/0004-637X/800/2/134.S2CID 555496.
  191. ^Cloutier, Ryan; et al. (2020)."A pair of TESS planets spanning the radius valley around the nearby mid-M dwarf LTT 3780".The Astronomical Journal.160 (1): 3.arXiv:2003.01136.Bibcode:2020AJ....160....3C.doi:10.3847/1538-3881/ab91c2.S2CID 211817805.
  192. ^Van Eylen, V.; Astudillo-Defru, N.; et al. (October 2021)."Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley".Monthly Notices of the Royal Astronomical Society.507 (2):2154–2173.arXiv:2101.01593.Bibcode:2021MNRAS.507.2154V.doi:10.1093/mnras/stab2143.
  193. ^Rabus, Markus; Lachaume, Régis; Jordán, Andrés; Brahm, Rafael; Boyajian, Tabetha; von Braun, Kaspar; Espinoza, Néstor; Berger, Jean-Philippe; Le Bouquin, Jean-Baptiste; Absil, Olivier (2019-04-01)."A discontinuity in the T eff–radius relation of M-dwarfs".Monthly Notices of the Royal Astronomical Society.484 (2):2674–2683.arXiv:1901.08077.doi:10.1093/mnras/sty3430.ISSN 0035-8711.
  194. ^Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica (2017)."The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation".The Astrophysical Journal.834 (1): 85.arXiv:1611.03509.Bibcode:2017ApJ...834...85N.doi:10.3847/1538-4357/834/1/85.S2CID 55000202.
  195. ^Astudillo-Defru, Nicola; Bonfils, Xavier; Delfosse, Xavier; Ségransan, Damien; Forveille, Thierry; Bouchy, François; Gillon, Michaël; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Perrier, Christian; Queloz, Didier; Rojo, Patricio; Santos, Nuno C.; Udry, Stéphane (2015). "Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543".Astronomy & Astrophysics.575: A119.arXiv:1411.7048v1.Bibcode:2015A&A...575A.119A.doi:10.1051/0004-6361/201424253.S2CID 67754095.
  196. ^Vallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875.Gaia DR3 record for this source atVizieR.
  197. ^Palle, E.; Orell-Miquel, J.; et al. (October 2023). "GJ 806 (TOI-4481): A bright nearby multi-planetary system with a transiting hot, low-density super-Earth".Astronomy & Astrophysics.678: A80.arXiv:2301.06873.Bibcode:2023A&A...678A..80P.doi:10.1051/0004-6361/202244261.
  198. ^Gilbert, Emily A.; Barclay, Thomas; Schlieder, Joshua E.; Quintana, Elisa V.; Hord, Benjamin J.; Kostov, Veselin B.; Lopez, Eric D.; Rowe, Jason F.; Hoffman, Kelsey; Walkowicz, Lucianne M.; Silverstein, Michele L. (2020-01-03)."The First Habitable Zone Earth-sized Planet from TESS. I: Validation of the TOI-700 System".The Astronomical Journal.160 (3): 116.arXiv:2001.00952.Bibcode:2020AJ....160..116G.doi:10.3847/1538-3881/aba4b2.S2CID 209862554.
  199. ^Kossakowski, D.; Kürster, M.; et al. (October 2022). "The CARMENES search for exoplanets around M dwarfs. Stable radial-velocity variations at the rotation period of AD Leonis: A test case study of current limitations to treating stellar activity".Astronomy & Astrophysics.666: A143.arXiv:2209.05814.Bibcode:2022A&A...666A.143K.doi:10.1051/0004-6361/202243773.
  200. ^abBurt, Jennifer; Feng, Fabo; Holden, Bradford; Mamajek, Eric E.; Huang, Chelsea X.; Rosenthal, Mickey M.; Wang, Songhu; Butler, R. Paul; Vogt, Steven S.; Laughlin, Gregory; Henry, Gregory W.; Teske, Johanna K.; Wang, Sharon X.; Crane, Jeffrey D.; Shectman, Steve A. (2021)."A Collage of Small Planets from the Lick–Carnegie Exoplanet Survey: Exploring the Super-Earth and Sub-Neptune Mass Regime".The Astronomical Journal.161 (1): 10.arXiv:2011.08867.Bibcode:2021AJ....161...10B.doi:10.3847/1538-3881/abc2d0.S2CID 227013469.
  201. ^Bonfils, Xavier; Gillon, Michael (2011)."A short-period super-Earth orbiting the M2.5 dwarf GJ 3634: Detection with Harps velocimetry and transit search with Spitzer photometry".Astronomy and Astrophysics.528.European Southern Observatory.arXiv:1102.1420.Bibcode:2011yCat..35280111B.doi:10.1051/0004-6361/201015981.S2CID 204933219.
  202. ^abcJohnson, H. M.; Wright, C. D. (1983-11-01)."Predicted infrared brightness of stars within 25 parsecs of the sun".The Astrophysical Journal Supplement Series.53:643–711.Bibcode:1983ApJS...53..643J.doi:10.1086/190905.ISSN 0067-0049.
  203. ^Naylor, T. (2005)."The masses, radii and luminosities of the components of U Geminorum".Monthly Notices of the Royal Astronomical Society.361 (3):1091–1101.arXiv:astro-ph/0506351.Bibcode:2005MNRAS.361.1091N.doi:10.1111/j.1365-2966.2005.09262.x.S2CID 16271370.
  204. ^Sander, A.; Hamann, W.-R.; Todt, H. (2012). "The Galactic WC stars. Stellar parameters from spectral analyses indicate a new evolutionary sequence".Astronomy & Astrophysics.540: A144.arXiv:1201.6354.Bibcode:2012A&A...540A.144S.doi:10.1051/0004-6361/201117830.S2CID 119182468.
  205. ^Lam, Kristine W. F.; et al. (2021). "GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star".Science.374 (6572):1271–1275.arXiv:2112.01309.Bibcode:2021Sci...374.1271L.doi:10.1126/science.aay3253.PMID 34855492.S2CID 244799656.
  206. ^Tramper, F.; Straal, S. M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J. S.; de Mink, S. E.; Kaper, L. (2015-09-01)."Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars".Astronomy and Astrophysics.581: A110.arXiv:1507.00839.Bibcode:2015A&A...581A.110T.doi:10.1051/0004-6361/201425390.ISSN 0004-6361.
  207. ^Justesen, A. B.; Albrecht, S. (2019)."Constraining the orbit of the planet-hosting binary τ Boötis".Astronomy & Astrophysics.625. EDP Sciences: A59.arXiv:1812.05885.Bibcode:2019A&A...625A..59J.doi:10.1051/0004-6361/201834368.ISSN 0004-6361.
  208. ^V. J. S. Bejar; M. R. Zapatero Osorio; A. Perez-Garrido; C. Álvarez; et al. (February 2008). "Discovery of a Wide Companion near the Deuterium-burning Mass Limit in the Upper Scorpius Association".Astrophysical Journal.673 (2):L185 –L189.arXiv:0712.3482.Bibcode:2008ApJ...673L.185B.doi:10.1086/527557.S2CID 55896247.
  209. ^Linnell, Albert P.; et al. (2008). "Modeling UX Ursae Majoris: An Abundance of Challenges".The Astrophysical Journal.688 (1):568–582.arXiv:0807.3920.Bibcode:2008ApJ...688..568L.doi:10.1086/592104.S2CID 1648147.
  210. ^McCarthy, D. W.; Henry, Todd J.; McLeod, Brian; Christou, Julian C. (1991). "The Low-Mass Companion of Gliese 22A: First Results of the Steward Infrared Speckle Camera".The Astronomical Journal.101: 214.Bibcode:1991AJ....101..214M.doi:10.1086/115681.
  211. ^Gaidos, E.; Mann, A. W.; Lépine, S.; Buccino, A.; James, D.; Ansdell, M.; Petrucci, R.; Mauas, P.; Hilton, E. J. (2014)."Trumpeting M dwarfs with CONCH-SHELL: A catalogue of nearby cool host-stars for habitable exoplanets and life".Monthly Notices of the Royal Astronomical Society.443 (3): 2561.arXiv:1406.7353.Bibcode:2014MNRAS.443.2561G.doi:10.1093/mnras/stu1313.S2CID 119234492.
  212. ^abEric Mack (11 July 2017)."Saturn-sized star is the smallest ever discovered". cnet.
  213. ^ab"Smallest-ever star discovered by astronomers". University of Cambridge. 2017.
  214. ^abAlexander von Boetticher; et al. (12 June 2017). "The EBLM project; III. A Saturn-size low-mass star at the hydrogen-burning limit".Astronomy & Astrophysics.604: L6.arXiv:1706.08781.Bibcode:2017A&A...604L...6V.doi:10.1051/0004-6361/201731107.S2CID 54610182. EBLM_III.
  215. ^John Bochanski (23 December 2013)."New Cutoff for Star Sizes". Sky and Telescope.
  216. ^Garmany, Katy."NOAO/SOAR: Where do stars end and brown dwarfs begin?".National Optical Astronomy Observatory. Retrieved14 December 2013.
  217. ^Robert Roy Britt (3 March 2005)."Newfound Star Smaller than Some Planets". Space.com.
  218. ^Jonathan O'Callaghan; Josh Barker (National Space Centre) (22 March 2013)."What is the smallest star?". SpaceAnswers.com.
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_smallest_known_stars&oldid=1314963303"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp