Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of prime numbers

From Wikipedia, the free encyclopedia

This is adynamic list and may never be able to satisfy particular standards for completeness. You can help byediting the page to add missing items, with references toreliable sources.

This is a list of articles aboutprime numbers. A prime number (orprime) is anatural number greater than 1 that has no positivedivisors other than 1 and itself. ByEuclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with variousformulas for primes.

The first 1,000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. The number 1 isneither prime nor composite.

The first 1,000 prime numbers

[edit]

The following table lists the first 1,000 primes, with 20 columns of consecutive primes in each of the 50 rows.[1]

1234567891011121314151617181920
1–20235711131719232931374143475359616771
21–407379838997101103107109113127131137139149151157163167173
41–60179181191193197199211223227229233239241251257263269271277281
61–80283293307311313317331337347349353359367373379383389397401409
81–100419421431433439443449457461463467479487491499503509521523541
101–120547557563569571577587593599601607613617619631641643647653659
121–140661673677683691701709719727733739743751757761769773787797809
141–160811821823827829839853857859863877881883887907911919929937941
161–180947953967971977983991997100910131019102110311033103910491051106110631069
181–20010871091109310971103110911171123112911511153116311711181118711931201121312171223
201–22012291231123712491259127712791283128912911297130113031307131913211327136113671373
221–24013811399140914231427142914331439144714511453145914711481148314871489149314991511
241–26015231531154315491553155915671571157915831597160116071609161316191621162716371657
261–28016631667166916931697169917091721172317331741174717531759177717831787178918011811
281–30018231831184718611867187118731877187918891901190719131931193319491951197319791987
301–32019931997199920032011201720272029203920532063206920812083208720892099211121132129
321–34021312137214121432153216121792203220722132221223722392243225122672269227322812287
341–36022932297230923112333233923412347235123572371237723812383238923932399241124172423
361–38024372441244724592467247324772503252125312539254325492551255725792591259326092617
381–40026212633264726572659266326712677268326872689269326992707271127132719272927312741
401–42027492753276727772789279127972801280328192833283728432851285728612879288728972903
421–44029092917292729392953295729632969297129993001301130193023303730413049306130673079
441–46030833089310931193121313731633167316931813187319132033209321732213229325132533257
461–48032593271329933013307331333193323332933313343334733593361337133733389339134073413
481–50034333449345734613463346734693491349935113517352735293533353935413547355735593571
501–52035813583359336073613361736233631363736433659367136733677369136973701370937193727
521–54037333739376137673769377937933797380338213823383338473851385338633877388138893907
541–56039113917391939233929393139433947396739894001400340074013401940214027404940514057
561–58040734079409140934099411141274129413341394153415741594177420142114217421942294231
581–60042414243425342594261427142734283428942974327433743394349435743634373439143974409
601–62044214423444144474451445744634481448344934507451345174519452345474549456145674583
621–64045914597460346214637463946434649465146574663467346794691470347214723472947334751
641–66047594783478747894793479948014813481748314861487148774889490349094919493149334937
661–68049434951495749674969497349874993499950035009501150215023503950515059507750815087
681–70050995101510751135119514751535167517151795189519752095227523152335237526152735279
701–72052815297530353095323533353475351538153875393539954075413541754195431543754415443
721–74054495471547754795483550155035507551955215527553155575563556955735581559156235639
741–76056415647565156535657565956695683568956935701571157175737574157435749577957835791
761–78058015807581358215827583958435849585158575861586758695879588158975903592359275939
781–80059535981598760076011602960376043604760536067607360796089609161016113612161316133
801–82061436151616361736197619962036211621762216229624762576263626962716277628762996301
821–84063116317632363296337634363536359636163676373637963896397642164276449645164696473
841–86064816491652165296547655165536563656965716577658165996607661966376653665966616673
861–88066796689669167016703670967196733673767616763677967816791679368036823682768296833
881–90068416857686368696871688368996907691169176947694969596961696769716977698369916997
901–92070017013701970277039704370577069707971037109712171277129715171597177718771937207
921–94072117213721972297237724372477253728372977307730973217331733373497351736973937411
941–96074177433745174577459747774817487748974997507751775237529753775417547754975597561
961–98075737577758375897591760376077621763976437649766976737681768776917699770377177723
981–100077277741775377577759778977937817782378297841785378677873787778797883790179077919

(sequenceA000040 in theOEIS).

TheGoldbach conjecture verification project reports that it has computed all primes smaller than 4×1018.[2] That means 95,676,260,903,887,607 primes[3] (nearly 1017), but they were not stored. There are known formulae to evaluate theprime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2×1021) smaller than 1023. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2×1022) smaller than 1024, if theRiemann hypothesis is true.[4]

Lists of primes by type

[edit]

Below are listed the first prime numbers of many named forms and types. More details are in the article for the name.n is anatural number (including 0) in the definitions.

Balanced primes

[edit]
Main article:Balanced prime

Balanced primes are primes with equal-sizedprime gaps before and after them, making them thearithmetic mean of their next larger and next smaller prime.

  • 5,53,157,173, 211,257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (OEISA006562).

Bell primes

[edit]
See also:Bell number § Bell primes

Bell primes are primes that are also the number ofpartitions of some finite set.

2,5,877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837.The next term has 6,539 digits. (OEISA051131)

Chen primes

[edit]
Main article:Chen prime

Chen primes are primesp such thatp+2 is either a prime orsemiprime.

2,3,5,7,11,13,17,19,23,29,31,37,41,47,53,59,67,71,83,89,101,107,109,113,127,131,137,139,149,157,167,179,181,191,197,199,211,227,233,239,251,257,263,269,281,293,307,311,317,337,347,353,359,379,389,401,409 (OEISA109611)

Circular primes

[edit]
Main article:Circular prime

A circular prime is a number that remains prime on any cyclic rotation of its base 10 digits.

2,3,5,7,11,13,17,31,37,71,73,79,97,113,131,197,199,311,337,373,719,733,919,971,991,1193,1931,3119,3779,7793,7937,9311,9377,11939,19391,19937,37199,39119,71993,91193,93719,93911,99371,193939,199933,319993,331999,391939,393919,919393,933199,939193,939391,993319,999331 (OEISA068652)

Some sources only include the smallest prime in each cycle. For example, listing 13, but omitting 31.

2,3,5,7,11,13,17,37,79,113,197,199,337,1193,3779,11939,19937,193939,199933, 1111111111111111111, 11111111111111111111111 (OEISA016114)

Cluster primes

[edit]
Main article:Cluster prime

A cluster prime is a primep such that every evennatural numberkp − 3 is the difference of two primes not exceedingp.

3,5,7,11,13,17,19,23, ... (OEISA038134)

All primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that arenot cluster primes are:

2,97,127,149,191,211,223,227,229,251.

Cousin primes

[edit]
Main article:Cousin prime
See also:§ Twin primes,§ Prime triplets, and§ Prime quadruplets

Cousin primes are pairs of primes that differ by four.

(3,7), (7,11), (13,17), (19,23), (37,41), (43,47), (67,71), (79,83), (97,101), (103,107), (109,113), (127,131), (163,167), (193,197), (223,227), (229,233), (277,281) (OEISA023200,OEISA046132)

Cuban primes

[edit]
Main article:Cuban prime

Cuban primes are primesp{\displaystyle p} of the formp=k3(k1)3,{\displaystyle p=k^{3}-(k-1)^{3},} wherek{\displaystyle k} is a natural number.

7,19,37,61,127,271,331,397,547,631,919,1657,1801,1951,2269,2437,2791,3169,3571,4219,4447,5167,5419,6211,7057,7351,8269,9241,10267,11719,12097,13267,13669,16651,19441,19927,22447,23497,24571,25117,26227,27361,33391,35317 (OEISA002407)

The term is also used to refer to primesp{\displaystyle p} of the formp=(k3(k2)3)/2,{\displaystyle p=(k^{3}-(k-2)^{3})/2,} wherek{\displaystyle k} is a natural number.

13,109,193,433,769,1201,1453,2029,3469,3889,4801,10093,12289,13873,18253,20173,21169,22189,28813,37633,43201,47629,60493,63949,65713,69313,73009,76801,84673,106033,108301,112909,115249 (OEISA002648)

Cullen primes

[edit]
Main article:Cullen number

Cullen primes are primesp of the formp=k2k + 1, for some natural numberk.

3, 393050634124102232869567034555427371542904833 (OEISA050920)

Delicate primes

[edit]
Main article:Delicate prime

Delicate primes are those primes that always become acomposite number when any of their base 10 digit is changed.

294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 (OEISA050249)

Dihedral primes

[edit]
Main article:Dihedral prime

Dihedral primes are primes that satisfy 180° rotational symmetry and mirror symmetry on aseven-segment display.

2,5,11,101,181,1181,1811,18181,108881,110881,118081,120121,121021,121151,150151,151051,151121,180181,180811,181081 (OEISA134996)

Real Eisenstein primes

[edit]
Main article:Eisenstein integer § Eisenstein primes

Real Eisenstein primes are realEisenstein integers that areirreducible. Equivalently, they are primes of the form 3k − 1, for a positive integerk.

2,5,11,17,23,29,41,47,53,59,71,83,89,101,107,113,131,137,149,167,173,179,191,197,227,233,239,251,257,263,269,281,293,311,317,347,353,359,383,389,401 (OEISA003627)

Emirps

[edit]
Main article:Emirp

Emirps are those primes that become a different prime after their base 10 digits have been reversed. The name "emirp" is the reverse of the word "prime".

13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389,701,709,733,739,743,751,761,769,907,937,941,953,967,971,983,991 (OEISA006567)

Euclid primes

[edit]
Main article:Euclid number

Euclid primes are primesp such thatp−1 is aprimorial.

3,7,31,211,2311, 200560490131 (OEISA018239[5])

Euler irregular primes

[edit]
Further information:Regular prime § Euler irregular primes

Euler irregular primes are primesp{\displaystyle p} that divide anEuler numberE2n,{\displaystyle E_{2n},} for some02np3.{\displaystyle 0\leq 2n\leq p-3.}

19,31,43,47,61,67,71,79,101,137,139,149,193,223,241,251,263,277,307,311,349,353,359,373,379,419,433,461,463,491,509,541,563,571,577,587 (OEISA120337)

Euler (p,p − 3) irregular primes

[edit]

Euler (p,p - 3) irregular primes are primesp that divide the (p + 3)rdEuler number.

149,241,2946901 (OEISA198245)

Factorial primes

[edit]
Main article:Factorial prime

Factorial primes are primes whose distance to the nextfactorial number is one.

2,3,5,7,23,719,5039,39916801,479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (OEISA088054)

Fermat primes

[edit]
Main article:Fermat number

Fermat primes are primesp of the formp = 22k + 1, for anon-negative integerk. As of June 2024[update] only five Fermat primes have been discovered.

3,5,17,257,65537 (OEISA019434)

Generalized Fermat primes

[edit]
Main article:Fermat number § Generalized Fermat primes of the form Fn(a)

Generalized Fermat primes are primesp of the formp = a2k + 1, for anon-negative integerk and even natural numbera.

a{\displaystyle a}Generalized Fermat primes with basea
23,5,17,257,65537, ... (OEISA019434)
45,17,257,65537, ...
67,37,1297, ...
8(none exist)
1011,101, ...
1213, ...
14197, ...
1617,257,65537, ...
1819, ...
20401, 160001, ...
2223, ...
24577, 331777, ...

Fibonacci primes

[edit]
Main article:Fibonacci prime

Fibonacci primes are primes that appear in theFibonacci sequence.

2,3,5,13,89,233,1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (OEISA005478)

Fortunate primes

[edit]
Main article:Fortunate number

Fortunate primes are primes that are also Fortunate numbers. There are no known composite Fortunate numbers.[citation needed]

3,5,7,13,17,19,23,37,47,59,61,67,71,79,89,101,103,107,109,127,151,157,163,167,191,197,199,223,229,233,239,271,277,283,293,307,311,313,331,353,373,379,383,397 (OEISA046066)

Gaussian primes

[edit]
Main article:Gaussian integer § Gaussian primes

Gaussian primes are primesp of the formp = 4k + 3, for anon-negative integerk.

3,7,11,19,23,31,43,47,59,67,71,79,83,103,107,127,131,139,151,163,167,179,191,199,211,223,227,239,251,263,271,283,307,311,331,347,359,367,379,383,419,431,439,443,463,467,479,487,491,499,503 (OEISA002145)

Good primes

[edit]
Main article:Good prime

Good primes are primesp satisfyingab < p2, for all primesa andb such thata,b < p

5,11,17,29,37,41,53,59,67,71,97,101,127,149,179,191,223,227,251,257,269,307 (OEISA028388)

Happy primes

[edit]
See also:Happy number § Happy primes

Happy primes are primes that are also happy numbers.

7,13,19,23,31,79,97,103,109,139,167,193,239,263,293,313,331,367,379,383,397,409,487,563,617,653,673,683,709,739,761,863,881,907,937,1009,1033,1039,1093 (OEISA035497)

Harmonic primes

[edit]
Main article:Harmonic prime

Harmonic primes are primesp for which there are no solutions toHk ≡ 0 (mod p) andHk ≡ −ωp (mod p), for 1 ≤ k ≤ p−2, whereHk denotes thek-thharmonic number andωp denotes theWolstenholme quotient.[6]

5,13,17,23,41,67,73,79,107,113,139,149,157,179,191,193,223,239,241,251,263,277,281,293,307,311,317,331,337,349 (OEISA092101)

Higgs primes

[edit]
Main article:Higgs prime

Higgs primes are primesp for whichp − 1 divides the square of the product of all smaller Higgs primes.

2,3,5,7,11,13,19,23,29,31,37,43,47,53,59,61,67,71,79,101,107,127,131,139,149,151,157,173,181,191,197,199,211,223,229,263,269,277,283,311,317,331,347,349 (OEISA007459)

Highly cototient primes

[edit]
Main article:Highly cototient number

Highly cototient primes are primes that are acototient more often than any integer below it except 1.

2,23,47,59,83,89,113,167,269,389,419,509,659,839,1049,1259,1889 (OEISA105440)

Home primes

[edit]
Main article:Home prime

Forn ≥ 2, write the prime factorization ofn in base 10 and concatenate the factors; iterate until a prime is reached.

For anon-negative integer, its home prime is obtained by concatenating its prime factors in increasing order repeatedly, until a prime is achieved.

2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 (OEISA037274)

Irregular primes

[edit]
Main article:Regular prime § Irregular primes

Irregular primes are odd primesp that divide theclass number of thep-thcyclotomic field.

37,59,67,101,103,131,149,157,233,257,263,271,283,293,307,311,347,353,379,389,401,409,421,433,461,463,467,491,523,541,547,557,577,587,593,607,613 (OEISA000928)

(p,p − 3) irregular primes

[edit]
Main article:Wolstenholme prime

The (p,p - 3) irregular primes are primesp such that (p,p − 3) is an irregular pair.

16843,2124679 (OEISA088164)

(p,p − 5) irregular primes

[edit]
Main article:Regular prime § Irregular pairs

The (p,p - 5) irregular primes are primesp such that (p,p − 5) is an irregular pair.[7]

37

(p,p − 9) irregular primes

[edit]
Main article:Regular prime § Irregular pairs

The (p,p - 9) irregular primes are primesp such that (p,p − 9) is an irregular pair.[7]

67,877 (OEISA212557)

Isolated primes

[edit]
Further information:Twin prime § Isolaetd prime

Isolated primes are primesp such that bothp − 2 andp + 2 are both composite.

2,23,37,47,53,67,79,83,89,97,113,127,131,157,163,167,173,211,223,233,251,257,263,277,293,307,317,331,337,353,359,367,373,379,383,389,397,401,409,439,443,449,457,467,479,487,491,499,503,509,541,547,557,563,577,587,593,607,613,631,647,653,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,839,853,863,877,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997 (OEISA007510)

Leyland primes

[edit]
Main article:Leyland number

Leyland primes are primesp of the formp = ab + ba, wherea andb are integers larger than one.

17,593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (OEISA094133)

Long primes

[edit]
Main article:Full reptend prime

Long primes, or full reptend primes, are odd primesp for which(10p11)/p{\displaystyle (10^{p-1}-1)/p} is acyclic number. Bases other than 10 are also used.

7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499,503,509,541,571,577,593 (OEISA001913)

Lucas primes

[edit]
Main article:Lucas number § Lucas primes

Lucas primes are primes that appear in the Lucas sequence.

2,[8]3,7,11,29,47,199,521,2207,3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (OEISA005479)

Lucky primes

[edit]
Main article:Lucky number

Lucky primes are primes that are also lucky numbers.

3,7,13,31,37,43,67,73,79,127,151,163,193,211,223,241,283,307,331,349,367,409,421,433,463,487,541,577,601,613,619,631,643,673,727,739,769,787,823,883,937,991,997 (OEISA031157)

Mersenne primes

[edit]
Main article:Mersenne prime

Mersenne primes are primesp of the formp = 2k − 1, for somenon-negative integerk.

3,7,31,127,8191,131071,524287,2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (OEISA000668)

As of 2024[update], there are 52 known Mersenne primes.[citation needed] The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits.[citation needed] The largest known prime 2136,279,841−1 is the 52nd Mersenne prime.[citation needed]

Mersenne divisors

[edit]

Mersenne divisors are primes that divide 2k − 1, for some primek. Every Mersenne primep is also a Mersenne divisor, withk =p.

3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 (OEISA122094)

Mersenne prime exponents

[edit]

Primesp such that 2p − 1 is prime.

2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217, 4253, 4423,9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,24036583, 25964951, 30402457, 32582657, 37156667, 42643801,43112609, 57885161, 74207281, 77232917 (OEISA000043)

As of September 2025[update], two more are known to be in the sequence, but it is not known whether they are the next:
82589933, 136279841

Double Mersenne primes

[edit]
Further information:Double Mersenne number § Double Mersenne primes

A subset of Mersenne primes of the form 22p−1 − 1 for primep.

7,127,2147483647, 170141183460469231731687303715884105727 (primes inOEISA077586)

Generalizedrepunit primes

[edit]

Of the form (an − 1) / (a − 1) for fixed integera.

Fora = 2, these are the Mersenne primes, while fora = 10 they are therepunit primes. For other smalla, they are given below:

a = 3:13,1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (OEISA076481)

a = 4:5 (the only prime fora = 4)

a = 5:31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 (OEISA086122)

a = 6:7,43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 (OEISA165210)

a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457

a = 8:73 (the only prime fora = 8)

a = 9: none exist

Other generalizations and variations

[edit]

Many generalizations of Mersenne primes have been defined. This include the following:

Mills primes

[edit]
Main article:Mills' constant

Of the form ⌊θ3n⌋, where θ is Mills' constant. This form is prime for all positive integersn.

2,11,1361, 2521008887, 16022236204009818131831320183 (OEISA051254)

Minimal primes

[edit]
Main article:Minimal prime (recreational mathematics)

Primes for which there is no shortersub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:

2,3,5,7,11,19,41,61,89,409,449,499,881,991, 6469, 6949,9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (OEISA071062)

Newman–Shanks–Williams primes

[edit]
Main article:Newman–Shanks–Williams prime

Newman–Shanks–Williams numbers that are prime.

7,41,239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (OEISA088165)

Non-generous primes

[edit]

Primesp for which the least positiveprimitive root is not a primitive root ofp2. Three such primes are known; it is not known whether there are more.[12]

2, 40487, 6692367337 (OEISA055578)

Palindromic primes

[edit]
Main article:Palindromic prime

Primes that remain the same when their decimal digits are read backwards.

2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (OEISA002385)

Palindromic wing primes

[edit]

Primes of the forma(10m1)9±b×10m12{\displaystyle {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}}} with0a±b<10{\displaystyle 0\leq a\pm b<10}.[13] This means all digits except the middle digit are equal.

101,131,151,181,191,313,353,373,383,727,757,787,797,919,929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 (OEISA077798)

Partition primes

[edit]
Main article:Partition function (number theory)

Partition function values that are prime.

2,3,5,7,11,101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 (OEISA049575)

Pell primes

[edit]
Main article:Pell number

Primes in the Pell number sequenceP0 = 0,P1 = 1,Pn = 2Pn−1 + Pn−2.

2,5,29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (OEISA086383)

Permutable primes

[edit]
Main article:Permutable prime

Any permutation of the decimal digits is a prime.

2,3,5,7,11,13,17,31,37,71,73,79,97,113,131,199,311,337,373,733,919,991, 1111111111111111111, 11111111111111111111111 (OEISA003459)

Perrin primes

[edit]
Main article:Perrin number

Primes in the Perrin number sequenceP(0) = 3,P(1) = 0,P(2) = 2,P(n) = P(n−2) + P(n−3).

2,3,5,7,17,29,277,367,853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (OEISA074788)

Pierpont primes

[edit]
Main article:Pierpont prime

Of the form 2u3v + 1 for someintegersu,v ≥ 0.

These are alsoclass 1- primes.

2,3,5,7,13,17,19,37,73,97,109,163,193,257,433,487,577,769,1153,1297,1459,2593,2917,3457,3889, 10369, 12289, 17497, 18433, 39367, 52489,65537, 139969, 147457 (OEISA005109)

Pillai primes

[edit]
Main article:Pillai prime

Primesp for which there existn > 0 such thatp dividesn! + 1 andn does not dividep − 1.

23,29,59,61,67,71,79,83,109,137,139,149,193,227,233,239,251,257,269,271,277,293,307,311,317,359,379,383,389,397,401,419,431,449,461,463,467,479,499 (OEISA063980)

Primes of the formn4 + 1

[edit]

Of the formn4 + 1.[14][15]

2,17,257,1297,65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (OEISA037896)

Primeval primes

[edit]
Main article:Primeval number

Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.

2,13,37,107,113,137,1013,1237,1367, 10079 (OEISA119535)

Primorial primes

[edit]
Main article:Primorial prime

Of the formpn# ± 1.

3,5,7,29,31,211,2309,2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union ofOEISA057705 andOEISA018239[5])

Proth primes

[edit]
Main article:Proth prime

Of the formk×2n + 1, with oddk andk < 2n.

3,5,13,17,41,97,113,193,241,257,353,449,577,641,673,769,929,1153,1217,1409,1601,2113,2689,2753,3137,3329,3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (OEISA080076)

Pythagorean primes

[edit]
Main article:Pythagorean prime

Of the form 4n + 1.

5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193,197,229,233,241,257,269,277,281,293,313,317,337,349,353,373,389,397,401,409,421,433,449 (OEISA002144)

Prime quadruplets

[edit]
Main article:Prime quadruplet
See also:§ Cousin primes,§ Twin primes, and§ Prime triplets

Where (p,p+2,p+6,p+8) are all prime.

(5,7,11,13), (11, 13,17,19), (101,103,107,109), (191,193,197,199), (821,823,827,829), (1481,1483,1487,1489), (1871,1873,1877,1879), (2081,2083,2087,2089), (3251,3253,3257,3259), (3461,3463,3467,3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (OEISA007530,OEISA136720,OEISA136721,OEISA090258)

Quartan primes

[edit]
Main article:Quartan prime

Of the formx4 + y4, wherex,y > 0.

2,17,97,257,337,641,881 (OEISA002645)

Ramanujan primes

[edit]
Main article:Ramanujan prime

IntegersRn that are the smallest to give at leastn primes fromx/2 tox for allx ≥ Rn (all such integers are primes).

2,11,17,29,41,47,59,67,71,97,101,107,127,149,151,167,179,181,227,229,233,239,241,263,269,281,307,311,347,349,367,373,401,409,419,431,433,439,461,487,491 (OEISA104272)

Regular primes

[edit]
Main article:Regular prime

Primesp that do not divide theclass number of thep-thcyclotomic field.

3,5,7,11,13,17,19,23,29,31,41,43,47,53,61,71,73,79,83,89,97,107,109,113,127,137,139,151,163,167,173,179,181,191,193,197,199,211,223,227,229,239,241,251,269,277,281 (OEISA007703)

Repunit primes

[edit]
See also:Repunit § Decimal repunit primes

Primes containing only the decimal digit 1.

11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) (OEISA004022)

The next have 317, 1031, 49081, 86453, 109297, and 270343 digits, respectively (OEISA004023).

Residue classes of primes

[edit]
Main article:Dirichlet's theorem on arithmetic progressions

Of the forman +d for fixed integersa andd. Also called primes congruent todmoduloa.

The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digitd.

Ifa andd are relatively prime, the arithmetic progression contains infinitely many primes.

2n+1:3,5,7,11,13,17,19,23,29,31,37,41,43,47,53 (OEISA065091)
4n+1: 5, 13, 17, 29, 37, 41, 53,61,73,89,97,101,109,113,137 (OEISA002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47,59,67,71,79,83,103,107 (OEISA002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109,127,139 (OEISA002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (OEISA007528)
8n+1: 17, 41, 73, 89, 97, 113, 137,193,233,241,257,281,313,337,353 (OEISA007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107,131, 139,163,179,211,227,251 (OEISA007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109,149,157,173,181,197,229,269 (OEISA007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127,151,167,191,199,223,239,263 (OEISA007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251,271, 281 (OEISA030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (OEISA030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257,277 (OEISA030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269,349,359 (OEISA030433)
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 (OEISA068228)
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 (OEISA040117)
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 (OEISA068229)
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 (OEISA068231)

Safe primes

[edit]
Main article:Safe and Sophie Germain primes

Wherep and (p−1) / 2 are both prime.

5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587,719,839,863,887,983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619,1823,1907 (OEISA005385)

Self primes in base 10

[edit]
Main article:Self number

Primes that cannot be generated by any integer added to the sum of its decimal digits.

3,5,7,31,53,97,211,233,277,367,389,457,479,547,569,613,659,727,839,883,929,1021,1087,1109,1223,1289,1447,1559,1627,1693,1783,1873 (OEISA006378)

Sexy primes

[edit]
Main article:Sexy primes

Where (p,p + 6) are both prime.

(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173), (173,179), (191,197), (193,199) (OEISA023201,OEISA046117)

Smarandache–Wellin primes

[edit]
Main article:Smarandache–Wellin number

Primes that are the concatenation of the firstn primes written in decimal.

2,23,2357 (OEISA069151)

The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.

Solinas primes

[edit]
Main article:Solinas prime

Of the form 2k − c1·2k−1 − c2·2k−2 − ... − ck.

  • 3,5,7,11,13 (OEISA165255)
  • 232 − 5, the largest prime that fits into 32 bits of memory.[16]
  • 264 − 59, the largest prime that fits into 64 bits of memory.

Sophie Germain primes

[edit]
Main article:Safe and Sophie Germain primes

Wherep and 2p + 1 are both prime. A Sophie Germain prime has a correspondingsafe prime.

2,3,5,11,23,29,41,53,83,89,113,131,173,179,191,233,239,251,281,293,359,419,431,443,491,509,593,641,653,659,683,719,743,761,809,911,953 (OEISA005384)

Stern primes

[edit]
Main article:Stern prime

Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.

2,3,17,137,227,977,1187,1493 (OEISA042978)

As of 2011[update], these are the only known Stern primes, and possibly the only existing.

Super-primes

[edit]
Main article:Super-prime

Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).

3,5,11,17,31,41,59,67,83,109,127,157,179,191,211,241,277,283,331,353,367,401,431,461,509,547,563,587,599,617,709,739,773,797,859,877,919,967,991 (OEISA006450)

Supersingular primes

[edit]
Main article:Supersingular prime (moonshine theory)

There are exactly fifteen supersingular primes:

2,3,5,7,11,13,17,19,23,29,31,41,47,59,71 (OEISA002267)

Thabit primes

[edit]
Main article:Thabit number

Of the form 3×2n − 1.

2,5,11,23,47,191,383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (OEISA007505)

The primes of the form 3×2n + 1 are related.

7,13,97,193,769, 12289, 786433, 3221225473, 206158430209, 6597069766657 (OEISA039687)

Prime triplets

[edit]
Main article:Prime triplet
See also:§ Cousin primes,§ Twin primes, and§ Prime quadruplets

Where (p,p+2,p+6) or (p,p+4,p+6) are all prime.

(5,7,11), (7, 11,13), (11, 13,17), (13, 17,19), (17, 19,23), (37,41,43), (41, 43,47), (67,71,73), (97,101,103), (101, 103,107), (103, 107,109), (107, 109,113), (191,193,197), (193, 197,199), (223,227,229), (227, 229,233), (277,281,283), (307,311,313), (311, 313,317), (347,349,353) (OEISA007529,OEISA098414,OEISA098415)

Truncatable prime

[edit]
Main article:Truncatable prime

Left-truncatable

[edit]

Primes that remain prime when the leading decimal digit is successively removed.

2,3,5,7,13,17,23,37,43,47,53,67,73,83,97,113,137,167,173,197,223,283,313,317,337,347,353,367,373,383,397,443,467,523,547,613,617,643,647,653,673,683 (OEISA024785)

Right-truncatable

[edit]

Primes that remain prime when the least significant decimal digit is successively removed.

2,3,5,7,23,29,31,37,53,59,71,73,79,233,239,293,311,313,317,373,379,593,599,719,733,739,797,2333,2339,2393,2399,2939,3119,3137,3733,3739,3793,3797 (OEISA024770)

Two-sided

[edit]

Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:

2,3,5,7,23,37,53,73,313,317,373,797,3137,3797, 739397 (OEISA020994)

Twin primes

[edit]
Main article:Twin prime
See also:§ Cousin primes,§ Prime triplets, and§ Prime quadruplets

Where (p,p+2) are both prime.

(3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (59,61), (71,73), (101,103), (107,109), (137,139), (149,151), (179,181), (191,193), (197,199), (227,229), (239,241), (269,271), (281,283), (311,313), (347,349), (419,421), (431,433), (461,463) (OEISA001359,OEISA006512)

Unique primes

[edit]
Further information:Reciprocals of primes § Unique primes

The list of primesp for which theperiod length of the decimal expansion of 1/p is unique (no other prime gives the same period).

3,11,37,101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (OEISA040017)

Wagstaff primes

[edit]
Main article:Wagstaff prime

Of the form (2n + 1) / 3.

3,11,43,683,2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (OEISA000979)

Values ofn:

3,5,7, 11,13,17,19,23,31, 43,61,79,101,127,167,191,199,313,347,701,1709,2617,3539,5807,10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (OEISA000978)

Wall–Sun–Sun primes

[edit]
Main article:Wall–Sun–Sun prime

A primep > 5, ifp2 divides theFibonacci numberFp(p5){\displaystyle F_{p-\left({\frac {p}{5}}\right)}}, where theLegendre symbol(p5){\displaystyle \left({\frac {p}{5}}\right)} is defined as

(p5)={1ifp±1(mod5)1ifp±2(mod5).{\displaystyle \left({\frac {p}{5}}\right)={\begin{cases}1&{\textrm {if}}\;p\equiv \pm 1{\pmod {5}}\\-1&{\textrm {if}}\;p\equiv \pm 2{\pmod {5}}.\end{cases}}}

As of 2022[update], no Wall-Sun-Sun primes have been found below264{\displaystyle 2^{64}} (about181018{\displaystyle 18\cdot 10^{18}}).[17]

Wieferich primes

[edit]
Main article:Wieferich prime
Exclamation mark with arrows pointing at each other
This sectionappears to contradict the articleWieferich prime on The definition of a Weiferich prime. Please see thetalk page for more information.(October 2025)

Primesp such thatap − 1 ≡ 1 (modp2) for fixed integera > 1.

2p − 1 ≡ 1 (modp2):1093,3511 (OEISA001220)
3p − 1 ≡ 1 (modp2):11, 1006003 (OEISA014127)[18][19][20]
4p − 1 ≡ 1 (modp2):1093,3511
5p − 1 ≡ 1 (modp2):2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 (OEISA123692)
6p − 1 ≡ 1 (modp2): 66161, 534851, 3152573 (OEISA212583)
7p − 1 ≡ 1 (modp2):5, 491531 (OEISA123693)
8p − 1 ≡ 1 (modp2):3,1093,3511
9p − 1 ≡ 1 (modp2):2,11, 1006003
10p − 1 ≡ 1 (modp2):3,487, 56598313 (OEISA045616)
11p − 1 ≡ 1 (modp2):71[21]
12p − 1 ≡ 1 (modp2):2693, 123653 (OEISA111027)
13p − 1 ≡ 1 (modp2):2,863, 1747591 (OEISA128667)[21]
14p − 1 ≡ 1 (modp2):29,353, 7596952219 (OEISA234810)
15p − 1 ≡ 1 (modp2): 29131, 119327070011 (OEISA242741)
16p − 1 ≡ 1 (modp2):1093,3511
17p − 1 ≡ 1 (modp2):2,3, 46021, 48947 (OEISA128668)[21]
18p − 1 ≡ 1 (modp2):5,7,37,331, 33923, 1284043 (OEISA244260)
19p − 1 ≡ 1 (modp2):3,7,13,43,137, 63061489 (OEISA090968)[21]
20p − 1 ≡ 1 (modp2):281, 46457, 9377747, 122959073 (OEISA242982)
21p − 1 ≡ 1 (modp2):2
22p − 1 ≡ 1 (modp2):13,673, 1595813, 492366587, 9809862296159 (OEISA298951)
23p − 1 ≡ 1 (modp2):13, 2481757, 13703077, 15546404183, 2549536629329 (OEISA128669)
24p − 1 ≡ 1 (modp2):5, 25633
25p − 1 ≡ 1 (modp2):2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801

As of 2018[update], these are all known Wieferich primes witha ≤ 25.

Wilson primes

[edit]
Main article:Wilson prime

Primesp for whichp2 divides (p−1)! + 1.

5,13,563 (OEISA007540)

As of 2018[update], these are the only known Wilson primes.

Wolstenholme primes

[edit]
Main article:Wolstenholme prime

Primesp for which thebinomial coefficient(2p1p1)1(modp4).{\displaystyle {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}.}

16843, 2124679 (OEISA088164)

As of 2018[update], these are the only known Wolstenholme primes.

Woodall primes

[edit]
See also:Woodall number

Of the formn×2n − 1.

7,23,383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (OEISA050918)

See also

[edit]

References

[edit]
  1. ^Lehmer, D. N. (1982).List of prime numbers from 1 to 10,006,721. Vol. 165. Washington D.C.: Carnegie Institution of Washington.OL 16553580M. OL16553580M.
  2. ^Tomás Oliveira e Silva,Goldbach conjecture verificationArchived 24 May 2011 at theWayback Machine. Retrieved 16 July 2013
  3. ^(sequenceA080127 in theOEIS)
  4. ^Jens Franke (29 July 2010)."Conditional Calculation of pi(1024)".Archived from the original on 24 August 2014. Retrieved17 May 2011.
  5. ^abOEISA018239 includes 2 =empty product of first 0 primes plus 1, but 2 is excluded in this list.
  6. ^Boyd, D. W. (1994)."Ap-adic Study of the Partial Sums of the Harmonic Series".Experimental Mathematics.3 (4):287–302.doi:10.1080/10586458.1994.10504298.Zbl 0838.11015.CiteSeerX:10.1.1.56.7026.Archived from the original on 27 January 2016.
  7. ^abJohnson, W. (1975)."Irregular Primes and Cyclotomic Invariants".Mathematics of Computation.29 (129).AMS:113–120.doi:10.2307/2005468.JSTOR 2005468.
  8. ^It varies whetherL0 = 2 is included in the Lucas numbers.
  9. ^Sloane, N. J. A. (ed.)."Sequence A121091 (Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^Sloane, N. J. A. (ed.)."Sequence A121616 (Primes of form (n+1)^5 - n^5)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^Sloane, N. J. A. (ed.)."Sequence A121618 (Nexus primes of order 7 or primes of form n^7 - (n-1)^7)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^Paszkiewicz, Andrzej (2009)."A new primep{\displaystyle p} for which the least primitive root(modp){\displaystyle ({\textrm {mod}}p)} and the least primitive root(modp2){\displaystyle ({\textrm {mod}}p^{2})} are not equal"(PDF).Math. Comp.78 (266). American Mathematical Society:1193–1195.Bibcode:2009MaCom..78.1193P.doi:10.1090/S0025-5718-08-02090-5.
  13. ^Caldwell, C.;Dubner, H. (1996–97). "The near repdigit primesAnk1B1Ak{\displaystyle A_{n-k-1}B_{1}A_{k}}, especially9nk1819k{\displaystyle 9_{n-k-1}8_{1}9_{k}}".Journal of Recreational Mathematics.28 (1):1–9.
  14. ^Lal, M. (1967)."Primes of the Form n4 + 1"(PDF).Mathematics of Computation.21.AMS:245–247.doi:10.1090/S0025-5718-1967-0222007-9.ISSN 1088-6842.Archived(PDF) from the original on 13 January 2015.
  15. ^Bohman, J. (1973). "New primes of the formn4 + 1".BIT Numerical Mathematics.13 (3). Springer:370–372.doi:10.1007/BF01951947.ISSN 1572-9125.S2CID 123070671.
  16. ^"Primes just less than a power of two 8 to 100 bits (page 1 of 4)".t5k.org. Retrieved19 August 2025.
  17. ^Subproject status at PrimeGrid
  18. ^Ribenboim, P. (22 February 1996).The new book of prime number records. New York: Springer-Verlag. p. 347.ISBN 0-387-94457-5.
  19. ^"Mirimanoff's Congruence: Other Congruences". Retrieved26 January 2011.
  20. ^Gallot, Y.; Moree, P.; Zudilin, W. (2011)."The Erdös-Moser equation 1k + 2k +...+ (m−1)k = mk revisited using continued fractions".Mathematics of Computation.80. American Mathematical Society:1221–1237.arXiv:0907.1356.doi:10.1090/S0025-5718-2010-02439-1.S2CID 16305654.
  21. ^abcdRibenboim, P. (2006).Die Welt der Primzahlen(PDF). Berlin: Springer. p. 240.ISBN 3-540-34283-4.

External links

[edit]
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&oldid=1324120451"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp