Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of nearest stars

From Wikipedia, the free encyclopedia
Stars and brown dwarfs within 20 light years of the Solar System

Rotating 3D image of the nearest stars
Animated 3D map of the nearest stars, centered on the Sun.3D red green glasses are recommended to view this image correctly.
A radar map of all known stellar andsubstellar objects within 9 light years (ly), arranged clockwise inhours ofright ascension, and marked by distance (▬) and position (◆). Distances are marked outward from theSun (Sol), with concentric circles indicating the distance in one ly steps. Positions are marked inward from their distance markings, connected by lines according to theirdeclinations (doted when positive), representing thearcs of the declinations viewed edge-on. For within 12 ly seethis map.

This list covers all knownstars,white dwarfs,brown dwarfs, andsub-brown dwarfs within 20light-years (6.13parsecs) of theSun. So far, 131 such objects have been found. Only22 are bright enough to be visible without a telescope, for which the star's visible light needs to reach or exceed the dimmest brightness visible to thenaked eye from Earth, which is typically around 6.5apparent magnitude.[1]

The known 131 objects are bound in 94stellar systems. Of those, 103 aremain sequence stars: 80red dwarfs and 23 "typical" stars having greater mass. Additionally, astronomers have found 6white dwarfs (stars that have exhausted all fusible hydrogen), 21 brown dwarfs, as well as 1 sub-brown dwarf,WISE 0855−0714 (possibly arogue planet). The closest system isAlpha Centauri, withProxima Centauri as the closest star in that system, at 4.2465 light-years from Earth. The brightest, most massive and most luminous object among those 131 isSirius A, which is also the brightest star in Earth'snight sky; its white dwarf companion Sirius B is the hottest object among them. The largest object within the 20 light-years isProcyon.

TheSolar System, and the other stars/dwarfs listed here, are currently moving within (or near) theLocal Interstellar Cloud, roughly 30light-years (9.2 pc) across. The Local Interstellar Cloud is, in turn, contained inside theLocal Bubble, a cavity in the interstellar medium about 300light-years (92.0 pc) across. It containsUrsa Major and theHyadesstar cluster, among others. The Local Bubble also contains the neighboringG-Cloud, which contains the starsAlpha Centauri andAltair. In thegalactic context, the Local Bubble is a small part of theOrion Arm, which contains most stars that we can see without a telescope. The Orion Arm is one of thespiral arms of ourMilky Way galaxy.

Astrometrics

[edit]

The easiest way to determine stellar distance to the Sun for objects at these distances isparallax, which measures how much stars appear to move against background objects over the course of Earth's orbit around the Sun. As aparsec (parallax-second) is defined by the distance of an object that would appear to move exactly onesecond of arc against background objects, stars less than 5 parsecs away will have measured parallaxes of over 0.2 arcseconds, or 200 milliarcseconds. Determining past and future positions relies on accurateastrometric measurements of their parallax and totalproper motions (how far they move across the sky due to their actual velocity relative to the Sun), along withspectroscopically determinedradial velocities (their speed directly towards or away from us, which combined with proper motion defines their true movement through the sky relative to the Sun). Both of these measurements are subject to increasing and significant errors over very long time spans, especially over the several thousand-year time spans it takes for stars to noticeably move relative to each other.[2]

Based on results from theGaia telescope's second data release from April 2018, an estimated 694 stars will approach the Solar System to less than 5parsecs in the next 15 million years. Of these, 26 have a good probability to come within 1.0 parsec (3.3 light-years) and another 7 within 0.5 parsecs (1.6 light-years).[3] This number is likely much higher, due to the sheer number of stars needed to be surveyed; a star approaching the Solar System 10 million years ago, moving at a typical Sun-relative 20–200 kilometers per second, would be 600–6,000 light-years from the Sun at present day, with millions of stars closer to the Sun. The closest encounter to the Sun so far predicted is the low-mass orange dwarf starGliese 710 / HIP 89825 with roughly 60% the mass of the Sun.[4] It is currently predicted to pass0.1696±0.0065 ly (10635±500au) from the Sun in1.290±0.04 million years from the present, close enough to significantly disturb the Solar System'sOort cloud.[5]

Stars within11 ly.
Stars and star systems within12.5 ly.
Hipparcos luminous stars distances map within 100 pc (330 ly). The number in square brackets is height above or below the galactic plane. The distance between stars is colour coded: < 25 pc: green < 50 pc: cyan < 75 pc: yellow < 100 pc: orange

List

[edit]
Key
#Visible to the unaided eye (apparent magnitude of +6.5 or brighter)
$Luminous star (absolute magnitude of +8.5 or brighter)
White dwarf
§Brown dwarf
&Sub-brown dwarf orrogue planet
*Nearest in constellation

Theclasses of the stars and brown dwarfs are shown in the color of their spectral types (these colors are derived from conventional names for the spectral types and do not necessarily represent the star's observed color). Many brown dwarfs are not listed byvisual magnitude but are listed by near-infraredJ bandapparent magnitude due to how dim (and often invisible) they are in visible color bands (U, B or V). Absolute magnitude (with electromagnetic wave, 'light' band denoted in subscript) is a measurement at a 10-parsec distance across imaginary empty space devoid of all its sparse dust and gas. Some of theparallaxes and resultant distances are rough measurements.[6]

Known systems within 20 light-years (6.13 parsecs)
DesignationDistance
(ly)[7]
RA/Dec
(Ep. &Eq.J2000)[6]
Stellar
class
Mass (M)Magnitude (mV[6] or mJ)Parallax
(mas)

[6][note 1]
Notes andadditional
references
SystemNameApp.Abs.
Solar SystemSun (Sol)$0.0000158N/AN/AG2V[6]1−26.74#4.85N/Aeight recognized planets and moredwarf planets
Alpha CentauriProxima Centauri (C, V645 Centauri)4.2465
±0.0003
Cen*14h 29m 43.0s
−62° 40′ 46″
M5.5Ve0.12211.0915.53768.0665
±0.0499[8]
flare star, one confirmed planet (b, 2016, and two candidate planets, (d, 2022)[9][10] and (c, 2019)[11][12]
Rigil Kentaurus (A)$4.3441
±0.0022
14h 39m 36.5s
−60° 50′ 02″
G2V[6]1.0790.01#4.38750.81
±0.38[13]
one directly imaged habitable-zone planet candidate (Candidate 1) (2021)
Toliman (B)$14h 39m 35.1s
−60° 50′ 14″
K1V[6]0.9091.34#5.71planetb refuted in 2015
Barnard's Star (BD+04°3561a)5.9629
±0.0004
Oph*17h 57m 48.5s
+04° 41′ 36″
M4.0Ve0.1449.5313.22546.9759
±0.0401[8]
flare star, largest-knownproper motion,[14] four confirmed planets (d,b, c, and e)[15][16]
Luhman 16
(WISE 1049−5319)
6.5029
±0.0011
Vel*10h 49m 18.9s
−53° 19′ 10″
L8±1[17]0.03210.7 J14.2 J501.557
±0.082[18]
nearestbrown dwarfs
T1±2[17]0.027
WISE 0855−0714&7.430
±0.041
Hya*08h 55m 10.8s
−07° 14′ 43″
Y40.003-0.01025.0 J28.2 J439.0
±2.4[19]
sub-brown dwarf
Wolf 359 (CN Leonis)7.8558
±0.0013
Leo*10h 56m 29.2s
+07° 00′ 53″
M6.0V[6]0.09013.4416.55415.1794
±0.0684[8]
flare star, has 1 candidate & 1 refuted planet[20][21]
Lalande 21185 (BD+36°2147,Gliese 411, HD 95735)8.3044
±0.0007
UMa*11h 03m 20.2s
+35° 58′ 12″
M2.0V[6]0.3907.4710.44392.7529
±0.0321[8]
two known planets (2019, 2021)[22]
Sirius (Alpha Canis Majoris)A$8.7094
±0.0054
CMa*06h 45m 08.9s
−16° 42′ 58″
A1V[6]2.063−1.46#1.42374.4896
±0.2313[8]
brightest star in the night sky
B‡DA2[6]1.0188.4411.34
Gliese 65 (Luyten 726–8)A (BL Ceti)8.724
±0.012
Cet*01h 39m 01.3s
−17° 57′ 01″
M5.5Ve0.10212.5415.40373.8443
±0.5009[8]
flare star (Archetypal member), has 1 candidate planet[23]
B (UV Ceti)M6.0Ve0.10012.9915.85
Ross 154 (V1216 Sagittarii)9.7063
±0.0009
Sgr*18h 49m 49.4s
−23° 50′ 10″
M3.5Ve0.1710.4313.07336.0266
±0.0317[8]
flare star
Ross 248 (HH Andromedae)10.3057
±0.0014
And*23h 41m 54.7s
+44° 10′ 30″
M5.5Ve0.13612.2914.79316.4812
±0.0444[8]
flare star
Epsilon Eridani (Ran)$10.4749
±0.0037
Eri*03h 32m 55.8s
−09° 27′ 30″
K2V[6]0.8203.73#6.19311.37
±0.11[24]
three circumstellar disks,
one confirmed planet (AEgir, 2000) and one candidate (c, 2002)[25]
Lacaille 9352 (Gliese 887)10.7241
±0.0007
PsA*23h 05m 52.0s
−35° 51′ 11″
M0.5V0.4867.349.75304.1354
±0.0200[8]
flare star,[26] two planets, b and c, with equivocal evidence for a third in the habitable zone (2020)[27]
Ross 128 (FI Virginis)11.0074
±0.0011
Vir*11h 47m 44.4s
+00° 48′ 16″
M4.0Vn0.16811.1313.51296.3053
±0.0302[8]
flare star, one planet (b) (2017)[28]
EZ Aquarii
(Gliese 866, Luyten 789-6)
A11.109
±0.034
Aqr*22h 38m 33.4s
−15° 17′ 57″
M5.0Ve0.1113.3315.64293.60
±0.9[29]
A & B flare stars
BM?0.1113.2715.58
CM?0.1014.0316.34
Procyon (Alpha Canis Minoris)A$11.402
±0.032
CMi*07h 39m 18.1s
+05° 13′ 30″
F5IV–V[6]1.4990.38#2.66286.05
±0.81
[30][31]
B‡DQZ[6]0.60210.7012.98
61 CygniA (BD+38°4343)$11.4039
±0.0012
Cyg*21h 06m 53.9s
+38° 44′ 58″
K5.0V[6]0.705.21#7.49286.0054
±0.0289[8]
first star (besides Sun) to have its distance measured.[32]
B flare star, with possible planet or brown dwarf.[33]
Possible circumstellar disk.
B (BD+38°4344)$21h 06m 55.3s
+38° 44′ 31″
K7.0V[6]0.636.03#8.31
Struve 2398
(Gliese 725, BD+59°1915)
A (HD 173739)11.4908
±0.0009
Dra*18h 42m 46.7s
+59° 37′ 49″
M3.0V[6]0.3348.9011.16283.8401
±0.0220[8]
flare stars, star B has 2 candidate planets[20]
B (HD 173740)18h 42m 46.9s
+59° 37′ 37″
M3.5V[6]0.2489.6911.95
Groombridge 34
(Gliese 15)
A (GX Andromedae)11.6191
±0.0008
And00h 18m 22.9s
+44° 01′ 23″
M1.5V[6]0.388.0810.32280.7068
±0.0203[8]
flare star, two known planets (Ab, 2014, andAc, 2018)[34]
B (GQ Andromedae)M3.5V[6]0.1511.0613.30flare star
DX Cancri (G 51-15)11.6797
±0.0027
Cnc*08h 29m 49.5s
+26° 46′ 37″
M6.5Ve0.0914.7816.98279.2496
±0.0637[8]
flare star
Epsilon Indi
(CPD−57°10015)
A$11.8670
±0.0041
Ind*22h 03m 21.7s
−56° 47′ 10″
K5Ve[6]0.7544.69#6.89274.8431
±0.0956[8]
one planet (Ab) (2018)[35]
Ba§22h 04m 10.5s
−56° 46′ 58″
T1.0V0.06512.3 J[36]14.5 J
Bb§T6.0V0.05013.2 J[36]15.4 J
Tau Ceti (BD−16°295)$11.9118
±0.0074
Cet01h 44m 04.1s
−15° 56′ 15″
G8.5Vp[6]0.7833.49#5.68273.8097
±0.1701[8]
debris disk,
and evidence for four planets (e,f, g, and h) (2012, 2017),
and further four suspected planets (b, c, d, and "i") (2012, 2019)
GJ 1061 (LHS 1565)11.9839
±0.0014
Hor*03h 35m 59.7s
−44° 30′ 45″
M5.5V[6]0.11313.0915.26272.1615
±0.0316[8]
has 3 known planets (2019)[37][38][39]
YZ Ceti (LHS 138)12.1222
±0.0015
Cet01h 12m 30.6s
−16° 59′ 56″
M4.5V[6]0.13012.0214.17269.0573
±0.0337[8]
flare star, three planets (b, c, and d) (2017)[40]
Luyten's Star (BD+05°1668)12.3485
±0.0019
CMi07h 27m 24.5s
+05° 13′ 33″
M3.5Vn0.269.8611.97264.1269
±0.0413[8]
two planets (b, c) (2017)[41] and two suspected planets (d, e) (2019)[42]
Teegarden's Star (SO025300.5+165258)12.4970
±0.0045
Ari*02h 53m 00.9s
+16° 52′ 53″
M6.5V0.0815.1417.22260.9884
±0.0934[8]
has 3 known planets (2019, 2024)[43][44]
Kapteyn's Star (CD−45°1841)12.8308
±0.0008
Pic*05h 11m 40.6s
−45° 01′ 06″
M1.5VI[6]0.2818.8410.87254.1986
±0.0168[8]
two refuted planets (b and c) (2014)[45][46]
Lacaille 8760 (AX Microscopii)12.9472
±0.0018
Mic*21h 17m 15.3s
−38° 52′ 03″
M0.0V[6]0.606.678.69251.9124
±0.0352[8]
brightestM dwarf star in night sky, flare star
SCR 1845−6357A13.0638
±0.0070
Pav*18h 45m 05.3s
−63° 57′ 48″
M8.5V[6]0.0717.3919.41249.6651
±0.1330[8]
[39]
18h 45m 02.6s
−63° 57′ 52″
T6[47]0.03[6]13.3 J[36]15.3 J
Kruger 60
(BD+56°2783)
A13.0724
±0.0052
Cep*22h 27m 59.5s
+57° 41′ 45″
M3.0V[6]0.2719.7911.76249.5
±0.1[48]
B flare star
B (DO Cephei)M4.0V[6]0.17611.4113.38
DENIS J1048−395613.1932
±0.0027
Ant*10h 48m 14.7s
−39° 56′ 06″
M8.5V[6]0.0817.3919.37247.2156
±0.0512[8]
[49][50]
Ross 614
(V577 Monocerotis, Gliese 234)
A (LHS 1849)13.363
±0.040
Mon*06h 29m 23.4s
−02° 48′ 50″
M4.5V[6]0.22311.1513.09244.07
±0.73[51]
A flare star
B (LHS 1850)M5.5V0.11114.2316.17
UGPS J0722-0540§13.43
±0.13
Mon07h 22m 27.3s
–05° 40′ 30″
T9[6]0.010-0.02516.52 J[52]18.45 J242.8
±2.4[53]
[54]
Wolf 1061 (Gliese 628, BD−12°4523)14.0500
±0.0016
Oph16h 30m 18.1s
−12° 39′ 45″
M3.0V[6]0.29410.0711.93232.1390
±0.0268[8]
three planets (b,c, andd) (2015)[55]
Van Maanen's Star (Gliese 35, LHS 7)‡14.0718
±0.0011
Psc*00h 49m 09.9s
+05° 23′ 19″
DZ7[6]0.6712.3814.21231.7800
±0.0183[8]
closest-known free-floating white dwarf,
third-known white dwarf
possible debris disk (1917)
Gliese 1 (CD−37°15492)14.1747
±0.0022
Scl*00h 05m 24.4s
−37° 21′ 27″
M1.5 V[6]0.45-0.488.5510.35230.0970
±0.0362[8]
TZ Arietis (Gliese 83.1, L 1159–16)14.5780
±0.0046
Ari02h 00m 13.2s
+13° 03′ 08″
M4.5V[6]0.1412.2714.03223.7321
±0.0699[8]
flare star, has one confirmed planet (b)[56]
Wolf 424
(FL Virginis, LHS 333, Gliese 473)
A14.595
±0.031
Vir12h 33m 17.2s
+09° 01′ 15″
M5.5Ve0.14313.1814.97223.4775
±0.4665[8]
flare stars
BM7Ve0.13113.1714.96
Gliese 687 (LHS 450, BD+68°946)14.8395
±0.0014
Dra17h 36m 25.9s
+68° 20′ 21″
M3.0V[6]0.4019.1710.89219.7898
±0.0210[8]
possible flare star, two planets (b) (2014)[57] and (c) (2020)[58]
Gliese 674 (LHS 449)14.8492
±0.0018
Ara*17h 28m 39.9s
−46° 53′ 43″
M3.0V[6]0.359.3811.09219.6463
±0.0262[8]
one planet (b) (2007)[59]
LHS 292 (LP 731-58)14.8706
±0.0041
Sex*10h 48m 12.6s
−11° 20′ 14″
M6.5V[6]0.0815.6017.32219.3302
±0.0602[8]
flare star
Gliese 440 (WD 1142-645, LP 145-141)‡15.1226
±0.0013
Mus*11h 45m 42.9s
−64° 50′ 29″
DQ6[6]0.7511.5013.18215.6753
±0.0181[8]
GJ 1245A (G 208-44 A)15.2001
±0.0034
Cyg19h 53m 54.2s
+44° 24′ 55″
M5.5V[6]0.1113.4615.17214.5745
±0.0476[8]
flare stars
B (G 208-45)19h 53m 55.2s
+44° 24′ 56″
M6.0V[6]0.1014.0115.72
C (G 208-44 B)19h 53m 54.2s
+44° 24′ 55″
M5.50.0716.7518.46
WISE 1741+2553§15.22
±0.20
Her*17h 41m 24.2s
+25° 53′ 19″
T916.53 J18.18 J214.3
±2.8[60]
Gliese 876 (Ross 780)15.2382
±0.0025
Aqr22h 53m 16.7s
−14° 15′ 49″
M3.5V[6]0.3710.1711.81214.0380
±0.0356[8]
four planets (d (2005),c (2001),b (1998), ande (2010))[61]
WISE 1639−6847§15.336
±0.066
TrA*16h 39m 40.9s
−68° 47′ 46″
Y0.520.57 J22.10 J212.67
±0.91[62]
LHS 288 (Luyten 143-23)15.7586
±0.0034
Car*10h 44m 21.2s
−61° 12′ 36″
M5.5V[6]0.11[6]13.9015.51206.9698
±0.0448[8]
GJ 100215.8060
±0.0036
Cet00h 06m 43.8s
−07° 32′ 22″
M5.5V[6]0.1113.7615.40206.3500
±0.0474[8]
two known planets (b & c, 2022)[63]
DENIS 0255−4700§15.877
±0.014
Eri02h 55m 03.7s
−47° 00′ 52″
L7.5V[6]0.025-0.06522.9224.44205.4251
±0.1857[8]
[50]
Groombridge 1618 (Gliese 380)$15.8857
±0.0017
UMa10h 11m 22.1s
+49° 27′ 15″
K7.0V[6]0.676.598.16205.3148
±0.0224[8]
flare star, one suspected debris disk
Gliese 412A15.9969
±0.0026
UMa11h 05m 28.6s
+43° 31′ 36″
M1.0V[6]0.488.7710.34203.8876
±0.0332[8]
B (WX Ursae Majoris)11h 05m 30.4s
+43° 31′ 18″
M5.5V[6]0.1014.4816.05flare star
AD Leonis16.1939
±0.0024
Leo10h 19m 36.4s
+19° 52′ 10″
M3.0V[6]0.39-0.429.3210.87201.4064
±0.0296[8]
flare star, one refuted planet (b[20] in 2020)[64]
Gliese 83216.2005
±0.0019
Gru*21h 33m 34.0s
−49° 00′ 32″
M1.5 V[6]0.458.6610.20201.3252
±0.0237[8]
possible flare star, two planets; one confirmed (b (2008)),[65] and the other now refuted (c (2014))[66][67]
Gliese 682 (CD-44 11909)16.3328
±0.0026
Sco*17h 37m 03.7s
–44° 19′ 09″
M4 V0.2710.9512.45199.6944
±0.0312[8]
has two disputed planets
Omicron2 Eridani
(40 Eridani, Gliese 166)
Keid (A)$16.3330
±0.0042
Eri04h 15m 16.3s
−07° 39′ 10″
K0.5 V0.844.43#5.93199.6911
±0.0512[8]
has one refuted planet
B‡04h 15m 21.8s
−07° 39′ 29″
DA40.5739.5211.02
C04h 15m 21.5s
−07° 39′ 22″
M4 V0.203611.2412.74
EV Lacertae16.4761
±0.0018
Lac*22h 46m 49.7s
+44° 20′ 02″
M3.5 V0.3510.2211.70197.9573
±0.0220[8]
record setting stellar flare observed
70 Ophiuchi (Gliese 702)A$16.7074
±0.0087
Oph18h 05m 27.4s
+02° 29′ 59″
K0 V0.904.21#5.66195.2166
±0.1012[48]
B$18h 05m 27.5s
+02° 29′ 56″
K5 V0.706.01#7.46
Altair (Alpha Aquilae)$16.730
±0.049
Aql*19h 50m 47.0s
+08° 52′ 06″
A7 IV-Vn1.790.77#2.22194.95
±0.57[68]
EI Cancri (GJ 1116,G 9-38)A16.800
±0.011
Cnc08h 58m 15.2s
+19° 45′ 47″
M5.5 V0.1214.0615.50194.1443
±0.1228[8]
BM V0.1014.9216.36
WISE J150649.97+702736.1§16.856
±0.052
UMi*15h 06m 52.4s
+70° 27′ 25″
T613.74 J15.17 J193.5
±0.6[60]
GJ 3379 (G 99-49)16.9861
±0.0027
Ori*06h 00m 03.5s
+02° 42′ 24″
M3.5 V0.231211.3112.73192.0135
±0.0310[8]
DENIS J081730.0−615520§17.002
±0.037
Car08h 17m 30.1s
−61° 55′ 16″
T60.01513.61 J15.03 J191.8362
±0.4186[8]
Gliese 445 (LHS 2459,G 254-29)17.1368
±0.0017
Cam*11h 47m 41.4s
+78° 41′ 28″
M3.5 V0.1410.7912.19190.3251
±0.0194[8]
2MASS J15404342−510135717.3738
±0.0046
Nor*15h 40m 43.5s
−51° 01′ 36″
M7 V0.09015.2616.63187.7290
±0.0496[8]
2MASS 0939−244817.41
±0.44
Ant09h 39m 35.5s
−24° 48′ 28″
T8 V0.019–0.04815.61 J16.97 J187.3
±4.6[69]
binary brown dwarf
T8 V0.019–0.038
GJ 3323 (LHS 1723,LP 656-38)17.5309
±0.0026
Eri05h 01m 57.4s
−06° 56′ 46″
M4 V0.170512.2213.57186.0466
±0.0277[8]
has two known planets
Gliese 526 (Wolf 498, HD 119850)17.7263
±0.0024
Boo*13h 45m 43.8s
+14° 53′ 29″
M1 V0.288.469.78183.9962
±0.0253[8]
WISE 0350−5658§17.84
±0.30
Ret*03h 50m 00.3s
−56° 58′ 30″
Y122.47 J23.70 J182.9
±3.1[62]
Stein 2051 (Gliese 169.1,G 175-34)A17.9925
±0.0020
Cam04h 31m 11.5s
+58° 58′ 37″
M4 V0.25211.0412.33181.2730
±0.0203[8]
B‡04h 31m 12.6s
+58° 58′ 41″
DC50.67512.4313.72
2MASS J11145133−2618235§18.20
±0.14
Hya11h 14m 51.3s
−26° 18′ 24″
T7.50.029–0.04815.86 J17.12 J179.2
±1.4[70]
Gliese 251 (Wolf 294, HD 265866)18.2146
±0.0028
Gem*06h 54m 49.0s
+33° 16′ 05″
M3 V0.36010.0211.29179.0629
±0.0280[8]
has one known planet
LP 816-6018.3305
±0.0038
Cap*20h 52m 33.0s
−16° 58′ 29″
M3.5 V0.22411.5012.75177.9312
±0.0365[8]
LSR J1835+325918.5534
±0.0049
Lyr*18h 35m 37.9s
+32° 59′ 55″
M8.5 V0.05318.2719.50175.7930
±0.0468[8]
Gliese 205 (Wolf 1453, HD 36395)18.6042
±0.0022
Ori05h 31m 27.4s
−03° 40′ 38″
M1 V0.5567.959.17175.3131
±0.0204[8]
2MASS J04151954−0935066§18.62
±0.18
Eri04h 15m 19.5s
−09° 35′ 07″
T80.0315.34 J16.56 J175.2
±1.7[70]
Gliese 229 (HD 42581)A18.7906
±0.0018
Lep*06h 10m 34.6s
−21° 51′ 53″
M1.5 V0.5798.149.34173.5740
±0.0170[8]
[71]
Ba§T70.03614.01 J15.21 J
Bb§T80.033
Alsafi (Sigma Draconis)$18.7993
±0.0081
Dra19h 32m 21.6s
+69° 39′ 40″
G9 V0.854.67#5.87173.4939
±0.0748[8]
Ross 47 (Gliese 213)18.8883
±0.0031
Ori05h 42m 09.3s
+12° 29′ 21″
M4 V0.3511.5712.76172.6762
±0.0286[8]
WISE 1541−2250§18.93
±0.17
Lib15h 41m 51.6s
−22° 50′ 25″
Y0.50.01120.99 J22.10 J172.3
±1.6[62]
Gliese 570
(Lalande 27173, 33 G. Librae)
A$19.1987
±0.0074
Lib*14h 57m 28.0s
−21° 24′ 56″
K4 V0.8025.64#6.79169.8843
±0.0653[8]
BM1.5 V0.558.309.45
CM0.359.9611.11
T7.50.0515.32 J16.47 J
Gliese 693 (Luyten 205–128)19.2078
±0.0053
Pav17h 46m 32.4s
−57° 19′ 09″
M3 V0.2610.7611.91169.8042
±0.0465[8]
Gliese 754 (Luyten 347–14)19.2724
±0.0067
Tel*19h 20m 48.0s
−45° 33′ 30″
M4 V0.17312.2313.37169.2351
±0.0588[8]
has one candidate planet
Gliese 908 (Lalande 46650, BR Piscium)19.2745
±0.0032
Psc23h 49m 12.5s
+02° 24′ 04″
M1 V0.378.9810.12169.2163
±0.0281[8]
Gliese 752 (Wolf 1055, HD 180617)A19.2922
±0.0027
Aql19h 16m 55.3s
+05° 10′ 08″
M2.5 V0.469.1010.24169.0615
±0.0239[8]
has one known planet
B(VB 10)19h 16m 57.6s
+05° 09′ 02″
M8 V0.07517.4518.59very small and very dim red dwarf
Gliese 588 (CD-40 9712)19.2996
±0.0031
Lup*15h 32m 12.9s
−41° 16′ 32″
M2.5 V0.439.3110.45168.9965
±0.0270[8]
has two candidate planets
Eta Cassiopeiae (Gliese 34)Achird (A)$19.3314
±0.0025
Cas*00h 49m 06.3s
+57° 48′ 55″
G3 V0.9723.46#4.60168.7186
±0.0216[8]
BK7 V0.577.518.65
36 Ophiuchi (Gliese 663)Guniibuu (A)$19.4185
±0.0036
Oph17h 15m 20.9s
−26° 36′ 09″
K1.5 V0.855.07#6.20167.9617
±0.0311[8]
B$17h 15m 21.0s
−26° 36′ 10″
K1 V0.855.08#6.21
C$17h 16m 13.4s
−26° 32′ 46″
K5 V0.716.32#7.45
YZ Canis Minoris (Ross 882, Gliese 285)19.5330
±0.0040
CMi07h 44m 40.2s
+03° 33′ 09″
M4 V0.30811.1912.30166.9769
±0.0343[8]
GJ 1005 (Luyten 722-22,G 158-50)A19.577
±0.035
Cet00h 15m 28.1s
−16° 08′ 02″
M3.5 V0.17911.6012.71166.6
±0.3[72]
distance uncertain: 16.28±0.75, 17.91±0.67, 17.0±1.5, 16.26±0.76, 17.26, 19.695±0.095 ly[citation needed]
BM V0.11214.0215.13
HR 7703 (279 G. Sagittarii, HD 191408, Gliese 783,IRAS 20079-3614)A$19.609
±0.013
Sgr20h 11m 11.93s
–36° 06′ 04″
K2.5 V0.655.31#6.41166.3272
±0.1065[8]
BM4 V0.2411.5012.60
82 G. Eridani (e Eridani, Gliese 139, HD 20794)$19.7045
±0.0093
Eri03h 19m 55.7s
−43° 04′ 11″
G8 V0.704.26#5.35165.5242
±0.0784[8]
has three confirmed planets, three candidate planets, hot and cold dust disks
Gliese 268 (Ross 986, QY Aurigae)A19.7414
±0.0076
Aur*07h 10m 01.8s
+38° 31′ 46″
M4.5 V0.22612.0513.14165.2147
±0.0636[8]
BM V0.19212.4513.54
Delta Pavonis$19.893
±0.015
Pav20h 08m 43.6s
−66° 10′ 55″
G8 IV1.0513.55#4.62163.9544
±0.1222[8]
has one candidate planet
SIMP J013656.5+093347§19.955
±0.057
Psc01h 36m 56.5s
+09° 33′ 47″
T2.50.01213.25 J14.32 J163.4478
±0.4629[8]
rogue planet, 12.7 MJ
2MASS 0937+2931§19.96
±0.22
Leo09h 37m 34.9s
+29° 31′ 41″
T70.04014.65 J15.71 J163.39
±1.76[73]
SystemStar or (sub-) brown dwarfDistance
(ly(±err))[7]
Coordinates:
RADec
(Ep J2000,Eq J2000)[6]
Stellar
class
Mass
M
App.Abs.Parallax
(mas
(±err))

[6][note 1]
Notes andadditional
references
DesignationMagnitude (mV[6] or mJ)

Distant future and past encounters

[edit]
Graph of the distances of various stars from the Sun during the past 20,000 to future 80,000 years.
Distances of the nearest stars from 20,000 years ago until 80,000 years in the future
Visualisation of theorbit of the Sun (yellow dot and white curve) around theGalactic Centre (GC) in the lastgalactic year. The red dots correspond to the positions of the stars studied by theEuropean Southern Observatory in a monitoring programme.[74]

Over long periods of time, the slow independent motion of stars change in both relative position and in their distance from the observer. This can cause other currently distant stars to fall within a stated range, which may be readily calculated and predicted using accurateastrometric measurements ofparallax and totalproper motions, along withspectroscopically determinedradial velocities. Although extrapolations can be made into the past or future, they are subject to increasingly significant cumulative errors over very long periods.[2] Inaccuracies of these measured parameters make determining the true minimum distances of any encountering stars or brown dwarfs fairly difficult.[75]

One of the first stars known to approach the Sun particularly close isGliese 710. The star, whose mass is roughly half that of the Sun, is currently 62 light-years from the Solar System. It was first noticed in 1999 using data from theHipparcos satellite, and was estimated to pass less than 1.3 light-years (0.40 pc) from the Sun in 1.4 million years.[76] With the release ofGaia's observations of the star, it has since been refined to a much closer 0.178 light-years (0.055 pc), close enough to significantly disturb objects in theOort cloud, which extends 1.2 light-years (0.37 pc) from the Sun.[77]

Gaia's third data release has provided updated values for many of the candidates in the table below.[78][79][80][81]

Stars that are known to have passed or will pass within 5 light-years of the Sun in the past or future[82][83][84]
Star nameMinimum distance
(light-years)
Date of approach
in thousands of years
Current distance
(light-years)
Stellar classificationMass inMCurrent
apparent magnitude
CurrentConstellationCurrent
Right ascension
Current
Declination
Gliese 7100.167±0.0121296+24
−23
62.248±0.020K7V0.4–0.69.6Serpens18h 19m 50.843s−01° 56′ 18.98″
HD 79770.478+0.104
−0.078
−2764+28
−29
246.74±0.60G0V~1.29.04Cassiopeia01h 20m 31.597s+61° 52′ 57.08″
Scholz's Star and companionbrown dwarf0.82+0.37
−0.22
−78.5±0.722.2±0.2A: M9V
B: T5
A: 0.095
B: 0.063
18.3Monoceros07h 20m 03.20s−08° 46′ 51.2″
2MASS J0628+18451.61+0.28
−0.24
1720+150
−130
272.28±0.80M2.5V0.2816.2Gemini06h 28m 11.593s+18° 45′ 12.91″
2MASS J0805+46241.610+0.099
−0.092
−363+13
−14
238.1±1.0M3V0.2517.0Lynx08h 05m 29.038s+46° 24′ 51.78″
CD-69 20011.616+0.070
−0.068
−1907±10332.61±0.55K4V0.6111.13Indus21h 40m 31.514s−69° 25′ 14.58″
HD 499951.70+0.23
−0.20
−4034+94
−98
439.74±0.59A: F3V
B: M1V
A: 1.48
B: 0.49
8.78Canis Major06h 50m 20.810s−18° 37′ 30.58″
2MASS J0621-01011.71+0.46
−0.39
−3206+68
−66
428.8±3.1G5V0.9611.9Orion06h 21m 34.807s−01° 01′ 55.01″
LSPM J2146+38131.8557±0.004884.59±0.1922.9858±0.0034M5V~0.1510.82Cygnus21h 46m 22.285s+38° 13′ 03.12″
2MASS J0455+11441.94+0.16
−0.15
1702+58
−54
349.50±0.80M0V0.5015.3Orion04h 55m 21.427s+11° 44′ 41.25″
2MASS J0734-06371.950±0.021−554.6±3.3130.66±0.12M0V0.5012.9Monoceros07h 34m 39.097s−06° 37′ 12.21″
2MASS J1151-03131.98+0.20
−0.18
1017+60
−54
125.88±0.41M3.5V0.2315.3Virgo11h 51m 37.434s−03° 13′ 45.24″
UCAC4 076–0064322.042+0.034
−0.033
−893.8+7.9
−8.0
212.41±0.15mid K~0.612.69Mensa06h 34m 29.385s−74° 49′ 47.12″
2MASS J0120+47392.25+0.17
−0.15
473+27
−25
237.56±0.66M3.5V0.2516.5Andromeda01h 20m 04.561s+47° 39′ 46.56″
TYC 6760–1510–12.46+0.19
−0.18
−1708+44
−47
102.89±0.16M1.5V0.5811.5Hydra15h 00m 09.536s−29° 05′ 27.67″
UCAC2 157193712.46±0.10−4282+70
−73
280.80±0.26K4V0.6612.58Antlia09h 44m 09.884s−37° 45′ 31.09″
TYC 1662–1962–12.637+0.055
−0.054
−1536.6+9.0
−9.1
286.51±0.40Early K~0.810.95Vulpecula21h 14m 32.911s+21° 53′ 32.76″
HD 1799392.65±0.173020±25334.32±0.88A3V1.77.23Aquila19h 14m 10.043s+07° 45′ 50.72″
BD-21 15292.701+0.059
−0.058
−1660.1±6.3368.48±0.56G5V~0.959.67Canis Major06h 37m 48.004s−21° 22′ 21.94″
2MASS J1310-13072.79+0.59
−0.47
−1520+150
−190
433.0±2.6M2.5V0.3416.3Virgo13h 10m 30.804s−13° 07′ 33.55″
UPM J1121-55492.803±0.020−282.5+1.6
−1.7
72.498±0.029M3V0.2913.5Centaurus11h 21m 18.136s−55° 49′ 17.77″
UCAC4 464–0060572.812+0.052
−0.051
932±11101.570±0.086Early M~0.411.73Taurus04h 09m 02.050s+02° 45′ 38.32″
UCAC4 213–0086442.91+0.13
−0.12
−306+12
−13
80.987±0.048M5.00.1716.4Puppis06h 21m 54.714s−47° 25′ 31.33″
GJ 36493.016±0.024−520.4±3.154.435±0.023M10.4910.85Leo11h 12m 38.97s+18° 56′ 05.4″
Ross 2483.0446±0.007738.500±0.09610.3057±0.0014M6V0.13612.29Andromeda23h 41m 54.99s+44° 10′ 40.8″
2MASS J1921-12443.08+0.21
−0.19
−3490+120
−130
376.46±0.73K6V0.6912.46Sagittarius19h 21m 58.124s−12° 43′ 58.61″
Proxima Centauri3.123±0.01528.65±0.274.24646±0.00028M5Ve0.1511.05Centaurus14h 29m 42.949s−62° 40′ 46.14″
TYC 9387–2515–13.220+0.081
−0.079
−1509.1+8.6
−8.7
401.96±0.54K1V0.8611.45Mensa06h 18m 54.643s−80° 19′ 16.54″
Alpha Centauri AB3.242±0.06029.63+1.00
−0.98
4.321±0.024A: G2V
B: K1V
A: 1.100
B: 0.907[85]
A: -0.01
B: +1.33
Centaurus14h 39m 36.495s−60° 50′ 02.31″
Gliese 4453.3400±0.005146.341±0.06517.1368±0.0017M40.15?10.8Camelopardalis11h 47m 41.377s+78° 41′ 28.18″
2MASS J1638-63553.37+0.29
−0.28
−1428+21
−22
468.5±4.2K2V0.8212.44Triangulum Australe16h 38m 21.759s−63° 55′ 13.16″
2MASS J0542+32173.43+0.75
−0.71
5823+89
−87
884.6±2.4A: G4V
B: K0V
A: 1.01
B: 0.85
12.80Auriga05h 42m 38.349s+32° 17′ 29.85″
2MASS J0625-24083.700+0.082
−0.080
−1874±14534.88±0.93K/M~0.512.91Canis Major06h 25m 42.744s−24° 08′ 35.02″
Barnard's Star3.7682±0.003111.735±0.0135.96290±0.00044sdM40.1449.54Ophiuchus17h 57m 48.498s+04° 41′ 36.25″
BD+05 17923.965±0.040−962.7±3.0239.73±0.33G2V1.078.58Gemini07h 48m 07.037s+05° 27′ 22.51″
2MASS J2241-27594.05±0.16−2810+37
−38
411.06±0.76K7V~0.512.28Piscis Austrinus22h 41m 50.996s−27° 59′ 47.04″
2MASS J1724-05224.15+0.26
−0.25
3058+54
−52
489.5±1.3K0V0.8612.73Ophiuchus17h 24m 55.056s−05° 22′ 11.45″
StKM 1–5544.217+0.036
−0.035
−549.9+2.9
−3.0
151.97±0.19M0V0.6512.17Orion05h 14m 01.871s+05° 22′ 56.26″
GJ 33794.227±0.024−157.43+0.93
−0.94
16.9861±0.0027M3.5V0.1911.31Orion06h 00m 03.824s+02° 42′ 22.97″
2MASS J1936+36274.23+0.62
−0.57
3830+120
−110
671.6±3.4G5.5V0.9512.2Cygnus19h 36m 57.294s+36° 27′ 57.71″
2MASS J0710+52284.303±0.039507.6+3.8
−3.7
90.949±0.050M3V0.3312.52Lynx07h 10m 52.167s+52° 28′ 18.49″
HD 1462484.341+0.040
−0.039
−1141.5±3.7334.87±0.47G2/3IV1.239.47Triangulum Australe16h 19m 27.875s−64° 50′ 34.38″
2MASS J1724+03554.37±0.121991+38
−37
254.99±0.26G8V0.8512.54Ophiuchus17h 24m 34.633s+03° 55′ 26.75″
StKM 1–14564.396±0.0431240.2+6.9
−6.8
144.934±0.095A: K5V
B: M8V
A: 0.81
B: 0.09
10.58Hercules17h 17m 31.118s+15° 34′ 55.35″
Zeta Leporis4.43+0.33
−0.30
−878+42
−46
72.81±0.40A2Vann2.03.55Lepus05h 46m 57.341s−14° 49′ 19.02″
Lalande 211854.6807±0.005521.973±0.0338.30437±0.00068M2V0.397.52Ursa Major11h 03m 20.194s+35° 58′ 11.55″
HD 688144.724+0.090
−0.089
−2242±13259.85±0.30G6V0.989.57Hydra08h 13m 57.112s−04° 03′ 12.56″
2MASS J1941-46024.814+0.050
−0.049
−456.5+4.1
−4.2
66.848±0.033M4-M6~0.1512.4Telescopium19h 41m 53.18s−46° 02′ 31.4″
Schematic view to scale of past and future close approaches of stars to the Sun (Up to 4.5 light-years)

See also

[edit]

Related lists

[edit]

Notes

[edit]
  1. ^abParallaxes given by RECONS are a weighted mean of values in the sources given, as well as measurements by the RECONS program.

References

[edit]
  1. ^Weaver, Harold F. (1947). "The Visibility of Stars Without Optical Aid".Publications of the Astronomical Society of the Pacific.59 (350):232–243.Bibcode:1947PASP...59..232W.doi:10.1086/125956.
  2. ^abMatthews, R. A. (1994). "The Close Approach of Stars in the Solar Neighborhood".Quarterly Journal of the Royal Astronomical Society.35: 1.Bibcode:1994QJRAS..35....1M.
  3. ^Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesnea, M. (2018). "New stellar encounters discovered in the second Gaia data release".Astronomy & Astrophysics.616 (37): A37.arXiv:1805.07581.Bibcode:2018A&A...616A..37B.doi:10.1051/0004-6361/201833456.S2CID 56269929.
  4. ^Hall, Shannon (28 May 2018)."Known Close Stellar Encounters Surge in Number". Sky and Telescope. Retrieved2 June 2018.
  5. ^de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos (2022)."An Update on the Future Flyby of Gliese 710 to the Solar System Using Gaia DR3: Flyby Parameters Reproduced, Uncertainties Reduced".Research Notes of the AAS.6 (6): 136.Bibcode:2022RNAAS...6..136D.doi:10.3847/2515-5172/ac7b95.
  6. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbd"The One Hundred Nearest Star Systems".Research Consortium on Nearby Stars. 17 September 2007. Retrieved6 November 2007.
  7. ^abFrom parallax.
  8. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvBrown, A. G. A.; et al. (Gaia collaboration) (2021)."Gaia Early Data Release 3: Summary of the contents and survey properties".Astronomy & Astrophysics.649: A1.arXiv:2012.01533.Bibcode:2021A&A...649A...1G.doi:10.1051/0004-6361/202039657.S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e).
  9. ^Suárez Mascareño, A.; Faria, J. P.; et al. (2020)."Revisiting Proxima with ESPRESSO".Astronomy & Astrophysics.639: A77.arXiv:2005.12114.Bibcode:2020A&A...639A..77S.doi:10.1051/0004-6361/202037745.ISSN 0004-6361.
  10. ^Faria, J. P.; Suárez Mascareño, A.; Figueira, P.; et al. (2022)."A candidate short-period sub-Earth orbiting Proxima Centauri"(PDF).Astronomy & Astrophysics.658. EDP Sciences: A115.arXiv:2202.05188.Bibcode:2022A&A...658A.115F.doi:10.1051/0004-6361/202142337.
  11. ^Drake, Nadia (12 April 2019)."A new super-Earth may orbit the star next door".National Geographic. Archived fromthe original on 13 April 2019. Retrieved21 April 2019.Video of discovery being discussed (accidentally announced?)
  12. ^Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (23 June 2022)."Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry".The Astronomical Journal. 164:84 (3) (published 8 August 2022): 18pp.arXiv:2207.13524.Bibcode:2022AJ....164...84A.doi:10.3847/1538-3881/ac7ce6.
  13. ^Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (20 April 2021)."Precision Millimeter Astrometry of the α Centauri AB System".The Astronomical Journal.162 (1): 14.arXiv:2104.10086.Bibcode:2021AJ....162...14A.doi:10.3847/1538-3881/abfaff.S2CID 233307418.
  14. ^Barnard, E. E. (1916). "A small star with large proper motion".Astronomical Journal.29 (695): 181.Bibcode:1916AJ.....29..181B.doi:10.1086/104156.
  15. ^González Hernández, J. I.; et al. (October 2024). "A sub-Earth-mass planet orbiting Barnard's star".Astronomy & Astrophysics.690: A79.arXiv:2410.00569.doi:10.1051/0004-6361/202451311.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  16. ^Basant, Ritvik; Luque, Rafael; Bean, Jacob; Seifahrt, Andreas; Brady, Madison; Zhao, Lily; Brown, Nina; Das, Tanya; Stürmer, Julian; Kasper, David; Gupta, Rohan; Stefánsson, Guđmundur."Four Sub-Earth Planets Orbiting Barnard's Star from MAROON-X and ESPRESSO".IOPscience. American Astronomical Society. Retrieved14 March 2025.
  17. ^abLuhman, K. L. (2013). "Discovery of a Binary Brown Dwarf at 2 Parsecs from the Sun".The Astrophysical Journal Letters.767 (1): L1.arXiv:1303.2401.Bibcode:2013ApJ...767L...1L.doi:10.1088/2041-8205/767/1/L1.S2CID 8419422.
  18. ^Lazorenko, P. F.; Sahlmann, J. (23 August 2018). "Updated astrometry and masses of the LUH 16 brown dwarf binary".Astronomy & Astrophysics.618: A111.arXiv:1808.07835.Bibcode:2018A&A...618A.111L.doi:10.1051/0004-6361/201833626.S2CID 119540451.
  19. ^Kirkpatrick, J. Davy; Gelino, Christopher R.; et al. (2021)."The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and Y Dwarfs".The Astrophysical Journal Supplement Series.253 (1): 7.arXiv:2011.11616.Bibcode:2021ApJS..253....7K.doi:10.3847/1538-4365/abd107.S2CID 227126954.
  20. ^abcTuomi, M.; el, al. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood".arXiv:1906.04644 [astro-ph.EP].
  21. ^Lafarga, M.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Azzaro, M.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Montes, D.; Morales, J. C.; Oshagh, M.; Rodríguez-López, C.; Schöfer, P.; Schweitzer, A.; Zechmeister, M. (2021). "The CARMENES search for exoplanets around M dwarfs. Mapping stellar activity indicators across the M dwarf domain".Astronomy and Astrophysics.652: 652.arXiv:2105.13467.Bibcode:2021A&A...652A..28L.doi:10.1051/0004-6361/202140605.S2CID 235248016.
  22. ^Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J.; Howard, Andrew W.; Weiss, Lauren M.; Petigura, Erik A. (2021), "Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate",The Astronomical Journal,163 (5): 218,arXiv:2107.09087,Bibcode:2022AJ....163..218H,doi:10.3847/1538-3881/ac5c47,S2CID 236134034
  23. ^Abuter, R.; et al. (GRAVITY Collaboration) (May 2024). "Astrometric detection of a Neptune-mass candidate planet in the nearest M-dwarf binary system GJ65 with VLTI/GRAVITY".Astronomy & Astrophysics.685: L9.arXiv:2404.08746.Bibcode:2024A&A...685L...9G.doi:10.1051/0004-6361/202449547.
  24. ^Benedict, G. Fritz; McArthur, Barbara E.; Gatewood, George; Nelan, Edmund; Cochran, William D.; Hatzes, Artie; Endl, Michael; Wittenmyer, Robert; Baliunas, Sallie L.; Walker, Gordon A. H.; Yang, Stephenson; Kürster, Martin; Els, Sebastian; Paulson, Diane B. (November 2006), "The extrasolar planet e Eridani b – orbit and mass",The Astronomical Journal,132 (5):2206–2218,arXiv:astro-ph/0610247,Bibcode:2006AJ....132.2206B,doi:10.1086/508323,S2CID 18603036.
  25. ^Janson, M.; et al. (September 2008), "A comprehensive examination of the ε Eridani system. Verification of a 4 micron narrow-band high-contrast imaging approach for planet searches",Astronomy & Astrophysics,488 (2):771–780,arXiv:0807.0301,Bibcode:2008A&A...488..771J,doi:10.1051/0004-6361:200809984,S2CID 119113471
  26. ^Loyd, R. O. Parke; et al. (July 2020)."When "Boring" Stars Flare: The Ultraviolet Activity of GJ 887, a Bright M Star Hosting Newly Discovered Planets".Research Notes of the AAS.4 (7): 119.doi:10.3847/2515-5172/aba94a.
  27. ^Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887",Science,368 (6498):1477–1481,arXiv:2006.16372,Bibcode:2020Sci...368.1477J,doi:10.1126/science.aaz0795,PMID 32587019,S2CID 220075207
  28. ^ESO."A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs"(PDF). Retrieved15 November 2017.
  29. ^Torres, G.; Andersen, J.; Giménez, A. (2010). "Accurate masses and radii of normal stars: modern results and applications".The Astronomy & Astrophysics Review.18 (1–2):67–126.arXiv:0908.2624.Bibcode:2010A&ARv..18...67T.doi:10.1007/s00159-009-0025-1.S2CID 14006009.
  30. ^General Catalogue of Trigonometric Parallaxes.
  31. ^Hipparcos Catalogue.
  32. ^Bessel, F. W. (1839)."Bestimmung der Entfernung des 61sten Sterns des Schwans. Von Herrn Geheimen - Rath und Ritter Bessel".Astronomische Nachrichten (in German).16 (5–6):65–96.Bibcode:1838AN.....16...65B.doi:10.1002/asna.18390160502.(page 92) Ich bin daher der Meinung, daß nur die jährliche Parallaxe = 0"3136 als das Resultat der bisherigen Beobachtungen zu betrachten ist A parallax of 313.6 mas yields a distance of 10.4 light years
  33. ^Kervella, Pierre; Arenou, Frédéric; et al. (2019)."Stellar and substellar companions of nearby stars from Gaia DR2".Astronomy & Astrophysics.623: A72.arXiv:1811.08902.Bibcode:2019A&A...623A..72K.doi:10.1051/0004-6361/201834371.S2CID 119491061.This PMa offset between 61 Cyg A and B points at the possible presence of a third body in the system, likely orbiting around 61 Cyg B.
  34. ^Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction".Astronomy and Astrophysics.617: A104.arXiv:1804.03476.Bibcode:2018A&A...617A.104P.doi:10.1051/0004-6361/201732535.S2CID 54990041.
  35. ^Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019), "Detection of the nearest Jupiter analog in radial velocity and astrometry data",Monthly Notices of the Royal Astronomical Society,490 (4):5002–5016,arXiv:1910.06804,Bibcode:2019MNRAS.490.5002F,doi:10.1093/mnras/stz2912,S2CID 204575783
  36. ^abcChris Gelino,Davy Kirkpatrick, Adam Burgasser."DwarfArchives.org: Photometry, spectroscopy, and astrometry of M, L, and T dwarfs". caltech.edu. Archived fromthe original on 13 November 2013. Retrieved10 June 2012.{{cite web}}: CS1 maint: multiple names: authors list (link)(main page)Archived 11 May 2019 at theWayback Machine
  37. ^Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (13 August 2019)."Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061".Monthly Notices of the Royal Astronomical Society.493 (1):536–550.arXiv:1908.04717.Bibcode:2020MNRAS.493..536D.doi:10.1093/mnras/staa248.S2CID 199551874.
  38. ^Henry, Todd J.; Ianna, Philip A.; Kirkpatrick, J. Davy; Jahreiss, Hartmut (July 1997). "The solar neighborhood IV: discovery of the twentieth nearest star".The Astronomical Journal.114 (1):388–395.Bibcode:1997AJ....114..388H.doi:10.1086/118482.
  39. ^abHenry, Todd J.; Jao, Wei-Chun; Subasavage, John P.; Beaulieu, Thomas D.; Ianna, Philip A.; Costa, Edgardo; Méndez, René A. (December 2006). "The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample".The Astronomical Journal.132 (6):2360–2371.arXiv:astro-ph/0608230.Bibcode:2006AJ....132.2360H.doi:10.1086/508233.S2CID 15002841.
  40. ^Astudillo-Defru, Nicola; Díaz, Rodrigo F.; Bonfils, Xavier; Almenara, José M.; Delisle, Jean-Baptiste; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C.; Ségransan, Damien; Udry, Stéphane; Wünsche, Anaël (2017). "The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti".Astronomy & Astrophysics.605: L11.arXiv:1708.03336.Bibcode:2017A&A...605L..11A.doi:10.1051/0004-6361/201731581.S2CID 119393757.
  41. ^Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017)."The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293".Astronomy and Astrophysics.602. A88.arXiv:1703.05386.Bibcode:2017A&A...602A..88A.doi:10.1051/0004-6361/201630153.S2CID 119418595.
  42. ^Pozuelos, Francisco J.; et al. (2020). "GJ 273: on the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec".Astronomy & Astrophysics.641: A23.arXiv:2006.09403.Bibcode:2020A&A...641A..23P.doi:10.1051/0004-6361/202038047.S2CID 219721292.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  43. ^Caballero, J. A.; Reiners, Ansgar; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019)."The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star"(PDF).Astronomy & Astrophysics.627: A49.arXiv:1906.07196.Bibcode:2019A&A...627A..49Z.doi:10.1051/0004-6361/201935460.ISSN 0004-6361.S2CID 189999121.
  44. ^Dreizler, S.; Luque, R.; et al. (April 2024). "Teegarden's Star revisited: A nearby planetary system with at least three planets".Astronomy & Astrophysics.684: A117.arXiv:2402.00923.Bibcode:2024A&A...684A.117D.doi:10.1051/0004-6361/202348033.
  45. ^Anglada-Escude, G.; et al. (2014)."Two planets around Kapteyn's star : a cold and a temperate super-Earth orbiting the nearest halo red-dwarf".Monthly Notices of the Royal Astronomical Society: Letters.443:L89 –L93.arXiv:1406.0818.Bibcode:2014MNRAS.443L..89A.doi:10.1093/mnrasl/slu076.hdl:2299/19219.S2CID 67807856.
  46. ^Bortle, Anna; et al. (2021)."A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star".The Astronomical Journal.161 (5): 230.arXiv:2103.02709.Bibcode:2021AJ....161..230B.doi:10.3847/1538-3881/abec89.S2CID 232110395.
  47. ^Kasper, M.; Biller, B. A.; Burrows, A.; Brandner, W.; Budaj, J.; Close, L. M. (2007). "The very nearby M/T dwarf binary SCR 1845-6357".Astronomy & Astrophysics.471 (2): 655.arXiv:0706.3824.Bibcode:2007A&A...471..655K.doi:10.1051/0004-6361:20077881.S2CID 1860702.
  48. ^abBrown, A. G. A.; et al. (Gaia collaboration) (August 2018)."Gaia Data Release 2: Summary of the contents and survey properties".Astronomy & Astrophysics.616. A1.arXiv:1804.09365.Bibcode:2018A&A...616A...1G.doi:10.1051/0004-6361/201833051.
  49. ^Jao, Wei-Chun; Henry, Todd J.; Subasavage, John P.; Brown, Misty A.; Ianna, Philip A.;Bartlett, Jennifer L.; Costa, Edgardo; Méndez, René A. (2005). "The Solar Neighborhood. XIII. Parallax Results from the CTIOPI 0.9 Meter Program: Stars with μ >= 1.0" yr−1 (MOTION Sample)".The Astronomical Journal.129 (4): 1954.arXiv:astro-ph/0502167.Bibcode:2005AJ....129.1954J.doi:10.1086/428489.S2CID 16164903.
  50. ^abCosta, Edgardo; Méndez, René A.; Jao, W. -C.; Henry, Todd J.; Subasavage, John P.; Brown, Misty A.; Ianna, Philip A.;Bartlett, Jennifer (2005)."The Solar Neighborhood. XIV. Parallaxes from the Cerro Tololo Inter-American Observatory Parallax Investigation-First Results from the 1.5 m Telescope Program".The Astronomical Journal.130 (1): 337.Bibcode:2005AJ....130..337C.doi:10.1086/430473.hdl:10533/176842.
  51. ^George Gatewood; et al. (2003)."An Astrometric Study of the Low-Mass Binary Star Ross 614"(PDF).The Astronomical Journal.125 (3):1530–1536.Bibcode:2003AJ....125.1530G.doi:10.1086/346143.S2CID 119597659. Archived fromthe original(PDF) on 19 December 2021. Retrieved15 March 2022.
  52. ^Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (2010)."The discovery of a very cool, very nearby brown dwarf in the Galactic plane".Monthly Notices of the Royal Astronomical Society.408 (1): L56.arXiv:1004.0317.Bibcode:2010MNRAS.408L..56L.doi:10.1111/j.1745-3933.2010.00927.x.S2CID 16032606.
  53. ^Leggett, Sandy K.; Saumon, Didier; Marley, Mark S.;Lodders, Katharina; Canty, J.; Lucas, Philip W.; Smart, Richard L.; Tinney, Chris G.; Homeier, Derek; Allard, France; Burningham, Ben; Day-Jones, Avril; Fegley, Bruce; Ishii, Miki; Jones, Hugh R. A.; Marocco, Federico; Pinfield, David J.; Tamura, Motohide (2012). "The Properties of the 500 K Dwarf UGPS J072227.51-054031.2 and a Study of the Far-red Flux of Cold Brown Dwarfs".The Astrophysical Journal.748 (2): 74.arXiv:1201.2973.Bibcode:2012ApJ...748...74L.doi:10.1088/0004-637X/748/2/74.S2CID 14171934.
  54. ^Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (2010). "Discovery of a very cool brown dwarf amongst the ten nearest stars to the Solar System".arXiv:1004.0317v1 [astro-ph.SR].
  55. ^"Nearby star hosts closest alien planet in the 'habitable zone'".Phys.org. 16 December 2015. Retrieved16 December 2015.The planet, more than four times the mass of the Earth, is one of three that the team detected around a red dwarf star called Wolf 1061.
  56. ^Quirrenbach, A.; et al. (2022), "The CARMENES search for exoplanets around M dwarfs",Astronomy & Astrophysics,663: A48,arXiv:2203.16504,Bibcode:2022A&A...663A..48Q,doi:10.1051/0004-6361/202142915,S2CID 247835988.
  57. ^The Lick–Carnegie exoplanet survey: Gliese 687 b: A Neptune-mass planet orbiting a nearby red dwarfArchived March 27, 2014, at theWayback Machine
  58. ^Feng, Fabo; Shectman, Stephen A.; Clement, Matthew S.; Vogt, Steven S.; Tuomi, Mikko; Teske, Johanna K.; Burt, Jennifer; Crane, Jeffrey D.; Holden, Bradford; Sharon Xuesong Wang; Thompson, Ian B.; Diaz, Matias R.; Paul Butler, R. (2020), "Search for Nearby Earth Analogs. III. Detection of ten new planets, three planet candidates, and confirmation of three planets around eleven nearby M dwarfs",The Astrophysical Journal Supplement Series,250 (2): 29,arXiv:2008.07998,Bibcode:2020ApJS..250...29F,doi:10.3847/1538-4365/abb139,S2CID 221150644 Accepted for publication byApJS
  59. ^"The Extrasolar Planet Encyclopaedia — Catalog Listing".Extrasolar Planets Encyclopaedia. Archived fromthe original on 2 July 2007.
  60. ^abKirkpatrick, J. Davy; Martin, Emily C.; Smart, Richard L.; Cayago, Alfred J.; Beichman, Charles A.; Marocco, Federico; Gelino, Christopher R.; Faherty, Jacqueline K.; Cushing, Michael C.; Schneider, Adam C.; Mace, Gregory N.; Tinney, Christopher G.; Wright, Edward L.; Lowrance, Patrick J.; Ingalls, James G.; Vrba, Frederick J.; Munn, Jeffrey A.; Dahm, Scott E.; McLean, Ian S. (2019)."Preliminary Trigonometric Parallaxes of 184 Late-T and Y Dwarfs and an Analysis of the Field Substellar Mass Function into the "Planetary" Mass Regime".The Astrophysical Journal Supplement.240 (19): 19.arXiv:1812.01208.Bibcode:2019ApJS..240...19K.doi:10.3847/1538-4365/aaf6af.S2CID 119451195.
  61. ^Rivera, Eugenio J.; et al. (July 2010). "The Lick-Carnegie Exoplanet Survey: A Uranus-mass Fourth Planet for GJ 876 in an Extrasolar Laplace Configuration".The Astrophysical Journal.719 (1):890–899.arXiv:1006.4244.Bibcode:2010ApJ...719..890R.doi:10.1088/0004-637X/719/1/890.S2CID 118707953.
  62. ^abcFontanive, Clémence; Bedin, Luigi R.; Albert, Loïc; Gagliuffi, Daniella C. Bardalez (21 December 2024). "The Y Dwarf Population with HST: unlocking the secrets of our coolest neighbours -- II. Parallaxes and Proper Motions".arXiv:2412.16679 [astro-ph.SR].
  63. ^Suárez Mascareño, A.; González-Alvarez, E.; et al. (November 2022). "Two temperate Earth-mass planets orbiting the nearby star GJ 1002".Astronomy & Astrophysics.670: A5.arXiv:2212.07332.Bibcode:2023A&A...670A...5S.doi:10.1051/0004-6361/202244991.S2CID 254353639.
  64. ^Carleo, I.; et al. (2020). "The GAPS Programme at TNG XXI – A GIARPS case-study of known young planetary candidates: Confirmation of HD 285507 b and refutation of AD Leo b".Astronomy & Astrophysics.A5: 638.arXiv:2002.10562.Bibcode:2020A&A...638A...5C.doi:10.1051/0004-6361/201937369.S2CID 211296466.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  65. ^Bailey, Jeremy; et al. (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832".The Astrophysical Journal.690 (1):743–747.arXiv:0809.0172.Bibcode:2009ApJ...690..743B.doi:10.1088/0004-637X/690/1/743.S2CID 17172233.
  66. ^Wittenmyer, R. A.; Tuomi; et al. (2014). "GJ 832c: A super-earth in the habitable zone".The Astrophysical Journal.791 (2): 114.arXiv:1406.5587.Bibcode:2014ApJ...791..114W.doi:10.1088/0004-637X/791/2/114.S2CID 12157837.
  67. ^Gorrini, P.; Astudillo-Defru, N.; Dreizler, S.; et al. (2022)."Detailed stellar activity analysis and modelling of GJ 832".Astronomy & Astrophysics.664. EDP Sciences: A64.arXiv:2206.07552.Bibcode:2022A&A...664A..64G.doi:10.1051/0004-6361/202243063.ISSN 0004-6361.
  68. ^van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction",Astronomy and Astrophysics,474 (2):653–664,arXiv:0708.1752,Bibcode:2007A&A...474..653V,doi:10.1051/0004-6361:20078357,S2CID 18759600
  69. ^Burgasser, Adam J.; Tinney, C. G.; Cushing, Michael C.; Saumon, Didier; Marley, Mark S.; Bennett, Clara S.; Kirkpatrick, J. Davy (2008)."2MASS J09393548-2448279: The Coldest and Least Luminous Brown Dwarf Binary Known?"(PDF).The Astrophysical Journal.689 (1):L53 –L56.Bibcode:2008ApJ...689L..53B.doi:10.1086/595747.
  70. ^abDupuy, Trent J.; Liu, Michael C. (2012). "The Hawaii Infrared Parallax Program. I. Ultracool Binaries and the L/T Transition".The Astrophysical Journal Supplement.201 (2): 19.arXiv:1201.2465.Bibcode:2012ApJS..201...19D.doi:10.1088/0067-0049/201/2/19.S2CID 119256363.
  71. ^Xuan, Jerry W.; Mérand, A.; Thompson, W.; Zhang, Y.; Lacour, S.; Blakely, D.; Mawet, D.; Oppenheimer, R.; Kammerer, J.; Batygin, K.; Sanghi, A.; Wang, J.; Ruffio, J.-B.; Liu, M. C.; Knutson, H. (16 October 2024). "The cool brown dwarf Gliese 229 B is a close binary".Nature.634 (8036):1070–1074.arXiv:2410.11953.Bibcode:2024Natur.634.1070X.doi:10.1038/s41586-024-08064-x.ISSN 1476-4687.PMID 39415016.
  72. ^Benedict, G. F.; Henry, T. J.; Franz, O. G.; McArthur, B. E.; Wasserman, L. H.; Jao, Wei-Chun; Cargile, P. A.; Dieterich, S. B.; Bradley, A. J.; Nelan, E. P.; Whipple, A. L. (2016)."The Solar Neighborhood. XXXVII. The Mass–Luminosity Relation for Main-Sequence M Dwarfs".The Astronomical Journal.152 (5): 141.arXiv:1608.04775.Bibcode:2016AJ....152..141B.doi:10.3847/0004-6256/152/5/141.S2CID 54029447.
  73. ^Schilbach, E.; Röser, S.; Scholz, R.-D. (2009). "Trigonometric parallaxes of ten ultracool subdwarfs".Astronomy and Astrophysics.493 (2):L27 –L30.arXiv:0811.4136.Bibcode:2009A&A...493L..27S.doi:10.1051/0004-6361:200811281.S2CID 17774863.
  74. ^"Milky Way Past Was More Turbulent Than Previously Known".ESO News.European Southern Observatory. 6 April 2004.After more than 1,000 nights of observations spread over 15 years, they have determined the spatial motions of more than 14,000 solar-like stars residing in the neighbourhood of the Sun.
  75. ^See also:Stellar kinematics.
  76. ^García-Sánchez, Joan; Preston, Robert A.; Jones, Dayton L.; Weissman, Paul R.; Lestrade, Jean-François; Latham, David W.; Stefanik, Robert P. (February 1999)."Stellar Encounters with the Oort Cloud Based onHipparcos Data".The Astronomical Journal.117 (2):1042–1055.Bibcode:1999AJ....117.1042G.doi:10.1086/300723.S2CID 122929693.
  77. ^Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (13 August 2018). "New stellar encounters discovered in the second data release".Astronomy & Astrophysics.616: A37.arXiv:1805.07581.Bibcode:2018A&A...616A..37B.doi:10.1051/0004-6361/201833456.S2CID 56269929.
  78. ^Bailer-Jones, C. A. L. (13 July 2022)."Stars that approach within one parsec of the Sun: New and more accurate encounters identified in Gaia Data Release 3".The Astrophysical Journal Letters.935 (1): 152.arXiv:2207.06258.Bibcode:2022ApJ...935L...9B.doi:10.3847/2515-5172/ac842b.S2CID 251154282.
  79. ^Bobylev, Vadim; Bajkova, Anisa (14 July 2022). "Search for Close Stellar Encounters with the Solar System Based on Data from the Gaia DR3 Catalogue".Astronomy Letters.48 (9):542–549.arXiv:2206.14443.Bibcode:2022AstL...48..542B.doi:10.1134/S1063773722080011.S2CID 256832377.
  80. ^de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos (28 June 2022)."An Update on the Future Flyby of Gliese 710 to the Solar System Using Gaia DR3: Flyby Parameters Reproduced, Uncertainties Reduced".Research Notes of the AAS.6 (6): 136.Bibcode:2022RNAAS...6..136D.doi:10.3847/2515-5172/ac7b95.
  81. ^de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (28 July 2022)."The Closest Past Flyby of a Known Star to the Solar System: HD 7977, UCAC4 237-008148 or WISE J072003.20-084651.2?".Research Notes of the AAS.6 (7): 152.Bibcode:2022RNAAS...6..152D.doi:10.3847/2515-5172/ac842b.S2CID 251154282.
  82. ^Table 3,Bobylev, Vadim V. (March 2010). "Searching for Stars Closely Encountering with the Solar System".Astronomy Letters.36 (3):220–226.arXiv:1003.2160.Bibcode:2010AstL...36..220B.doi:10.1134/S1063773710030060.S2CID 118374161.
  83. ^Bailer-Jones, C. A. L.; Rybizki, J.; Andrae, R.; Fouesneau, M. (19 May 2018). "New stellar encounters discovered in the second Gaia data release".Astronomy & Astrophysics.616 (37): A37.arXiv:1805.07581.Bibcode:2018A&A...616A..37B.doi:10.1051/0004-6361/201833456.S2CID 56269929.
  84. ^Bobylev, Vadim; Bajkova, Anisa (29 June 2022). "Search for Close Stellar Encounters with the Solar System Based on Data from the Gaia DR3 Catalogue".Astronomy Letters.48 (9):542–549.arXiv:2206.14443.Bibcode:2022AstL...48..542B.doi:10.1134/S1063773722080011.S2CID 256832377.
  85. ^"A Family Portrait of the Alpha Centauri System - VLT Interferometer Studies the Nearest Stars".European Southern Observatory. 15 March 2003. Retrieved24 January 2011.

External links

[edit]
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Primary membertype
Celestial objects by systems. Secondary members are listed in small print.
    0–10ly
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
androgue planets
Y-type
10–15ly
Subgiant stars
F-type
Main-sequence
stars
G-type
  • Tau Ceti (11.9118±0.0074 ly)
  • 4 (8?) planets: (b), (c), (d), e, f, g, h, (i)
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
T-type
15–20ly    
Subgiant stars
G-type
Main-sequence
stars
A-type
G-type
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
L-type
T-type
Y-type
Sub-brown dwarfs
androgue planets
Y-type
Italic are systems without knowntrigonometric parallax.
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_nearest_stars&oldid=1296757676"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp