Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of limits

From Wikipedia, the free encyclopedia

icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "List of limits" – news ·newspapers ·books ·scholar ·JSTOR
(August 2019) (Learn how and when to remove this message)
This list isincomplete; you can help byadding missing items.(February 2011)

This is alist oflimits for commonfunctions such aselementary functions. In this article, the termsa,b andc are constants with respect tox.

Limits for general functions

[edit]

Definitions of limits and related concepts

[edit]

limxcf(x)=L{\displaystyle \lim _{x\to c}f(x)=L}if and only ifε>0 δ>0:0<|xc|<δ|f(x)L|<ε{\displaystyle \forall \varepsilon >0\ \exists \delta >0:0<|x-c|<\delta \implies |f(x)-L|<\varepsilon }. This is the(ε, δ)-definition of limit.

Thelimit superior and limit inferior of a sequence are defined aslim supnxn=limn(supmnxm){\displaystyle \limsup _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\sup _{m\geq n}x_{m}\right)} andlim infnxn=limn(infmnxm){\displaystyle \liminf _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\inf _{m\geq n}x_{m}\right)}.

A function,f(x){\displaystyle f(x)}, is said to be continuous at a point,c, iflimxcf(x)=f(c).{\displaystyle \lim _{x\to c}f(x)=f(c).}

Operations on a single known limit

[edit]

Iflimxcf(x)=L{\displaystyle \lim _{x\to c}f(x)=L} then:

In general, ifg(x) is continuous atL andlimxcf(x)=L{\displaystyle \lim _{x\to c}f(x)=L} then

Operations on two known limits

[edit]

Iflimxcf(x)=L1{\displaystyle \lim _{x\to c}f(x)=L_{1}} andlimxcg(x)=L2{\displaystyle \lim _{x\to c}g(x)=L_{2}} then:

Limits involving derivatives or infinitesimal changes

[edit]

In these limits, the infinitesimal changeh{\displaystyle h} is often denotedΔx{\displaystyle \Delta x} orδx{\displaystyle \delta x}. Iff(x){\displaystyle f(x)} isdifferentiable atx{\displaystyle x},

Iff(x){\displaystyle f(x)} andg(x){\displaystyle g(x)} are differentiable on an open interval containingc, except possiblyc itself, andlimxcf(x)=limxcg(x)=0 or ±{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty },L'Hôpital's rule can be used:

Inequalities

[edit]

Iff(x)g(x){\displaystyle f(x)\leq g(x)} for all x in an interval that containsc, except possiblyc itself, and the limit off(x){\displaystyle f(x)} andg(x){\displaystyle g(x)} both exist atc, then[5]limxcf(x)limxcg(x){\displaystyle \lim _{x\to c}f(x)\leq \lim _{x\to c}g(x)}

Iflimxcf(x)=limxch(x)=L{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} andf(x)g(x)h(x){\displaystyle f(x)\leq g(x)\leq h(x)} for allx in anopen interval that containsc, except possiblyc itself,limxcg(x)=L.{\displaystyle \lim _{x\to c}g(x)=L.} This is known as thesqueeze theorem.[1][2] This applies even in the cases thatf(x) andg(x) take on different values atc, or are discontinuous atc.

Polynomials and functions of the formxa

[edit]

Polynomials in x

[edit]

In general, ifp(x){\displaystyle p(x)} is a polynomial then, by the continuity of polynomials,[5]limxcp(x)=p(c){\displaystyle \lim _{x\to c}p(x)=p(c)} This is also true forrational functions, as they are continuous on theirdomains.[5]

Functions of the formxa

[edit]

Exponential functions

[edit]

Functions of the formag(x)

[edit]

Functions of the formxg(x)

[edit]

Functions of the formf(x)g(x)

[edit]

Sums, products and composites

[edit]

Logarithmic functions

[edit]

Natural logarithms

[edit]

Logarithms to arbitrary bases

[edit]

Forb > 1,

Forb < 1,

Both cases can be generalized to:

whereF(x)=2H(x1)1{\displaystyle F(x)=2H(x-1)-1} andH(x){\displaystyle H(x)} is theHeaviside step function

Trigonometric functions

[edit]

Ifx{\displaystyle x} is expressed in radians:

These limits both follow from the continuity of sin and cos.

Sums

[edit]

In general, anyinfinite series is the limit of itspartial sums. For example, ananalytic function is the limit of itsTaylor series, within itsradius of convergence.

Notable special limits

[edit]

Limiting behavior

[edit]

Asymptotic equivalences

[edit]

Asymptotic equivalences,f(x)g(x){\displaystyle f(x)\sim g(x)}, are true iflimxf(x)g(x)=1{\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=1}. Therefore, they can also be reframed as limits. Some notable asymptotic equivalences include

Big O notation

[edit]

The behaviour of functions described byBig O notation can also be described by limits. For example

References

[edit]
  1. ^abcdefghij"Basic Limit Laws".math.oregonstate.edu. Retrieved2019-07-31.
  2. ^abcdefghijkl"Limits Cheat Sheet - Symbolab".www.symbolab.com. Retrieved2019-07-31.
  3. ^abcdefgh"Section 2.3: Calculating Limits using the Limit Laws"(PDF).
  4. ^abc"Limits and Derivatives Formulas"(PDF).
  5. ^abcdef"Limits Theorems".archives.math.utk.edu. Retrieved2019-07-31.
  6. ^abcde"Some Special Limits".www.sosmath.com. Retrieved2019-07-31.
  7. ^abcd"SOME IMPORTANT LIMITS - Math Formulas - Mathematics Formulas - Basic Math Formulas".www.pioneermathematics.com. Retrieved2019-07-31.
  8. ^ab"World Web Math: Useful Trig Limits".Massachusetts Institute of Technology. Retrieved2023-03-20.
  9. ^"Calculus I - Proof of Trig Limits". Retrieved2023-03-20.
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_limits&oldid=1249348086"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp