Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of largest exoplanets

From Wikipedia, the free encyclopedia


Jupiter as seen byVoyager 1 in 1979. It is the largestplanet having its surface resolved[1][2][3] and it is the largestplanet in theSolar System.[4]

Below is alist of the largest exoplanets so far discovered, in terms of physical size, ordered by radius.

Limitations

[edit]

This list ofextrasolar objects may and will change over time due to diverging measurements published between scientific journals, varying methods used to examine these objects, and the notably difficult task of discovering extrasolar objects in general. These objects are not stars, and are quite small on a universal or even stellar scale. Furthermore, these objects might bebrown dwarfs,sub-brown dwarfs, or not even exist at all. Because of this, this list only cites the most certain measurements to date and is prone to change.

Maximum mass limitation

[edit]
See also:Deuterium fusion

Different space organisations have different maximum masses for exoplanets. TheNASA Exoplanet Archive (NASA EA) states that anobject with a minimum mass lower than 30MJ, not being afree-floating object, is qualified as an exoplanet.[5] On the other hand,the official working definition by theInternational Astronomical Union (IAU) allows only exoplanets with a maximum mass of 13MJ, that are orbiting a host object at amass ratio of less than 4% or 0.04.[6][7] For the purpose of the comparison of large planets, this article includes several of those listed by NASA EA up to the maximum 30MJ with possible brown dwarfs among them of ≳ 13MJ as stated by IAU.[8]

Classification of Sub-brown Dwarf and Rogue Objects

[edit]
See also:Sub-brown dwarf andRogue planet

Sub-brown dwarfs areformed in the manner ofstars, through the collapse of agas cloud (perhaps with the help ofphoto-erosion) but have aplanetary mass, therefore are by definition below thelimiting mass forthermonuclear fusion ofdeuterium (~13 MJ).[7] However, there is no consensus amongst astronomers on whether the formation process should be taken into account when classifying an object as a planet.[9] Free-floating sub-brown dwarfs can be observationally indistinguishable fromrogue planets, which originallyformed around a star and were ejected from orbit. Similarly, a sub-brown dwarf formed free-floating in a star cluster may be captured into orbit around a star, making distinguishing sub-brown dwarfs and large planets also difficult. A definition for the term "sub-brown dwarf" was put forward by theIAU Working Group on Extra-Solar Planets (IAU WGESP), which defined it as a free-floating body found in young star clusters below thelower mass cut-off of brown dwarfs.[10]

List

[edit]
This is adynamic list and may never be able to satisfy particular standards for completeness. You can help byediting the page to add missing items, with references toreliable sources.

The sizes are listed in units ofJupiter radii (RJ, 71 492 km). This list is designed to include all confirmedexoplanets that are larger than 1.6 times the size ofJupiter. Some well-known exoplanets that are smaller than1.6 RJ (17.93 R🜨 or114387 km) and aregas giants have been included for the sake of comparison.
For the candidate exoplanets and those with uncertain radii that could be below or above the adopted cut-off of 1.6RJ, see thelist of unconfirmed exoplanets andlist of exoplanets with uncertain radii respectively.

Key (Classification)
*Probably brown dwarfs (≳ 13MJ) (based on mass)
Probably sub-brown dwarfs (≲ 13MJ) (based on mass and location)
?System status uncertain (inconsistency in age or mass of planetary system)
!Uncertain system age/mass status, while probably brown dwarfs (≳ 13MJ)
Planetary status uncertain (inconsistency in age or mass of planet)
Probably exoplanets (≲ 13MJ) (based on mass)
Planets with grazing transit, hindering radius determination
#Notable non-exoplanets reported for reference
Theoretical planet size restrictions
Key (Illustration)
Artist's impression
Artist's size comparison
Artist's impression size comparison
Direct imaging telescopic observation
Direct image size comparison
Composite image of direct observations
Transiting telescopic observation
Rendered image
Orbit size comparison
IllustrationName
(Alternates)
Radius
(RJ)
KeyMass
(MJ)
Notes
Sun
(Sol)
9.731
(R)[11]
(695 700 km)[a]
#1047.569
(M)[11]
(1.988 416 × 1030 kg)[b]
The only star in theSolar System. Responsible forlife onEarth and keeping theplanets on orbit. The Sun is thebrightest object in the Earth's sky, with anapparent magnitude of −26.74,[16][17] so bright thatlooking at it directly will harm the eyes.[18] Age: 4.6Gyr.[19]
Reported for reference.
Toliman
(Alpha Centauri B)
8.360 ± 0.035[20]
(0.8591 ± 0.0036R)
#952.450 ± 2.619[20]
(0.9092 ± 0.0025M)
One of first two stars (other beingRigil Kentaurus / Alpha Centauri A) to have itsstellar parallax measured.[21] Nearest (inner)binary star system andnearest star system to the Sun at the distance of 4.344 ± 0.002 ly (1.33188 ± 0.00061 pc).Alpha Centauri AB is the third binary star to be discovered, preceded byMizar AB andAcrux.[22] A member ofAlpha Centauri System, the nearest system to the Sun. Age: 5.3 ± 0.3Gyr.[23]
Reported for reference.
Maximum size ofplanetary-mass object8[24]~ 5[24]Maximum theoretical size limit assumed for a ~ 5MJ mass object right after formation, however, for 'arbitrary initial conditions'.
Proplyd 133-353
(COUP 540,
COUP J0535-0523)
≲ 7.82 ± 0.81[25][c][d][e]
(≲ 0.804 ± 0.083 R)
(≲) 13;
2 – 28[25][f]
A candidatesub-brown dwarf orrogue planet with aphotoevaporating disk, located in theOrion Nebula Cluster. At a probable age younger than 500 000 years, it is one of theyoungest free-floatingplanetary-mass candidates known.[25]
Proplyd 133-353 is proposed to have formed in a very low-mass dusty cloud or anevaporating gas globule as a second generation ofstar formation, which can explain both its young age and the presence of its disk.[25]
V2376 Orionis b
(V2376 Ori b)
7.78 ± 0.97[26]*≃ 20 (10 – 30)[26]Likely abrown dwarf.
2M0535-05 A
(V2384 Orionis A)
6.71 ± 0.11[27]
(0.690 ± 0.011R)
#59.9 ± 3.5[27]
(0.0572 ± 0.0033M)
Firsteclipsing binarybrown dwarf system to be discovered, orbiting around 9.8 days.[28][29] Age: ~1Myr[30]
Reported for reference.
2M0535-05 B
(V2384 Orionis B)
5.25 ± 0.09[27]
(0.540 ± 0.009R)
#38.3 ± 2.3[27]
(0.0366 ± 0.0022M)
2MASS J044144
(2M 0441+2301 Ba)
4.34[31][g]*19 ± 3[31]Likely abrown dwarf. This brown dwarf along withits companion orbits around2MASS J044145 AB(2M 0441+2301 Aab).[32] Part of the lowest mass quadruple2M 0441+23 system of 0.26 M.[31]
KPNO-Tau 4(2MASS J0427+2612)4.1[33][34]10.5[33]A member of Taurus-Auriga star-forming region.[34] May be gravitationally bound to the possible binary starDG Tauri AB.[35]
Cha J1110-76333.8[36]5 – 10[36]Rogue planet
GQ Lupi b
(GQ Lupi Ab,
GQ Lupi B)
3.7 ± 0.7[37]*20 ± 10;[38]
~ 20 (1 – 39)[39]
First confirmedexoplanet candidate to be directly imaged. It is believed to be several times more massive thanJupiter. Because the theoretical models which are used to predict planetary masses for objects in young star systems like GQ Lupi b are still tentative, the mass cannot be precisely determined, giving the masses of 1 –39 MJ;[39] in the higher half of this range, it may be classified as a young brown dwarf. It should not be confused with the starGQ Lupi C(2MASS J15491331), 2400 AU away, sometimes referred to as GQ Lupi B.[40] Other sources of the radius include 3.6±0.1RJ,[38] 3.0 ± 0.5RJ,[39] 3.77RJ,[41] 3.5+1.50
−1.03
RJ,[42] 4.6 ± 1.4RJ, 6.5 ± 2.0RJ.[43]
HD 100546 b
(KR Muscae b)
3.4[44]*1.65[45] – 25[44]Occasionally the initially reported 6.9+2.7
−2.9
RJ for the emitting area due to the diffuse dust and gas envelope ordebris disk surrounding the planet[46] is confused with the actual radius.
HD 100546 system is the closestplanetary system that contains aHerbig Ae/Be star at the distance of 353 ± 1 ly.[47]
2MASS J0437+2331(UGCS J0437+2331)3.30[48][g]7.1+1.1
−1.0
[48]
May be asub-brown dwarf or arogue planet
EV Lacertae3.221 ± 0.127[49]
(0.331 ± 0.013R)
#335.2 ± 8.38[49]
(0.32 ± 0.008M)
Responsible for the most powerfulstellar flare so far observed. Its fastrotation, with itsconvective interior, produces a powerfulmagnetic field that is believed to play a role in the star's ability to produce such flares.[50]
Reported for reference.
OTS 443.2 – 3.6[51]11.5[52]First discoveredrogue planet, and the coolest and faintest object inChamaeleon I as well as the least massive known member of the cluster at the time of confirmation;[53] very likely abrown dwarf[54] orsub-brown dwarf[55] with acircumstellar disk of dust and particles of rock and ice.[53] The currently preferred radius estimate is done bySED modelling including substellar object and disk model.[51]
FU Tauri b
(FU Tau b)
3.2 ± 0.3[56]*~ 15.7,[57]
20 ± 4,[58]
19 ± 4[56]
Likely a part of abinary brown dwarfs orsub-brown dwarfs.
Cha J1110-77213.1[36]5 – 10[36]Rogue planet
2MASS J044144b
(2M 0441+2301 Bb)
3.06[31][g]9.8 ± 1.8[31]Based on the mass ratio to2M J044145 A(2M 0441+2301 Aa) it is likely not aplanet according to the IAU'sexoplanet working definition,[7] though still considered as a planet by theNASA Exoplanet Archive andExtrasolar Planets Encyclopaedia.[59][60] Furthermore, 2MASS J044144b is very big compared to its host and may have formed within 1 million years or so which is too big and too fast to form like a regularplanet from a disk around the central object.[61] Part of the lowest mass quadruple2M 0441+23 system of 0.26 M.[31]
YSES-1 b
(TYC 8998-760-1 b)
2.97+0.09
−0.08
;[62]
1.821 ± 0.08,[63]
*21.8 ± 3[64]Likely abrown dwarf. First substellar object to have anisotope variant of stable element (13C) detected in its atmosphere.[65][63] Firstdirectly imagedplanetary system having multiple bodies orbiting a Sun-like star.[66][67]
UGCS J0422+26552.9[36]5 – 10[36]Rogue planet
UGCS J0433+22512.9[36]5 – 10[36]Rogue planet
Kapteyn's Star2.83 ± 0.24[68]
(0.291 ± 0.025R)
#294.4 ± 14.7[68]
(0.2810 ± 0.014M)
The closesthalo star and nearestredsubdwarf, at the distance of 12.82 ly (3.93 pc), and second-highestproper motion of any stars of more than 8arcseconds per year (after theBarnard's Star). Age: 11.5+0.5
−1.5
Gyr.[69]
Reported for reference.
Cha 1107−7626
(Cha J11070768−7626326)
2.8[36]6 – 10[70]Rogue planet; Lowest-mass object withhydrocarbons detected in itsdisk[70] Cha 1107-7626 has also the highest accretion rate measured in aplanetary-mass object, reaching up to 10−7MJ per year.[71]
AB Aurigae b
(AB Aur b)
< 2.75[h]!20(~ 4Myr),[73][74]
10 – 12(1Myr),
9, < 130[72]
More likely a (proto-)brown dwarf. Assuming a hot-start evolution model and a planetary mass, AB Aurigae b would be younger than 2Myr to have its observed large luminosity, which is inconsistent with the age ofAB Aurigae of 6.0+2.5
−1.0
Myr, which could be caused by delayedplanet formation in thedisk.[75] Other system ages include 1 - 5Myr,[72] 4 ± 1Myr[76] and 4Myr.[77] Another source gives a higher mass of20 MJ in thebrown dwarf regime for an age of 4Myr, arguing since gravitational instability of the disk (preferred formation mechanism in the discovery publication)[72] operates on very short time scales, the object might be as old as AB Aur.[73] A more recent study also support the latter source, given theapparent magnitude was revised upwards.[74]
CT Chamaeleontis b
(CT Cha b)
2.6+1.2
−0.2
[51]
*17 ± 6[78]Likely a brown dwarf[79] or a planetary mass companion.[80] TheNASA Exoplanet Archive considers it as an exoplanet, the most distant to be directly imaged at the distance of 622 ly (190.71 pc).[81]
DH Tauri b
(DH Tau b)
2.6 ± 0.6[37]11 ± 3;[43]
12 ± 4[37]
First planet to have a confirmedcircumplanetary disk, detected withpolarimetry at theVLT[82] andyoungest confirmed planet at an age of 0.7Myr (700000 years).[37] DH Tauri b is suspected to have anexomoon candidate orbiting it every 320 years, with about the same mass as Jupiter.[83]
Other sources give the radii: 2.7 ± 0.8RJ,[43] 2.49RJ[51][g] and masses: 14.2+2.4
−3.5
MJ,[84] 17 ± 6MJ.[85]
HIP 79098 b
(HIP 79098 (AB)b)
2.6 ± 0.6[37]*28 ± 13,[37]
16 – 25[86]
The mass ratio between HIP 79098 b and the central binaryHIP 79098 AB is estimated at 0.3–1% which is lower than4%, suggesting that HIP 79098 b represents the upper end of the planet population, as opposed to having been formed as a star.[86]
UGCS J0439+26422.5[36]5 – 10[36]Rogue planet
CM Draconis A
(Gliese 630.1 Aa)
2.4437 ± 0.0002[87]
(0.25113 ± 0.00016R)
#235.8 ± 0.3[87]
(0.22507 ± 0.00024M)
Secondeclipsing binaryred dwarf system discovered afterYY Geminorum(Castor Cab).[88] One of the lightest stars with precisely measured masses and radii, orbiting around 1.268 days. The members ofGliese 630.1 triple system. Age: 4.1 ± 0.8Gyr.[89]
Reported for reference.
PZ Telescopii b
(PZ Tel b,
HD 174429 b)
2.42+0.28
−0.34
[90]
*27+25
−9
[91]
Likely a brown dwarf. If PZ Tel b is a planet, it would be firstlarge Jupiter-like planet to be directly imaged.[92]
TWA 5 B
(TWA 5 A (AB) b)
2.34 – 3.02[93]*25+120
−20
[94]
First brown dwarf companion around a pre-main sequence star confirmed by both spectrum and proper motion. Exhibits strong emission.[95]
CM Draconis B
(Gliese 630.1 Ab)
2.3094 ± 0.0001[87]
(0.23732 ± 0.00014R)
#220.2 ± 0.3[87]
(0.21017 ± 0.00028M)
Secondeclipsing binaryred dwarf system discovered afterYY Geminorum(Castor C).[88] One of the lightest stars with precisely measured masses and radii, orbiting around 1.268 days. The members ofGliese 630.1 triple system. Age: 4.1 ± 0.8Gyr.[89]
Reported for reference.
RUBIES-EGS-41280(AEGIS 19337)<2.30[96]<8.4[96]May be asub-brown dwarf or arogue planet[96]
Eta Telescopii B
(η Tel B, HR 7329 B)
2.28 ± 0.03[97]*29+16
−13
[97]
Part of a triplestar system.
TWA 292.222+0.082
−0.081
[98]
6.6+5.2
−2.9
[98]
Rogue planet
TOI-68942.215 ± 0.055[99]
(0.2276 ± 0.0057R)
#216.85 ± 11.52[99]
(0.207 ± 0.011M)
Least massive star known to host a transitinggas planet.[99]
Reported for reference.
ROXs 12 b
(2MASS J1626-2526 b,
WDS J16265-2527 Ab)
2.20 ± 0.35[37]*16 ± 4,[100]
19 ± 5[37]
In 2005, ROXs 12 b was discovered/detected on a wide separation by direct imaging,[101] the same yearDH Tauri b,GQ Lupi b,2M1207b, andAB Pictoris b were confirmed, and was confirmed in 2013.[100]
ROXs 12 b and2MASS J1626–2527(WDS J16265-2527 B) inclination misalignment withROXs 12(WDS J16265-2527 A) was interpreted as eitherformation similar to fragmenting binary stars or ROXs 12 bformed in anequatorial disk that was torqued by 2MASS J1626–2527.
UHW J247.95-24.782.2[36]5 – 10[36]Rogue planet
Hot Jupiter limit2.2[102]≳ 0.4[103]Theoretical size limit forhot Jupiters close to a star, that are limited bytidal heating, resulting in 'runaway inflation'
HAT-P-67 Ab2.140 ± 0.025[104]0.45 ± 0.15[104]A very puffyHot Jupiter which is among planets with lowest densities of ~0.061 g/cm3. Largest known planet with a precisely measured radius, as of 2025.[104]
PSO J077.1+242.14[48][g]5.9+0.9
−0.8
[48]
Rogue planet
CAHA Tau 12.12[105][106][g]10 ± 5[105][106]Rogue planet
ROXs 42 Bb2.10 ± 0.35[37]13 ± 5[37]The formation is unclear; ROXs 42Bb may formed via core accretion, by disk (gravitational) instability, or more like abinary star.
Older estimates include 1.9 – 2.4, 1.3 – 4.7RJ[107] and 2.43±0.18, 2.55±0.2RJ.[108] Other sources of masses include 3.2 – 27MJ,[109] 9+6
−3
MJ,[110] 10 ± 4MJ.[111]
HATS-15b2.019+0.202
−0.160
[112]
2.17 ± 0.15[112]
Proto-Jupiter2.0 – 2.59[113][114]#0.994;[115]
≲ 1;[116][117]
1[118]
Jupiter is most likelyformed first and underwentplanetary migration, impacting the wholeSolar System. During themigration, Jupiter was briefly as close as 1.5AU to theSun, likely influencing the formation ofMars, before migrating back to near theice line bySaturn's gravity.[119][120] Jupiter, as well asSaturn andNeptune, may also beresponsible forejectingfifth giant (or hypotheticalPlanet Nine if confirmed)[121][122][i] due toorbital instability between the fivegiant planets.[128] Due to its radiation emitting more heat than incoming through solar radiation via theKelvin–Helmholtz mechanism within its contracting interior,[129][130] Jupiter is currently shrinking by about 1 mm (0.039 in) per year.[131][132] Through this, at the time of its formation, Jupiter was hotter and was about twice its current diameter[133] with smaller mass[117] or the same as the current mass.[118]
Reported for reference.
Cha 110913-773444
(Cha 110913)
2.0 – 2.1[51]8+7
−3
[134]
A rogue planet/sub-brown dwarf that is surrounded by aprotoplanetary disk, the first one to be confirmed. It is one of youngest free-floating substellar objects with 0.5–10Myr. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.[51]
CFHTWIR-Oph 90
(Oph 90)
2.00+0.09
−0.12
;[135]
3[136][137]
10.5[136]May berogue planet orbrown dwarf
SSTB213 J041757 A
(J041757 A)
2[138]3.5[138]In a binary with asmaller1.7 RJ proto-rogue planet/brown dwarf. It is not clear how proto-brown dwarfs J041757 AB are formed; the observations of the outflow momentum rate of these two proto-BD candidates suggest theyformed as a scaled-down version oflow-mass stars.[139]
Kepler-435b
(KOI-680 b)
1.99 ± 0.18[140]0.84 ± 0.15[140]
PDS 70 c1.98+0.39
−0.31
[141]
7.5+4.7
−4.2
, 7.8+5.0
−4.7
,~1 − ~15 (total)[142]
Secondmultiplanetary system to be directly imaged (afterHR 8799 System). PDS 70 c is the first confirmed directly imaged exoplanet still embedded in the natal gas and dust from which planets form (protoplanetary disk), and the secondprotoplanet to have a confirmedcircumplanetary disk (afterDH Tauri b).[143]
WASP-12Ab1.965+0.088
−0.087
[144]
1.476+0.076
−0.069
[145]
This planet is so close toWASP-12 A that its tidal forces are distorting it into anegg-like shape.[146] First planet observed clearly being consumed by its host star;[147] it will be destroyed in 3.16 ± 0.10Ma due totidal interactions.[148][149]
WASP-12b is suspected to haveone exomoon due to a curve of change of shine of the planet observed regular variation of light.[150]
PDS 70 b1.96+0.20
−0.17
,[141]
2.7[75]
3.2+3.3
−1.6
, 7.9+4.9
−4.7
,< 10 (2 σ), ≲ 15 (total)[142]
Secondmultiplanetary system to be directly imaged (afterHR 8799 System). PDS 70 b is the firstprotoplanet to have ever been confirmed with certainty.[151][152]
OGLE2-TR-L9b1.958+0.174
−0.111
[112]
4.5 ± 1.5[112]First discovered planet orbiting a fast-rotating hot star,OGLE2-TR-L9.[153]
CFHTWIR-Oph 98 A1.95+0.11
−0.10
;[135] 2.14[136][154]
*15.4 ± 0.8;[155]
10.5[136]
Either aM-typebrown dwarf orsub-brown dwarf with a sub-brown dwarf/planet companionCFHTWIR-Oph 98 b.
Other sources of masses includes: 9.6 – 18.4MJ.[155]
WASP-178b
(KELT-26 b,
HD 134004 b)
1.940+0.060
−0.058
[156]
1.41+0.43
−0.51
[156]
Anultra-hot Jupiter. Initially, the planet's atmosphere was discovered havingsilicon monoxide, making this exoplanet the first one to have thecompound on its atmosphere,[157] now the atmosphere is more likely dominated byionizedmagnesium andiron.[158] First hot Jupiter to be discovered orbiting achemically peculiar star.[159]
BD-14 3065b
(TOI-4987 b)
1.926 ± 0.094[160]*12.37 ± 0.92[160]Might be abrown dwarf fusingdeuterium at its core, which could explain its anomalous high radius. Also thefourth hottest known exoplanet, measuring 3,520 K (3,250 °C; 5,880 °F).[160]
Kepler-13 Ab1.91 ± 0.25 – 2.57 ± 0.26[161]9.28(16)[162]Discovered byKepler in first four months of Kepler data.[163] A more recent analysis argues that a third-light correction factor of 1.818 is needed, to correct for the light blending ofKepler-13 B, resulting in higher radii results.[161]
KELT-9b
(HD 195689 b)
1.891+0.061
−0.055
[164]
2.17 ± 0.56[165]Hottest confirmed exoplanet, with a temperature of4050±180 K (3777 ± 180°C; 6830 ± 324°F).[166] First exoplanet with detection of the rare-earth elementterbium in atmosphere.[167]
TOI-1518 b1.875 ± 0.053[168]1.83 ± 0.47[169]
HAT-P-70b1.87+0.15
−0.10
[170]
< 6.78 (3 σ)[170]Has a retrograde orbit.[170]
2MASS J1935-28461.869 ± 0.053[98]7.4+6.3
−3.4
[98]
May be asub-brown dwarf orrogue planet.
HATS-23b1.86+0.30
−0.40
[171]
1.470 ± 0.072[171]Grazing planet.
CFHTWIR-Oph 98 b
(Oph 98 b,
CFHTWIR-Oph 98 B)
1.86 ± 0.05[155][154]7.8+0.7
−0.8
[155]
Its formation as an exoplanet is challenging or impossible.[155] If its formation scenario is known, it may explain the formation ofPlanet Nine. Planetary migration may explain its formation, or it may be asub-brown dwarf.
Other sources of mass includes 4.1 – 11.6MJ.[155]
KELT-8b
(HD 343246 b)
1.86+0.18
−0.16
[172]
0.867+0.065
−0.061
[172]
WASP-76b1.842 ± 0.024[173]0.921 ± 0.032[174]Aglory effect in the atmosphere of WASP-76b might be responsible for the observed increase in brightness of its easternterminator zone which if confirmed, it would become the first glory-like phenomenon to be discovered on an exoplanet.[175][176] WASP-76b is suspected to have an exomoon analogue to Jupiter'sIo due to the detection of sodium viaabsorption spectroscopy.[177]
KPNO-Tau 12
(2MASS J0419012+280248)
1.84,[33]
2.22+0.11
−0.17
[135]
11.5[136]A low-massbrown dwarf orfree-floating planetary-mass object surrounded by aprotoplanetary disk. A member of Taurus-Auriga star-forming region.[33] May be gravitationally bound to IRAS 04158+2805 or the M-type binary LkCa 7.[35]
Other sources of masses include: 14.6MJ,[33] 13.6MJ,[178] 6-7MJ,[179] 16.5MJ,[180] 17.8+6.7
−4.6
MJ,[181] 12.7+1.6
−1.8
MJ[135]
TrES-4
(GSC 06200-00648 Ab)
1.838+0.240
−0.238
[112]
0.78 ± 0.19[182]Largest confirmed exoplanet ever found at the time of discovery.[183] This planet has a density of 0.17 g/cm3, comparable to that ofbalsa wood, less than Saturn's 0.7 g/cm3.[112]
HIP 78530 b
(HIP 78530 B)
1.83+0.16
−0.14
– 2.6±0.4[184]
*28 ± 10[184]Most likely abrown dwarf. Because HIP 78530 b's characteristics blend the line between whether or not it is a brown dwarf or a planet, astronomers have tried to determine what HIP 78530 b is by predicting whether it wascreated in a planet-like orstar-like manner.[185]
HAT-P-33b1.827 ± 0.29,[186][j]
1.85 ± 0.49,[182]
1.686 ± 0.045[186][k]
0.72+0.13
−0.12
[187]
Due to high level ofjitter, it is difficult to constrain both planets'eccentricities with accuracy. Most of their defined characteristics are based on the assumption that HAT-P-32b and HAT-P-33b have their elliptical orbits, although their discoverers have also derived the planets' characteristics on the assumption that they have their circular orbits. The elliptical model has been chosen because it is considered to be the more likely scenario.[186]
HAT-P-32b
(HAT-P-32 Ab)
1.822+0.350
−0.236
,[112]
2.04 ± 0.10,[186][j]
1.789 ± 0.025[186][k]
0.941 ± 0.166,
0.860 ± 0.164[186]
KELT-20b
(MASCARA-2b)
1.821 ± 0.045[174]3.355+0.062
−0.063
[174]
Anultra-hot Jupiter.
Barnard's Star
(Proxima Ophiuchi)
1.82 ± 0.01[188]
(0.187 ± 0.001R)
#168.7+3.8
−3.7
[188]
(0.1610+0.0036
−0.0035
M)
Second nearestplanetary system to theSun at the distance of 5.97 ly (1.83 pc) and closest star in thenorthern celestial hemisphere. Also the highestproper motion of any stars of 10.3arcseconds per year relative to the Sun.
Has 4 confirmed planet,Barnard b(Barnard's Star b),[189] c, d and e,[190] making this star the closest lone one with confirmedmulti-planetary system
Reported for reference.
CoRoT-1b1.805+0.132
−0.131
[112]
1.03 ± 0.12[112]First exoplanet for which optical (as opposed toinfrared) observations of phases were reported.[191]
WTS-2b1.804+0.144
−0.158
[112]
1.12 ± 0.16[112]
UGCS J0417+28321.8[36]5 – 10[36]Rogue planet
Saffar
(υ And Ab)
~1.8[192]1.70+0.33
−0.24
[193]
Radius estimated using the phase curve of reflected light. The planet orbits very close toTitawin(υ And A) at the distance of 0.0595AU, completing an orbit in 4.617days.[194] First multiple-planet system to be discovered around amain-sequence star, and first multiple-planet system known in a multiple-star system.
HAT-P-40b1.799+0.237
−0.260
[112]
0.48 ± 0.13[112]A very puffyhot Jupiter
WASP-122b
(KELT-14b)
1.795+0.107
−0.079
[112]
1.284 ± 0.032[195]
KELT-12b1.79+0.18
−0.17
[196]
0.95 ± 0.14[196]
Tylos
(WASP-121b)
1.773+0.041
−0.033
[197]
1.157 ± 0.07[197]First exoplanet found to contain water on itsstratosphere. Tylos is suspected to have an exomoon analogous to Jupiter'sIo due to the detection of sodiumabsorption spectroscopy around it.[198]
TOI-640 Ab1.771+0.060
−0.056
[199]
0.88 ± 0.16[199]This planet orbits its host star nearly overpoles, misalignment between the orbital plane and equatorial plane of the star been equal to 104 ± 2°[200]
WASP-187b1.766 ± 0.036[201]0.801+0.084
−0.083
[201]
WASP-94 Ab1.761+0.194
−0.191
[112]
0.5±0.13[112]
TOI-2669b1.76 ± 0.16[202]0.61 ± 0.19[202]
WISE J0528+09011.752+0.292
−0.195
[203]
13+3
−6
[203]
Brown dwarf orrogue planet
HATS-26b1.75 ± 0.21[204]0.650 ± 0.076[204]
Kepler-12b1.7454+0.076
−0.072
[205]
0.431 ± 0.041[206]Least-irradiated of fourHot Jupiters at the time of discovery
HAT-P-65b1.744+0.165
−0.215
[112]
0.527 ± 0.083[207]This planet has been sufferingorbital decay due to its close proximity toHAT-P-65; 0.04 AU.[208]
2MASS J2352-11001.742+0.035
−0.036
[98]
12.4+9.4
−5.5
[98]
Brown dwarf orrogue planet
KELT-15b1.74 ± 0.20[182]1.31 ± 0.43[182]
HAT-P-57b1.74 ± 0.36[182]1.41 ± 1.52[182]
WASP-93b1.737+0.121
−0.170
[112]
1.47 ± 0.29[112]
WASP-82b1.726+0.163
−0.195
[112]
1.17 ± 0.20[112]
Ditsö̀
(WASP-17b)
1.720+0.004
−0.005
,
1.83 ± 0.01[209]
0.512 ± 0.037[210]First planet discovered to have aretrograde orbit[211] and first to havequartz (crystalline silica, SiO2) in its clouds.[212]Has an exteremely low density of 0.08g/cm3,[211] the lowest of any exoplanet when it was discovered, and was possibly the largest exoplanet at the time of discovery, with a radius of1.92 RJ.[213]
KELT-19 Ab1.717+0.094
−0.093
[174]
3.98+0.32
−0.33
[174]
First exoplanet found to have its orbit flipped (obliquity of 155+17
−21
°) due to constraints on stellar rotational velocity, sky-projected obliquity and limb-darkening coefficients (seeKozai–Lidov mechanism).[214]
HAT-P-39b1.712+0.140
−0.115
[112]
0.60±0.10[112]
KELT-4Ab1.706+0.085
−0.076
[215]
0.878+0.070
−0.067
[215]
Fourth planet found intriple star system.[216]KELT-4A is the brightest host (V~10) of aHot Jupiter in a hierarchical triple stellar system found.[217]
HAT-P-64b1.703 ± 0.070[218]0.58+0.18
−0.13
[218]
WASP-78b1.70 ± 0.04,[219]
1.93 ± 0.45[182]
0.89 ± 0.08[219]This planet has likely undergone in the past a migration from the initial highly eccentric orbit.[220]
Qatar-7b1.70 ± 0.03[221]1.88 ± 0.25[221]
SSTB213 J041757 B
(J041757 B)
1.70[138]1.50[138]In a binary with alarger2 RJ proto-rogue planet/brown dwarf. It is not clear how proto-brown dwarfs J041757 AB are formed; the observations of the outflow momentum rate of these two proto-BD candidates suggest theyformed as a scaled-down version oflow-mass stars.[139]
CoRoT-17b1.694+0.139
−0.193
[112]
2.430±0.300[112]Hot Jupiter
TOI-615b1.69+0.06
−0.05
[222]
0.43+0.09
−0.08
[222]
CoRoT-35b1.68 ± 0.11[223]1.10 ± 0.37[223]
1RXS 1609 b
(1RXS J160929.1−210524 b,
1RXS J1609 b)
~ 1.664,[224]
1.7[225]
!14+2
−3
,[226]
12.6 – 15.7,[225]
12 ± 2[58]
Thought to be the lightest known exoplanet at the time of announcement orbiting its host at a large separation of 330AU and third announceddirectly imaged exoplanet orbiting a sun-like star (afterGQ Lup b andAB Pic b).
1RXS 1609 b's location far from1RXS 1609 presents serious challenges to current models of planetary formation: the timescale to form a planet by core accretion at this distance from the star would be longer than the age of the system itself. One possibility is that the planet may haveformed closer to the star andmigrated outwards as a result of interactions with the disk or with other planets in the system. An alternative is that the planet formedin situ via the disk instability mechanism, where the disk fragments because of gravitational instability, though this would require an unusually massive protoplanetary disk.[224]
With the upward revision in the age of theUpper Scorpius group from 5 million to 11 million years, the estimated mass of 1RXS J1609b is approximately 14MJ, i.e. above thedeuterium-burning limit.[226] An older age for the J1609 system implies that the luminosity of J1609b is consistent with a much more massive object, making more likely that J1609b may be simply a brown dwarf which formed in a manner similar to that of other low-mass and substellar companions.[225]
TOI-2886 b1.663±0.041[227]1.4±0.23[227]
TOI-1855 b1.65+0.52
−0.37
[228]
1.133 ± 0.096[228]
TOI-3807 b>1.65 (95% lower limit)[229]1.04+0.15
−0.14
[229]
Grazing planet, a large radius of2.00 RJ derived from transit data is unreliable due to its grazing nature.
HAT-P-7b
(Kepler-2b)
1.64 ± 0.11[230]1.806 ± 0.036[210]Second planet discovered to have aretrograde orbit (afterDitsö̀)[231][232] and first exoplanet to be detected by ellipsoidal light variations[233]
NGTS-33 b1.64 ± 0.07[234]3.6 ± 0.3[234]
HAT-P-64b1.631 ± 0.070[218]0.574 ± 0.038[218]
WASP-82b1.62 ± 0.13[182]1.17 ± 0.20[182]
KELT-8b1.62 ± 0.10[182]0.66 ± 0.12[182]
WASP-189 b1.619 ± 0.021[235]1.99+0.16
−0.14
[235]
Fifth hottest known exoplanet, at an temperature of 3,435 K (3,162 °C; 5,723 °F).
HAT-P-65b1.611 ± 0.024[236]0.554+0.092
−0.091
[236]
This planet has been sufferingorbital decay due to its proximity.[208]
K2-52b1.61 ± 0.20[237]0.40 ± 0.35[237]
NGTS-31 b1.61 ± 0.16[238]1.12 ± 0.12[238]
HATS-11b
(EPIC 216414930b)
1.609 ± 0.064[239]0.85[239]
SR 12 c
(SR 12 (AB) b,
ROX 21 c)
1.60[80]  – 2.38 +0.27
−0.32
[135]
?11 ± 3[80] – 13 ± 2[135]The planet is at the very edge of thedeuterium burning limit. This object orbits aroundSR 12 AB at a separation of 980AU but has acircumplanetary disk, detected insub-mm withALMA.[80]
The nature of the disk is unclear: Assuming the disk has only 1 mm grains, the dust mass of the disk is 0.012M🜨 (0.95M). For a disk only made of 1μm grains, it would have a dust mass of 0.054M🜨 (4.4M). The disk also contains gas, as is indicated by theaccretion of hydrogen, with the gas mass being on the order of 0.03MJ (about 9.5M🜨).[80]
Other sources of masses includes 14+7
−8
MJ[240] and 12 – 15MJ.[241]
WISPIT 2b
(TYC 5709-354-1 b)
1.60 ± 0.20[242][243]5.3 ± 1.0[242][243]First embedded planet providing a disk viscosity estimate. One of the first threeplanetary systems (withHD 169142 andHD 97048) to have itscircumstellar disk extended with a multi-ringed substructure and is candidate to be the first unambiguously detected in amulti-ringed disk.[242] Thisprotoplanet is detected in H-alpha, so it might be accreting material from a circumplanetary disk.
KELT-7b1.60 ± 0.06[182]1.39 ± 0.22[182]
A few notable examples with radii below 1.6RJ (17.93R🜨)
Pollera
(WASP-79b)
1.5795 ± 0.0048[201]0.835 ± 0.077[201]
This planet is orbiting the host star at nearly-polar orbit with respect to star's equatorial plane, inclination being equal to −95.2+0.9
−1.0
°.[244]
The previous radius include: 1.704+0.195
−0.180
RJ[112] and 2.09 ± 0.14RJ.[219] Older mass includes: 0.850 +0.180
−0.180
MJ.[112]
2M1510 A
(2MASS J1510–28 A,
2M1510 Aa)
[l]
1.575[245]
(0.16185R)
#34.676 ± 0.076[246]
(0.033101(73)M)
Secondeclipsing binarybrown dwarf system discovered and first kind of system to bedirectly imaged, orbiting around 20.9 days.[247][245] The members of2M1510 triple (likely)[246] or quadruple system.[247] Age: 45 ± 5Myr
Have a candidate planet,2M1510 b(2M1510Aab b),[l] that orbitspolar around 2M1510AB (or 2M1510Aab),[l] making this planet the first planet discovered orbiting polar around abinary system.[246][248][249]
Reported for reference.
2M1510 B
(2MASS J1510–28 B,
2M1510 Ab)
[l]
#34.792 ± 0.072[246]
(0.033212(69)M)
Kepler-7b1.574+0.075
−0.071
[205]
0.433+0.040
−0.041
[250]
One of the first five exoplanets to be confirmed by theKepler spacecraft, within 34 days of Kepler's science operations,[251] and the first exoplanet to have a crude map of cloud coverage.[252][253][254]
WASP-103b1.528+0.073
−0.047
[210]
1.455+0.090
−0.091
[210]
First exoplanet to have a deformation detected.[255] (seeJacobi ellipsoid)
HIP 99770 b
(29 Cygni b)
1.5 ± 0.3[256]*17+6
−5
[256]
First jointdirect imaging andastrometric discovery of a companion and the first companion discovered using precision astrometry from theGaia mission.[257] Likely abrown dwarf.
2MASS J1115+19371.5 ± 0.1[258]6+8
−4
[258]
Nearestrogue planet surrounded byplanetary disk at the distance of 147 ± 7 ly (45.1 ± 2.1 pc).[258]
Proxima
(Proxima Centauri,
Alpha Centauri C)
1.50 ± 0.04[259]
(0.1542 ± 0.0045R)
#127.9 ± 2.3[259]
(0.1221 ± 0.0022M)
Nearest (flare) star andplanetary system to theSun, at a distance of 4.24 ly (1.30 pc), orbiting aroundAlpha CentauriAB System, thenearest star system to the Sun. Age: 4.85Gyr.[260]
Has two confirmed planets,Proxima b(Proxima Centauri b)[261] andProxima d,[262] and a disputed planet,Proxima c,[263] making Proxima the nearestplanetary system to host more than one planet, supplantingBarnard System,[m] and nearest multi-planetary system in multi-star system.
Reported for reference.
Najsakopajk
(HIP 65426 b)
1.44 ± 0.03[264]7.1 ± 1.2,
9.9 +1.1
−1.8
,
10.9 +1.4
−2.0
[264]
First exoplanet to be imaged by theJames Webb Space Telescope.[265] The JWST direct imaging observations tightly constrained itsbolometric luminosity, which provides a robust mass constraint of 7.1 ± 1.2MJ. The atmospheric fitting of both temperature and radius are in disagreement with evolutionary models. Moreover, this planet is around 14 million years old which is however not associated with a debris disk, despite its young age,[266][267] causing it to not fitcurrent models for planetary formation.[268]
Kappa Andromedae b
(κ And b)
1.42 ± 0.06[269]*17.3 ± 1.8[269]Uncertainties in the system age translated into uncertainties in the object's mass. The discovery paper for Kappa Andromedae b argued that the primary's kinematics are consistent with membership in theColumba association, which would imply a system age of 20 to 50Myr and a mass of about 12.8MJ.[270] These results were later questioned by those who argued that the primary star's position on theHertzsprung–Russell diagram favors a much older age of 220 ± 100Myr, provided that the starKaffalmusalsala(Kappa Andromedae) is not a fastrotator viewedpole-on.[271][272] However, direct measurements of the star later showed that Kaffalmusalsala is in fact a rapid rotator viewed pole-on, which is the higheststellar rotational velocity of 283.8 km/s (176.3 mi/s),[273] and yield a best-estimated age of 47+27
−40
Myr favoring a mass between 13 and 30MJ. Observations with theJames Webb Space Telescope support the latter with a mass of17.3±1.8 Jupiter masses and an age of 47 million years.[269]
2M1207 b
(TWA 27b)
1.399+0.008
−0.010
[274]
5.5 ± 0.5[275]Firstplanetary body in an orbit discovered via direct imaging, and the first around abrown dwarf.[276][277] It could be considered asub-brown dwarf due to its large mass in relation to its host: 2M1207 b is around six times more massive than Jupiter, but orbits a26 MJ brown dwarf, a ratio much larger than the 1:1000 of Jupiter and Sun for example. TheIAU defined that exoplanets must have a mass ratio to the central object less than 0.04,[278][7] which would make 2M1207 b a sub-brown dwarf. Nevertheless, 2M1207 b has been considered an exoplanet by press media and websites,[279][280][281] exoplanet databases[282][283] and alternative definitions.[284][n]
The observations withNIRSpec did not detect anymethane (CH4) and only weakcarbon monoxide (CO) in the atmosphere of 2M1207b which is a sign fornonequilibrium chemistry for young low-mass objects. The weakness of carbon monoxide is caused by the absorption ofsilicate cloud which hints at a dusty atmosphere,[288] and temperature gradient.[275]
The observations were also able to detect emission of hydrogen (Paschen transitions) and theHelium Itriplet at 1.083 μm which is a sign of activeaccretion from a smallcircumstellar disk orcircumplanetary disk.[275] Observations with MIRI also detectedinfrared excess coming from a circumplanetary disk. The disk fits the model of a transitional disk better than an evolved disk.[288][289]
Banksia
(WASP-19b)
1.386 ± 0.032[290]1.168 ± 0.023[290]First exoplanet to have its secondary eclipse and orbital phases observed from the ground-based observations[291] and first to havetitanium oxide (TiO) detected in an exoplanet atmosphere.[292][293]
HD 209458 b
("Osiris")
1.359+0.016
−0.019
[210]
0.682+0.014
−0.015
[210]
Represents multiple milestones in exoplanetary discovery, such as the first exoplanet known observed totransit its host star, the first exoplanet with a precisely measured radius, one of first two exoplanets (other beingHD 189733 Ab) to be observedspectroscopically[294][295] and the first to have anatmosphere detected, containing evaporatinghydrogen, andoxygen andcarbon. First extrasolargas giant to have its superstorm measured.[296] Also first (indirect) detection of amagnetic field on an exoplanet.[297] This planet is on process of stripping its atmosphere due to extreme "hydrodynamicdrag" created by its evaporating hydrogen atmosphere.[298] Nicknamed"Osiris".
TOI-2109 b1.347 ± 0.047[299]5.02 ± 0.75[299]Has the shortestorbital period among thehot Jupiters in 0.6725 days (16.14 hours) and highest rotational rate as well as the largest size and mass among the 12 knownJovianultra-short period planets.[300] TOI-2109 b has the third hottest dayside temperature of 3,631 K (3,358 °C; 6,076 °F), after55 Cancri e(Janssen) andKELT-9b.[299]
Teide 11.311+0.120
−0.075
[98]
(0.1347+0.0123
−0.0077
R)
#52+15
−10
[98]
(0.0496+0.0143
−0.0095
M)
The firstbrown dwarf to be confirmed.[301][302] It is located in thePleiades and has an age of 70 – 140Myr.[303]
Reported for reference.
WASP-127b1.311+0.025
−0.029
[304]
0.1647+0.0214
−0.0172
[304]
The planet'stidally locked rotation to the star causes thesupersonic wind to blow up to 33,000 km/h (21,000 mph) onequator latitude, the fastestjetstream of the wind ever measured on a planet.[305][306]
AF Leporis b
(AF Lep b)
1.30 ± 0.15[307]3.74+0.53
−0.50
[308]
First companion below the deuterium burning limit to be detected with direct imaging after astrometric prediction.
OGLE-TR-56b1.30 ± 0.051.29 ± 0.12First discovered exoplanet using thetransit method.[309]
BD+60 1417b
(W1243)
1.29 ± 0.06[310]*13.47 ± 5.67[310]First directly imaged exoplanet candidate discovered by acitizen scientist. This planet orbits aroundBD+60 1417 at the distance of 1662AU, making this host star the onlymain sequence star with about 1M that is orbited by a tentativelyplanetary-mass object at a separation larger than 1000 AU.[311]
Its status of exoplanet is unclear; according to theNASA Exoplanet Archive BD+60 1417b is an exoplanet[312] and it falls within their definition: An object with a minimum mass lower than 30MJ and a notfree-floating object with sufficient follow-up.[5] However, the official working definition by theInternational Astronomical Union allows only exoplanets with a maximum mass of 13MJ and according to current knowledge BD+60 1417b could be more massive than this limit and might be abrown dwarf.[6]
TOI-157b1.29 ± 0.02[313]1.18 ± 0.13[313]Oldest confirmed planet at an age of 12.9+1.4
−0.69
Gyr[313]
Bocaprins
(WASP-39b)
1.27 ± 0.04[314]0.28 ± 0.03[314]First exoplanet found to containcarbon dioxide[315][316] andsulfur dioxide[317] in its atmosphere.
TrES-2
(Kepler-1 Ab)
1.265+0.054
−0.051
[205]
1.199 ± 0.052[318]Darkest known exoplanet due to an extremely lowgeometric albedo of 0.0136, absorbing 99% of light.
Dimidium
(51 Pegasi b)
1.2 ± 0.1[319]0.46+0.06
−0.01
[320]
First exoplanet to be discovered orbiting amain-sequence star.[321] Prototype of thehot Jupiters. While previously assumed to have a large radius of 1.9 ± 0.3 RJ based on thevisible light spectrum being allegedly detected which results in a highalbedo and an inflatedhot Jupiter,[320] recent studies find no evidence of reflected light, ruling out the radii and albedo estimates from previous studies and resulting in Dimidium being a likely low-albedo planet with the given radius.[319][322]
HR 8799 b1.2 ± 0.1[323]6.0 ± 0.3[324]Firstdirectly imagedplanetary system having multipleexoplanets and first directly imaged exoplanets to have theirorbital motion confirmed. HR 8799 e is also the first exoplanet to be directly observed usingoptical interferometry. All four planets will cool and shrink to about the same size as Jupiter, seeKelvin–Helmholtz mechanism. The outer planet orbits inside a dusty disk like the SolarKuiper belt.
HR 8799 c8.5 ± 0.4[324]
HR 8799 d9.2 ± 0.1[324]
HR 8799 e1.17+0.13
−0.11
[325]
9.6+1.9
−1.8
[326]
Ahra
(WD 0806-661 b)
1.17 ± 0.07;
1.12 ± 0.07[327]
6.8 – 9.0,[328]
6.3 – 9.4 (2 ± 0.5Gyr);[327]
0.45 – 1.75 (60 – 180Myr)[327]
First planet discovered around a single (as opposed tobinary)white dwarf, and the coldest directly imaged exoplanet when discovered.[329]
Possibly formed closer toMaru(WD 0806−661) when it was amain sequence star, this object migrated further away as it reached the end of its life (seestellar evolution), with a current separation of about2500 AU. Alternatively, based on its large distance from the white dwarf, it likelyformed like a star rather than in aprotoplanetary disk, and it is generally described as a (sub-)brown dwarf in the scientific literature.[330]
Thewater vapor,ammonia andmethane are mostly abundance in Ahra atmosphere while the moleculescarbon monoxide andcarbon dioxide, though not detected, are able to be determined by their upper limits of their abundance. This is mostly consistent withY0 dwarfs. However, some results are at odds with that dwarfs, such as the non-detection ofwater clouds and the mixing ratio of ammonia. The retrieved masses of 0.45 – 1.75MJ is smaller than expected masses (6.3 – 9.4MJ), possibly hinting at a younger age or an incorrect retrieved mass.[327] By comparison, the age of Maru is 1.5 – 2.7Gyr.[331]
Might be considered anexoplanet or asub-brown dwarf, thedimmestsub-brown dwarf. TheIAU considers objects below the~13 MJ limiting mass fordeuterium fusion that orbit stars (orstellar remnants) to be planets, regardless on how they formed.[332]
TRAPPIST-11.16 ± 0.01[333]
(0.1192 ± 0.0013R)
#94.1 ± 2.4[333]
(0.0898 ± 0.0023M)
Coldest and smallest known star hosting exoplanets.[334] Allseven exoplanets are rocky planets, orbiting closer to the star thanMercury. Their orbits' inclinations of 0.1 degrees[335] makes TRAPPIST-1 system the flattestplanetary system.[336] Age: 7.6 ± 2.2Gyr.[337]
Reported for reference.
HD 189733 Ab1.138 ± 0.027[210]1.123 ± 0.045[210]First exoplanet to have itsthermal map constructed,[338] its overall color (deep blue) determined,[339][340] its transit viewed in the X-ray spectrum, one of first two exoplanets (other being"Osiris") to be observedspectroscopically[294][295] and first to havecarbon dioxide confirmed as being present in its atmosphere.
Such the richcobalt blue[341][342] colour of HD 189733 Ab may be the result ofRayleigh scattering. The wind can blow up to 8,700 km/h (5,400 mph) from the day side to the night side.[343]
SWEEPS-111.13 ± 0.21[344]9.7 ± 5.6[344]One of two most distant planets (other beingSWEEPS-04) discovered at a distance of 27 710ly (8500pc).[345]
WASP-47 b1.128 ± 0.013[346]1.144 ± 0.023[347]Super EarthWASP-47e orbits even closer thanhot Jupiter WASP-47 b and bothhot NeptuneWASP-47d and outergas planetWASP-47c orbit further than the hot Jupiter, makingWASP-47 system the onlyplanetary system to have both planets near the hot Jupiter and another planet much further out.[348]
2MASS J0523−14031.126 ± 0.063[349]
(0.116 ± 0.006R)
#73.3[350]
(0.07M)
Coolestmain sequence star witheffective temperature 1939K (1666°C; 3031°F)[351] andone of the smallest stars, in both radius and mass.[352]
Reported for reference.
CoRoT-3 Ab1.08 ± 0.05[353]*21.44+0.96
−0.97
;[210]
21.66 ± 1.00[354]
Might be considered either aplanet or abrown dwarf, depending on the definition chosen for these terms. If the brown dwarf/planet limit is defined by mass regime using thedeuterium burning limit as the delimiter (i.e.13 MJ), CoRoT-3 Ab is a brown dwarf.[355] If formation is the criterion, CoRoT-3 Ab may be a planet given that some models of planet formation predict that planets with masses up to 25–30 Jupiter masses can form viacore accretion.[356] However, it is unclear which method of formation created CoRoT-3 Ab. The issue is clouded further by the orbital properties of CoRoT-3 Ab:brown dwarfs located close to their stars are rare, while the majority of the known massive close-in planets (e.g.,XO-3b,HAT-P-2b andWASP-14b) are in highly eccentric orbits, in contrast to the circular orbit of CoRoT-3 Ab.[354] At the time of discovery, CoRoT-3 Ab, if a planet, had the highest mean density of 26,400 kg/m3 among the planets.[357]
Gliese 504 b
(59 Virginis b)
1.08+0.04
−0.03
[358]
!1.0+1.8
−0.3
– 17[358]
First directly imaged planet containing methane absorption in the infrared H band[359] and ammonia in the atmosphere.[358]
The mass of Gliese 504 b is hard to measure, as it depends on the host star's age, which is poorly known. The discoverers adopted an age value 0.16+0.35
−0.06
Gyr and estimated mass as 4.0+4.5
−1.0
MJ[360] while other astronomers obtained an age value of 4.5+2.0
−1.5
Gyr, which corresponds to 20 – 30MJ. In this case, the object is abrown dwarf rather than a planet.[361] Intermediate ages were proposed in 2025, ranging from 400 million to one billion years, which would imply a mass between one and 17MJ, still not sufficient to confirm the nature of GJ 504 b. Measuring the abundance ofammonia in the planet's atmosphere could constrain its mass, current measurements suggest a mass likely within theplanetary-mass regime, while the mid-infrared brightness seems to place the object at a higher age and mass.[358] Ages between 360 million and 2.5 billion years were proposed in another 2025 study.[362]
Epsilon Indi Ab
(ε Ind b)
1.08[363][g]6.31+0.60
−0.56
[363]
Nearest and one of the two coldest extrasolar planets directly imaged.[364] Second closestJovian exoplanet to theSolar System, afterAEgir(ε Eridani b).
Kepler-1647 b1.05932 ± 0.01228[365]1.52 ± 0.65[365]Longest transit orbital period of any confirmed transiting exoplanet discovered at the duration of 1107 days[366] and largestcircumbinary planet discovered.[367] This planet is located within thehabitable zone ofbinary star systemKepler-1647 and thus could theoretically have ahabitable Earth-likeexomoon.[368]
14 Herculis c
(14 Her c)
1.03 ± 0.01[369]7.9+1.6
−1.2
[369]
One of the two coldest extrasolar planets directly imaged and possibly the oldest at age 4.6+3.8
−1.3
Gyr, comparable to the age of theSolar System.[369]
Kepler-90h1.01 ± 0.09[370]0.639 ± 0.016[371]Located in theKepler-90 system with eight known exoplanets, whosearchitecture is similar to that of theSolar System, withrocky planets being closer to the star andgas giants being more distant. This planet is located at 1.01AU from its star, which is within thehabitable zone ofKepler-90 and thus could theoretically have ahabitable Earth-likeexomoon.
Jupiter1
(11.209 R🜨)[o][11]
(71 492 km)
#1
(317.827 M🜨)[372]
(1.898 125 × 1027 kg)
Oldest, largest and most massiveplanet in theSolar System;[373] this planet hosts95 known moons including theGalilean moons.
Reported for reference.
Luhman 16 B
(WISE 1049−5319 B)
0.99 ± 0.05[374]*29.4 ± 0.2[375]Closest brown dwarfs found since the measurement of theproper motion ofBarnard's Star,[376][377] and the third-closest-known system and closesttruebinary star system to the Sun at a distance of 6.51 ly (2.00 pc) (after theAlpha Centauri system and Barnard's Star). While Luhman 16 B is commonly seen asbrown dwarf,NASA Exoplanet Archive list Luhman 16 B asexoplanet that is orbiting aroundLuhman 16 A, being the most massive among the list.[8]
IRAS 04125+2902 b
(TIDYE-1 b)
0.958+0.077
−0.075
[378]
< 0.3[378]
(< 90M🜨)
Youngesttransiting exoplanet discovered, with an age of just threeMyr.[378] This planet will shed its outer layers during its evolution, becoming either asub-Neptune,super-Earth or asub-Saturn, with the radius shrinking to 1.5 – 4R🜨 if the planet becomes a super-Neptune or 4 – 7R🜨 if it becomes a sub-Saturn.[379]
WD 1856+534 b
(TOI-1690 b,
WDS J18576+5331 Ab)
0.946 ± 0.017[380]0.84[381] – 5.2+0.7
−0.8
[380]
Coldest exoplanet directly detected at a temperature of 186+6
−7
K[382] and first and only transiting true planet to be observed orbiting a white dwarf.[380]
Thisgas giant orbits its host star closely at a distance of 0.02AU. This indicates that the planet may have migrated inward after its host star evolved from ared giant to awhite dwarf, otherwise it would have been engulfed by its star.[380] This migration may be related to the fact thatWD 1856+534 belongs to a hierarchicaltriple-star system: the white dwarf and its planet are gravitationally bound to a distant companion,G 229–20AB, which itself is a binary system of twored dwarf stars.[380] Gravitational interactions with the companion stars may have triggered the planet's migration through theLidov–Kozai mechanism[383][384][385] in a manner similar to somehot Jupiters. Another alternative hypothesis is that the planet instead hassurvived acommon envelope phase.[386] In the latter scenario, other planets engulfed before may have contributed to the expulsion of the stellar envelope.[387]JWST observations seem to disfavour the formation via common envelope and instead favour high eccentricity migration.[388]
WISE 0855−07140.89[389]~3 – 10[389]Coldest (sub-)brown dwarf discovered, having a temperature of about 285 K (12 °C; 53 °F). It is also the fourth-closest star and closestsub-brown dwarf (or possiblyrogue planet) to theSun at the distance of 7.43 ± 0.04 ly (2.278 ± 0.012 pc).[389]
The mass and age of WISE 0855−0714 are neither known with certainty.[390] Alsodeuterium was detected, confirming it to be less massive than the deuterium burning limit.[391]
Saturn0.84298
(9.449 R🜨)[o][392]
#0.299 42
(95.16 M🜨)[392]
Second oldest and least denseplanet in theSolar System;[393] this planet hosts the most number of moons of274 known moons includingRhea andTitan.
While thegas giants do havering systems, Saturn is the most notable for its visiblering system.
Reported for reference.
For smaller exoplanets, see thelist of smallest exoplanets or otherlists of exoplanets. For exoplanets with milestones, see thelist of exoplanet extremes andlist of exoplanet firsts.

Notes

[edit]
  1. ^The measured radius from 2003 to 2006 was696,342 ± 65 km, calculated by timing transits ofMercury across the surface.[12] while some in 2018 measured695,660 ± 140 km which is consistent withhelioseismic estimates.[13] To avoid confusion,International Astronomical Union set the solar radius toexactly695700 km.[14]
  2. ^The best estimate mass is(1.988 475 ± 0.000 092) × 1030 kg.[11] Another estimate mass gave1.988 420 × 1030 kg (based on the ratio of the mass of Earth to the Sun of1332946).[15] To simplify the solar mass,International Astronomical Union set it toexactly1.988 416 × 1030 kg.[14]
  3. ^Applying theStefan–Boltzmann law with a nominalsolareffective temperature of 5,772 K:
    (5,7722,450)40.021=0.804 R{\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{2,450}}{\biggr )}^{4}\cdot 0.021}}=0.804\ R_{\odot }}.
  4. ^A calculated radius does not need to be the radius of the (dense) core.
  5. ^Using PMS evolutionary models and a potential higher age of 1Myr, the luminosity would be lower, and the planet would be smaller. However, this would require for the object to be closer as well, which is unlikely. Another distance estimate to the Orion Nebula Cluster would result in a luminosity 1.14 times lower and also a smaller radius.[25]
  6. ^Instead of aphoto-evaporating disk it may be anevaporating gaseous globule (EGG). If so, it has a final mass of 2 - 28MJ.
  7. ^abcdefgBased on the estimated temperature and luminosity via theStefan-Boltzmann law.
  8. ^The radius estimate might have been affected by the planet'scircumplanetary disk, as the spectrum not necessarily corresponds to a planetphotosphere.[72]
  9. ^Hypothetical Planet Nine may be challenged by the discovery of2017 OF201[123] andAmmonite(2023 KQ14)[124] which their orbits are anti-aligned to the calculated orbit of Planet Nine. Their existence, which also means that there are likely manyother similar objects that are just obscured from earth observation, challenges one of the leading arguments for Planet Nine, that its gravity causestrans-Neptunian objects to cluster into a distinct region.[125][126]
    Nevertheless, it is possible that Planet Nine's existence is still there as the simulations do not disprove Planet Nine.[127]
  10. ^abAssumingelliptical orbit (most likely)
  11. ^abAssuming circular orbit
  12. ^abcdWhile inner binaries commonly use lower cases, planets also do use lower cases. For the case of 2M1510 inner binary, the binary is used as 2M1510AB.
  13. ^minus the disputed planet
  14. ^Some otherdefinitions of the termplanet require a planet to have formed in the same way as the planets in theSolar System did, by secondary accretion in aprotoplanetary disk.[285] With such a definition, if 2M1207 b formed by directgravitational collapse of a gaseousnebula, it would be asub-brown dwarf rather than a planet. A similar debate exists regarding the identity ofGQ Lupi b, also first imaged in 2004.[279] On the other hand, the discovery of marginal cases likeCha 110913 — a free-floating, planetary-mass object — raises the question of whether distinction by formation is a reliable dividing line between stars/brown dwarfs and planets.[286] In 2006, the IAU's Working Group on Extrasolar Planets described 2M1207b as a "possible planetary-mass companion to a brown dwarf."[287]
  15. ^abRefers to the level of 1 bar atmospheric pressure

Candidates for largest exoplanets

[edit]

Exoplanets with uncertain radii

[edit]

This list contains planets with uncertain radii that could be below or above the adopted cut-off of 1.6RJ, depending on the estimate.

Key (Classification)
*Probably brown dwarfs (≳ 13MJ) (based on mass)
Probably sub-brown dwarfs (≲ 13MJ) (based on mass and location)
Probably planets (≲ 13MJ) (based on mass)
?System status uncertain (inconsistency in age or mass of planetary system)
Planets with grazing transit, hindering radius determination
Key (Illustration)
Artist's impression
Direct imaging telescopic observation
Composite image of direct observations
Artist's impression size comparison
IllustrationName
(Alternates)
Radius
(RJ)
KeyMass
(MJ)
Notes
TOI-1408 b2.23 ± 0.36,[a]
2.4 ± 0.5,[394]
> 1, 1.5,[b][395]
1.86 ± 0.02[394]A large radius of2.23–2.4 RJ has been derived from transit photometry,[394] but this value is likely inaccurate due to the grazing transit of TOI-1408 b; it transits only part of the star's surface, thus hindering a precise measurement of planet-to-star size ratio.[395] The study revealed a cleartransit timing variations (TTV) signal for TOI-1408 b, discoveringsuper-Neptune TOI-1408 c which orbits closer to TOI-1408, and claims that their photodynamical modeling could constrain TOI-1408 b's radius more reliably, which needs to be confirmed.[394]
Delorme 1b
(2MASS J0103-5515 (AB) b,
2MASS0103(AB)b)
~ 1.59[396]?13 ± 1[397]Theformation is unclear. The high accretion is in better agreement with a formation via disk fragmentation, hinting that it might have formed from acircumstellar disk.[398] Giant planets andbrown dwarfs are thought to form via disk fragmentation in rare cases in the outer regions of a disk (r > 50 AU).[399] Teasdale & Stamatellos modelled three formation scenarios in which the planet could have formed. In the first two scenarios the planet forms in a massive disk via gravitational instability. The first two scenarios produce planets that have accretion and separation comparable to the observed ones, but the resulting planets are more massive than Delorme 1 b. In a third scenario the planet forms via core accretion in a less massive disk much closer to the binary. In this third scenario the mass and accretion are similar to the observed ones, but the separation is smaller.[400]
AB Pictoris b
(AB Pic b)
1.57 ± 0.07 – 1.8 ± 0.3,[401]
1.4 – 2.2[93]
10 ± 1[401]Previously believed to be a likely brown dwarf, with mass estimates of13–14 MJ[402] to70 MJ,[403] its mass is now estimated to be10±MJ, with an age of13.3+1.1
−0.6
million years.[404]
TOI-2193 Ab> 1.55[c][405]0.94 ± 0.18[405]Grazing planet, a large reported radius of1.77 RJ is unreliable. Whether it is larger than1.6 RJ is unknown.
XO-6b(BD+73 323 b)1.517 ± 0.176[406] – 2.17 ± 0.2;[201]
1.42 – 1.93[407]
4.47 ± 0.12[201]A very puffyHot Jupiter. Large size needs confirmation due to size discrepancy.
GSC 06214-00210 b1.49+0.10
−0.12
 – 2.0,[408]
1.91 ± 0.07[135]
*21 ± 6[37]
15.5 ± 0.5[408]
Has a circumsubstellar disk found by polarimetry.[82]
Beta Pictoris b
(β Pic b)
1.46 ± 0.01[409] – 1.65 ± 0.06[410]11.729+2.337
−2.135
[411]
First exoplanet to have its rotation rate measured[412][413] and fastest-spinning planet discovered at the equator speed of 19.9 ± 1.0 km/s (12.37 ± 0.62 mi/s) or 71,640 ± 3,600 km/h (44,520 ± 2,240 mph).[414] Also secondplanetary system to have the exoplanet's orbital motion confirmed (afterHR 8799 system).
Beta Pictoris b is suspected to have anexomoon due to the former's predictedobliquity misalignment.[415]
HD 135344 Ab
(SAO 206463 b)
1.45+0.06
−0.03
 – 1.60+0.07
−0.06
[416]
~ 10+1.4
−1.9
[416]
Youngest directly imaged planet that has fullyformed and orbits onSolar System scale. This planet formed in the vicinity of thesnowline and later migrated to current position during its formation phase.[416] Part ofbinary systemHD 135344.
TOI-3540 b> 1.44[c][405]1.18 ± 0.14[405]Grazing planet, a large reported radius of2.10 RJ is unreliable. Whether it is larger than1.6 RJ is unknown.
HD 106906 b1.30 ± 0.06 – 1.74 ± 0.06;[417]
1.54+0.04
−0.05
[135]
11 ± 2[418]This planet orbits aroundHD 106906 at the separation of 738AU, a distance much larger than what is possible for a planetformed within aprotoplanetary disk.[419] Observations made by theHubble Space Telescope strengthened the case for the planet having an unusual orbit that perturbed it from its host star's debris disk causing NASA and several news outlets to compare it to thehypotheticalPlanet Nine.[420][421][d] It was later found that its carbon-to-oxygen ratio is similar to thestellar association it is located in, suggesting that HD 106906 b could have been captured into the system as aplanetary-massfree-floating object. This does not rule out formation in astar-like manner.[422]
GSC 08047-00232 B1.17 – 1.85[93]*25 ± 10[423]Third youngbrown dwarf companion to the host star among young, nearby associations.[423]

Notes

[edit]
  1. ^Converted from25±R🜨.
  2. ^estimate
  3. ^ab95% lower limit
  4. ^Hypothetical Planet Nine may be challenged by the discovery of2017 OF201[123] andAmmonite(2023 KQ14)[124] which their orbits are anti-aligned to the calculated orbit of Planet Nine. Their existence, which also means that there are likely manyother similar objects that are just obscured from earth observation, challenges one of the leading arguments for Planet Nine, that its gravity causestrans-Neptunian objects to cluster into a distinct region.[125][126]
    Nevertheless, it is possible that Planet Nine's existence is still there as the simulations do not disprove Planet Nine.[127]

Unconfirmed exoplanets/objects

[edit]

These planets are also larger than 1.6 times the size of the largestplanet in the Solar System,Jupiter, but have yet to be confirmed or are disputed.
Note: Some data may be unreliable or incorrect due to unit or conversion errors and some objects are candidate exoplanets such as TOI-7081 b and TOI-7018 b[424]

Key (Classification)
*Probably brown dwarfs (≳ 13MJ) (based on mass)
Probably sub-brown dwarfs (≲ 13MJ) (based on mass and location)
Probably planets (≲ 13MJ) (based on mass)
XUnclassified object (unknown mass)
Theoretical planet size restrictions
Key (Illustration)
Artist's impression
Direct imaging telescopic observation
Composite image of direct observations
Graphic chart
Rendered image
IllustrationName
(Alternates)
(Status)
Radius
(RJ)
KeyMass
(MJ)
Notes
New born planet limit~ 30[425]≤ 20
(≤ 13)[425]
Theoretical size limit of a newly-formed planet.
YoungHot Jupiter limit~ 20[426]≤ 10[426]Theoretical size limit of a newly-formed planet that needed 104 – 105 (10000100000) years tomigrate close to the host star, but has not yet interacted with it beforehand.
FU Orionis North b
(FU Ori Ab)
(unconfirmed)
~ 9.8[425]
(~1.0 R)
~ 3[425]Discovered using a variation of disk kinematics.[427]Tidal disruption and extreme evaporation made the planet radius shrink from the beginning of the burst (14 RJ) in 1937[426] to the present year by ~30 per cent and its mass is around half of its initial mass of6 MJ.[426][425]
UCAC4 174-179953 b
(unclassified)
8.14 ± 0.40[428]
(0.84R)
XUnknownObject cannot be classified as brown dwarf or exoplanet without a mass estimate.
UCAC4 220-040923 b
(unclassified)
4.65 ± 0.20[428]XUnknown
UCAC4 223-042828 b
(unclassified)
3.33 ± 0.50[428]XUnknown
UCAC4 185-192986 b
(unclassified)
3.3 ± 0.2[428]XUnknown
UCAC4 118-126574 b
(unclassified)
3.12 ± 0.10[428]XUnknown
UCAC4 171-187216 b
(unclassified)
2.75 ± 0.20[428]XUnknown
KOI-7073 b
(unclassified)
2.699+0.473
−0.794
[429]
XUnknown
UCAC4 175-188215 b
(unclassified)
2.69 ± 0.50[428]XUnknown
UCAC4 116-118563 b
(unclassified)
2.62 ± 0.10[428]XUnknown
19g-2-01326 b
(unclassified)
2.29+0.13
−0.61
[430]
XUnknown
SOI-2 b
(unclassified)
2.22[431]XUnknown
TIC 332350266 b
(unclassified)
2.21±3.18[432]XUnknown
OldHot Jupiter limit2.2[102]> ~0.4[103]Theoretical limit forhot Jupiters close to a star, that are limited bytidal heating, resulting in 'runaway inflation'
TIC 138664795 b
(unclassified)
2.16 ± 0.16[432]XUnknownObject cannot be classified as brown dwarf or exoplanet without a mass estimate.
UCAC4 221-041868 b
(unclassified)
2.1 ± 0.20[428]XUnknown
TOI-496 b
(unclassified)
2.05+0.63
−0.29
[433]
XUnknown
HD 135344 Bb
(SAO 206462 b)
(Unconfirmed)
~2[434][435]2[434]First directly imaged planet that is activelyforming withinprotoplanetary disk, specifically at the root of one of the disk's spiral arms[434][435] in which the structure of the disk is the first one that exhibited a high degree of clarity and was observed using several space telescopes and ground-based telescopes, through an international research program of young stars and of stars with planets.[436] Part ofbinary systemHD 135344.
SOI-7 b
(unclassified)
1.96[431]XUnknownObject cannot be classified as brown dwarf or exoplanet without a mass estimate.
UCAC4 121-140615 b
(unclassified)
1.94 ± 0.20[428]XUnknown
UCAC4 123-150641 b
(unclassified)
1.93 ± 0.20[428]XUnknown
TIC 274508785 b
(unclassified)
1.92±2.37[432]XUnknown
W74 b
(unclassified)
1.9[437]XUnknown
TIC 116307482 b
(unclassified)
1.89 ± 1.46[432]XUnknown
UCAC4 122-142653 b
(unclassified)
1.85 ± 0.10[428]XUnknown
TIC 77173027 b
(unclassified)
1.84 ± 1.12[432]XUnknown
TOI-159 Ab
(unclassified)
1.80 ± 0.77[438]XUnknown
TIC 82205179 b
(unclassified)
1.76 ± 0.56[432]XUnknown
UCAC4 124-144273 b
(unclassified)
1.71 ± 0.10[428]XUnknown
TOI-710 b
(unclassified)
1.66 ± 1.10[439]XUnknown
TOI-7081 b
(unclassified or unconfirmed)
1.65 ± 0.05[424]XUnknownWhile TOI-7081 b cannot be classified as brown dwarf or exoplanet without a mass estimate, the study found TOI-7081 b and TOI-7018 b arepuffy but cool Jupiters which may be caused by delayed contraction due to inefficient internal heat transport, where composition gradients or layered convection slow cooling and prolong inflation. Future radial velocity observations can constrain eccentricities and test tidal heating as a possible factor.[424]
CVSO 30 c
(PTFO 8-8695 c)
(disputed)
1.63+0.87
−0.34
[440]
4.7+5.5
−2.0
[440]
CVSO 30 c was discovered by direct imaging, with a calculated mass equal to 4.7MJ.[441] However, the colors of the object suggest that it may actually be a background star, such as a K-type giant or a M-typesubdwarf.[442] If confirmed in the future, it would be the furthest planet to be directly imaged at a distance of about 1200ly. Moreover, the phase of "dips" caused by suspected planet CVSO 30 b had drifted nearly 180 degrees from the expected value, thus ruling out the existence of the planet.CVSO 30 is also suspected to be a stellar binary, with the previously reported planetary orbital period equal to the rotation period of the companion star.[443]
TOI-7018 b
(unclassified or unconfirmed)
1.61 ± 0.04[424]XUnknownWhile TOI-7018 b cannot be classified as brown dwarf or exoplanet without a mass estimate, the study found TOI-7081 b and TOI-7018 b arepuffy but cool Jupiters which may be caused by delayed contraction due to inefficient internal heat transport, where composition gradients or layered convection slow cooling and prolong inflation. Future radial velocity observations can constrain eccentricities and test tidal heating as a possible factor.[424]
Exoplanets with known mass of ≥1 MJ but unknown radius
CHXR 73 b
(CHXR 73 Ab)
(unconfirmed)
Unknown12.6+8.4
−5.2
[444]
The common proper motion with respect to the host star is not yet proven, however, the probability thatCHXR 73 and b are unrelated members of Chamaeleon I is ~0.1%.[444] A radius is not yet published, but could be determined. Other members of the same star-forming region in this list,Cha 110913,CT Cha b,OTS 44, all have radii > 2RJ.
JuMBO 29 a
(unconfirmed)
Unknown12.5 + 3[389]The pair orbit around at the separation by 135AU.[389]
JuMBO 29 b
(unconfirmed)
WISPIT 2 CC1
(WISPIT 2c)
(unconfirmed)
Unknown9 ± 4[243]This inner candidate planet was detected but could also be a dust clump and needs further observations to be confirmed as a planet.[243]
J1407b
("Super Saturn")
(disputed)
Unknown[a]< 6[445]First exoplanet discovered with aring system;[446] itscircumplanetary disk or ring system has been frequently compared to that of Saturn's, which has led popular media outlets to dub it as a "Super Saturn"[447][446]
First detected by automated telescopes in 2007 when its diskeclipsed the star1SWASP J1407–39(J1407) and later discovered in 2010 and announced in 2012.[448] Its status as bound exoplanet is disputed as while the properties of the ALMA object appear to match those of J1407b, it has only been observed once, making it uncertain whether its motion aligns with the expected direction and speed.[445] Recent studies found J1407b likely does not orbit V1400 Centauri and is instead afree-floating object[449][445] with circumplanetary disk,[448][450] or a large ring system composed of mainlydust.[445]
PDS 70 d
(unconfirmed)
Unknown5.2+3.3
−3.5
[451]
In 2019, a third object was detected 0.12 arcseconds from the star. Its spectrum is very blue, possibly due to star light reflected in dust which could be a feature of the inner disk. The possibility does still exist that this object is aplanetary mass object enshrouded by a dust envelope. For this second scenario the mass of the planet would be on the order of a few tensM🜨.[452] In 2025 a team[b] detectedKeplerian motion of the candidate. The orbit could be in resonance with thePDS 70 b andPDS 70 c. The spectrum in the infrared is mostly consistent with the starPDS 70, but beyond 2.3 μm aninfrared excess was detected. This excess could be produced by the thermal emission of the protoplanet, bycircumplanetary dust, variability or contamination. The source may not be a point-like source. The source is therefore interpreted as an outer spiral wake fromprotoplanet PDS 70 d with a dusty envelope. A feature of the inner disk is an alternative explanation of candidate PDS 70 d.[451]
PDS 70 is the second multi-planet system to be directly imaged (afterHR 8799).
HR 8799 f
(unconfirmed)
Unknown4 – 7[453]All four confirmedHR 8799 planets orbit inside and outside of dusty disks like theSolarKuiper belt andasteroid belt, which leaves room for the planets to be discovered inside the inner disk.[454] It is difficult to find planets inside inner disks as these planets at smaller semi-major axes have much shorter orbital periods according toKepler's third law. At a separation of ~5 au, a planet in this system would move fast enough that observations taken more than a few months apart would start to blur the planet. Nonetheless, the evidence for HR 8799 f is found by a deep targeted search in theHR 8799 system and recovery of the known HR 8799 planets.[453]
HR 8799 is the first multi-planet system to be directly imaged.
V391 Pegasi b
(V391 Peg b,
HS 2201+2610 b)

(unconfirmed)
Unknown> 3.2 ± 0.7[453]First planet candidate to claim to be detected usingvariable star timing and first candidate planet orbiting around asubdwarf B star. If confirmed, its survival would indicate that planets atEarth-like separations can survive their star'sred-giant phase, though this is a much larger planet than Earth (about the same size as Jupiter andSaturn).[455] However, subsequent research found evidence both for and against the exoplanet's existence. Although the planet's existence was not disproven, the case for its existence is now certainly weaker, and the authors stated that it "requires confirmation with an independent method".[456]
Sirius Bb
(α CMa Bb,
WD 0642-166 b)

(uncomfirmed)
Unknown1.5 ± 0.5,[457]0.8 – 2.4[458]In 1986, theSirius stellar system emitted ahigher than expected level of infrared radiation, as measured by theIRAS space-based observatory. This might be an indication of dust in the system, which is considered somewhat unusual for a binary star.[459][460] TheChandra X-ray Observatory image shows Sirius B outshining Sirius A as an X-ray source,[461] indicating that Sirius B may have its own exoplanet(s).
Jupiter-mass Binary Objects
(JuMBOs)
(mostly disputed)
Unknown0.7 − 13[462]Total of 42 JuMBO systems among 540free-floating Jupiter-mass objects of which contains 40binary systems and 2triplet systems, discovered inOrion Cluster as of 2025. Their wide separations also differ markedly from typicalbrown dwarf binaries, which have much closer separations around 4 astronomical units.[463] These JuBO binary pairs have separations ranging from 28 to 384astronomical units.[462]
JuMBOs form best about 0.2 million years after the stars, when the cluster environment has partially stabilized. This timing allows enough JuMBOs to survive to match the observed 8% binary fraction. The model also correctly predicts the observed orbital separations of 25-380 astronomical units and mass distributions. The lack of JuMBOs in older star clusters likeUpper Scorpius is explained by their gradual destruction through gravitational interactions over time, with simulations predicting that only about 2% of the original pairs survive after 10 million years.[464]
An astronomer found that most JuMBOs did not appear in his sample of substellar objects as the color was consistent with reddened background sources or low signal-to-noise sources with only JuMBO 29 being a good candidate for a binary planetary-mass system. JuMBO 24 is later found to be a background star[389] while the 7 JuMBOs have at least one component being a background source. This supports the previous result that most JuMBOs are not planetary-mass binaries.[465]

Notes

[edit]
  1. ^Its disk spans a radius of ~ 90 million kilometers (~ 1259RJ).
  2. ^presentsVLT/SPHERE, VLT/NaCo, VLT/SINFONI and JWST/NIRcam observations

Chronological list of largest exoplanets

[edit]

These exoplanets were the largest at the time of their discovery.
Present day: 24 November 2025

Key (Classification)
*Identified to be a probable/confirmed brown dwarf (≳ 13MJ) or a star (≳ 78.5MJ)
Assumed largest exoplanet, but later identified to be probable/confirmed brown dwarf (≳ 13MJ) or a star (≳ 78.5MJ)
Assumed largest exoplanet, but later identified to be smaller in radius than originally determined
Not assumed largest exoplanet, but later identified to be larger in radius than originally determined
Candidate for largest exoplanet (currently or in time span)
?System status uncertain (inconsistency in age or mass of planetary system) while being candidate for largest exoplanet
Assumed largest exoplanet, while unconfirmed, later retracted and/or confirmed
Largest exoplanet (≲ 13MJ) at the time
Largest confirmed exoplanet (in radius and mass), while discovered candidates might be larger
#Non-exoplanets reported for reference
Key (Illustration)
Artist's impression
Artist's impression size comparison
Direct Imaging telescopic observation
Transiting telescopic observation
Rendered image
Graphic chart
Discovery/Confirmation observatory
Constellation star chart
Years largest discoveredIllustrationName
(Alternates)
Radius at that time
(RJ)
KeyMass
(MJ)
Notes
2025 – presentHAT-P-67 Ab2.140 ± 0.025[104]0.45 ± 0.15[104]A very puffyHot Jupiter which is among planets with lowest densities of ~0.061 g/cm3. Largest known planet with a precisely measured radius, as of 2025.[104]
(2025 – present)AB Aurigae b
(AB Aur b,
HD 31293 b)
< 2.75[a]*20[73][74]The commonly favored model for gas giantplanet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large separation from its hostAB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability,[466] where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments.[467] A more recent study revised theapparent magnitude, making AB Aur b more likely to bebrown dwarf.[74]
(2024 – present)XO-6b2.17 ± 0.20[201]4.47 ± 0.12[201]A very puffyHot Jupiter.Rp/R{\displaystyle R_{p}/R_{*}} is consistent, butR{\displaystyle R_{*}} is either given as about1.93 R or about1.42 R in newer references.[407] Large size needs confirmation due to size discrepancy.
1.517 ± 0.176[406]
2.08 ± 0.18[468]
1.57[469]
(2024 – present)GQ Lupi b
(GQ Lup Ab,
GQ Lup B)
3.70[38]*20 ± 10[38]First confirmedexoplanet candidate to be directly imaged. It is believed to be several times more massive thanJupiter. Because the theoretical models which are used to predict planetary masses for objects in young star systems like GQ Lupi b are still tentative, the mass cannot be precisely specified, giving the masses of 1 – 39MJ.[39]
2024 – 2025HAT-P-67 Ab2.038+0.067
−0.068
[201]
0.418 ± 0.012[201]A very puffyHot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius.[470]
2.165 +0.024
−0.022
[b][471]
(2022 – 2025)AB Aurigae b
(AB Aur b,
HD 31293 b)
2.75[72]9, < 130,
10 – 12(1Myr)[72]
20(~ 4Myr)[73]
The commonly favored model for gas giantplanet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large separation from its hostAB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability,[466] where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments.[467]
(2020 – present)PDS 70b2.7[75]3.2+3.3
−1.6
, 7.9+4.9
−4.7
,
< 10 (2 σ),
≲ 15 (total)[142]
Has been later measured to have a radius of only1.96 RJ,[141] and then2.7 RJ in 2022.[75] Large size needs confirmation due to this discrepancy.
1.96+0.20
−0.17
[141]
2.09+0.23
−0.31
 – 2.72+0.15
−0.17
[472]
(2020 – present)SR 12 c
(SR 12 (AB) c,
SR 12 C)
2.38+0.27
−0.32
[135]
?13 ± 2[135]The planet is at the very edge of the deuterium burning limit. Mass being below it needs confirmation.
The nature of the disk is unclear: Assuming the disk has only 1 mm grains, the dust mass of the disk is 0.012M🜨 (0.95M). For a disk only made of 1μm grains, it would have a dust mass of 0.054M🜨 (4.4M). The disk also contains gas, as is indicated by theaccretion of hydrogen, with the gas mass being on the order of 0.03MJ (about 9.5M🜨).[80]
Other sources of masses includes 14+7
−8
MJ,[240] 12 – 15MJ.[241]
(2019 – present)HD 114762 Ab
("Latham's Planet")
Unknown*306.93[473]
(0.293 M)
It was thought to be the first discovered exoplanet until 2019, when it was confirmed to be alow-mass star with the mass of 107+20
−27
MJ[474] (and later reviewed up to 147.0+39.3
−42.0
MJ in 2020[475] and 306.93MJ (0.293 M) in 2022).[473]
147.0+39.3
−42.0
[475][c]
107+20
−27
[474][d]
(2019 – present)Kepler-13 Ab1.91 ± 0.25 – 2.57 ± 0.26[161]9.28(16)[162]Discovered byKepler in first four months of Kepler data.[163] A more recent analysis argues that a third-light correction factor of 1.818 is needed, to correct for the light blending of Kepler-13 B, resulting in higher radii results.[161]
(2018 – 2024)WASP-76b1.842±0.024[173]0.921±0.032[174]A very puffyHot Jupiter.
2.083+0.083
−0.063
[112]
2017 – 2024HAT-P-67 Ab2.085+0.096
−0.071
[476]
0.34+0.25
−0.19
[477]
A very puffyHot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius.[470]
(2017 – 2017)XO-6b1.550 ± 0.194[112]4.47 ± 0.12[201]A very puffyHot Jupiter.
2.07 ± 0.22[478]
(2015 – 2017)Dimidium
(51 Peg b)
1.9 ± 0.3[320]0.46+0.06
−0.01
[320]
First convincing exoplanet discovered orbiting amain-sequence star. A prototypehot Jupiter. In 2015, a study allegedly detectedvisible light spectrum from Dimidium using theHigh Accuracy Radial Velocity Planet Searcher (HARPS) instrument.[321] This suggested a highalbedo for the planet, hence a large radius up to 1.9 ± 0.3 RJ, which could suggest 51 Pegasi b would be an inflatedhot Jupiter.[320] However, recent studies found no evidence of reflected light, ruling out the previous radii and albedo estimates from previous studies with Dimidium being likely a low-albedo planet with a radius around1.2±0.1 RJ.[319][322]
(2015 – 2017)Saffar
(υ Andromedae Ab)
~1.8[e][192]1.70+0.33
−0.24
[193]
First multiple-planet system to be discovered around amain-sequence star, and first multiple-planet system known in a multiple-star system.
New reference finds ~1.8RJ more likely, but the original[479] ~1.36RJ are also given. Large size needs confirmation.
(2014 – present)ROXs 42B b2.10 ± 0.35[37]9+6
−3
;[110] 10 ± 4[111]
Large size needs confirmation. Other estimates include 1.9 – 2.4RJ, 1.3 – 4.7RJ.[107] Other recent sources of masses include 3.2 – 27MJ,[109] 13 ± 5MJ.[37]
2.43 ± 0.18 – 2.55 ± 0.2[108]
(2012 – 2018)Pollera
(WASP-79b)
1.704+0.195
−0.180
[112]
0.850+0.180
−0.180
[112]
This planet is orbiting the host star at nearly-polar orbit with respect to star's equatorial plane, inclination being equal to −95.2+0.9
−1.0
°.[244]
1.70 ± 0.11 – 2.09 ± 0.14[219]
(2012 – 2017)WASP-78b1.59 ± 0.10[480]0.89 ± 0.08[219]Large size needs confirmation due to size discrepancy.
1.93 ± 0.45[182]
2.06 ± 0.10[481]
1.70 ± 0.04[219]
(2011 – 2017)HAT-P-32b
(HAT-P-32 Ab)
1.822+0.350
−0.236
[112]
0.941 ± 0.166,
0.860 ± 0.164[186]
The radius is dependent on whether the orbit is circular or eccentric. Later shown to be most likely close to the lower end of the originally possible radius range.
1.789 ± 0.025 – 2.04 ± 0.10[186]
2011 – 2017HAT-P-33b1.85 ± 0.49[182]0.72+0.13
−0.12
[187]
Later proven to be most likely the largest at the time. The radius is dependent on whether the orbit is circular or eccentric.
1.686 ± 0.045 – 1.827 ± 0.290[186]
2010 – 2011Ditsö̀
(WASP-17b)
1.74+0.26
−0.23
[211]
0.512 ± 0.037[210]First planet discovered to have aretrograde orbit[211] and first to havequartz (crystalline silica, SiO2) in the clouds of an exoplanet.[212] Puffiest and possibly largest exoplanet at the time of discovery.[213]Extremely low density of 0.08 g/cm3.[211]
(2008 – present)CT Chamaeleontis b
(CT Cha b)
~2.4[482]*17 ± 6[78]Possibly thelargest planet.[78]
2.6+1.2
−0.2
[51]
3.3 – 5.4[93]
2.20+0.81
−0.60
[78]
2007 – 2010TrES-4
(GSC 02620-00648 Ab)
1.674 ± 0.094[183]0.78 ± 0.19[182][112]Largest confirmed exoplanet ever found and least dense planet of 0.17 g/cm3, about that ofbalsa wood, less thanSaturn's 0.7 g/cm3, at the time of discovery.[183][112]
2007 – 2007WASP-1 Ab1.484+0.059
−0.091
[483]
0.860 ± 0.072[483]Later proven to be the largest at the time.[483]
≥1.33[484]
2007 – 2007HAT-P-1b
(ADS 16402 Bb)
1.319 ± 0.019[485]0.529 ± 0.020[486]The planet appears to be at least as large in radius, and smaller in mean density, than any previously known planet.[487]
~1.36[487]
(2007 – 2024)GQ Lupi b
(GQ Lup Ab,
GQ Lup B)
3.0 ± 0.5[39]*~ 20 (1 – 39)[39]First confirmedexoplanet candidate to be directly imaged.
3.50+1.50
−1.03
[42]
~ 25 (4 – 155)[42]
(2006 – present)DH Tauri b
(DH Tau b)
2.7 ± 0.8[43]11.5+10.5
−3.1
[444]
Mass being below the deuterium burning limit needs confirmation. Temperature originally given as 2700 – 2800 K.[488] Other sources give the radii: 2.49RJ,[51][f] 2.68RJ,[489] and 2.6 ± 0.6RJ[37] and masses: 11 ± 3MJ,[43] 14.2+2.4
−3.5
MJ,[84] 17 ± 6MJ[85] and 12 ± 4MJ[37]
1.75[444][488][f]
2006 – 2007HD 209458 b
("Osiris")
1.27 ± 0.02[490]0.682+0.014
−0.015
[210]
First knowntransiting exoplanet, first precisely measured planet available, first to have its orbital speed measured, determining its mass directly,[491] one of first two exoplanets (other beingHD 189733 Ab) to be observedspectroscopically[294][295] and first to have anatmosphere, containing evaporatinghydrogen, and first to have containedoxygen andcarbon. This planet is on process of stripping its atmosphere due to extreme "hydrodynamicdrag" created by its evaporating hydrogen atmosphere.[298] Nicknamed"Osiris".
(2005 – 2007)GQ Lupi b
(GQ Lup B)
~ 2[492][493]~ 2[493][492]First confirmedexoplanet candidate to be directly imaged.
1999 – 2006HD 209458 b
("Osiris")
1.27 ± 0.02[490]0.682+0.014
−0.015
[210]
First knowntransiting exoplanet, first precisely measured radius available, first to have its orbital speed measured, determining its mass directly,[491] and first to have anatmosphere, containing evaporatinghydrogen, and first to have containedoxygen andcarbon. First extrasolargas giant to have its superstorm measured. Nicknamed"Osiris".
(1996 – 1999)Saffar
(υ Andromedae Ab)
Unknown0.74 ± 0.07[494]About20 – 25 planets includingSaffar were found within this time span via theradial velocity method, none of them had radius measurements shortly after their discoveries. As expected, Dimidium is larger than Poltergeist, whether one of the additional planets found till 1999 is larger than Dimidium is not clear to this day.Saffar has a phase curve measurement (see 2015), but confirmation of being larger thanDimidium is still needed.16 Cygni Bb is the firsteccentric Jupiter and first in a double star system to be discovered whileTaphao Thong(47 UMa b) is the first long-period planet around amain sequence star to be discovered.Gliese 876 b is also the first planet to be discovered orbiting ared dwarf.
variousUnknown0.49 – 8.35
1996 – 1999Dimidium
(51 Peg b)
Unknown0.46+0.06
−0.01
[320]
First convincing exoplanet discovered orbiting amain-sequence star. A prototypehot Jupiter.
1995 – 1996Dimidium
(51 Peg b)
Unknown0.46+0.06
−0.01
[320]
First convincing exoplanet discovered orbiting amain-sequence star. A prototypehot Jupiter.
(1993 – 1995)PSR B1620−26 b
("Methuselah")
Unknown2.5 ± 1[495]Likely larger than Poltergeist, but not confirmed as planet until 2003. Firstcircumbinary planet, first planet to be found in aglobular cluster and the oldest planet to be discovered (until 2020) at the age of 11.2–12.7 billion years old,[496] hence the nickname,"Methuselah".[495][497]
1992 – 1995Poltergeist
(PSR B1257+12 c)
Unknown0.01353 ± 0.00063
(4.3 ± 0.2M🜨)[498]
First confirmed planet ever discovered outside theSolar System together with the less massivePhobetor(PSR B1257+12 d), one of threepulsar planets known to be orbiting thepulsarLich(PSR B1257+12).[499][500] Lich planets are likely toform in a second round of planet formation as a result of merger of twowhite dwarfs into a pulsar star and a resulting disk of material in orbit around the star.[501]
(1991 – 1992)PSR 1829−10 b
(PSR B1829−10 b)
Unknown0.031 46[502]
(10M🜨)
First found "orbiting theneutron starPSR 1829-10"[502] but in 1992 retracted before the discovery of Lich planets due to errors in calculations.[503]
(1989 – 1995)HD 114762 Ab
("Latham's Planet")
Unknown11.069 ± 0.063,[504]
~63.2[505]
Discovered in 1989 by Latham to have a minimum mass of 11.069 ± 0.063MJ (at 90°) and a probable mass of approximately63.2 MJ (at 10°),[505] making the former planet the first to be spotted,[506] and confirmed in 1991, it was thought to be the first discovered exoplanet (or second if it includedTadmor during its evidence) until 2019 when it was confirmed to be alow-mass star with the mass of 107+20
−27
MJ[474] (and later reviewed up to 147.0+39.3
−42.0
MJ in 2020[475] and 306.93MJ (0.293 M) in 2022),[473] making one of theLich planets the first exoplanet confirmed ever, orDimidium, if the planet should have secured been formed in afirst round of planet formation with the star.
(1988 – 1992)Tadmor
(Gamma Cephei Ab,
γ Cep Ab)
Unknown6.6+2.3
−2.8
[507]
First evidence for exoplanet to receive later confirmation. First reported in 1988,[508] making it arguably the firsttrue exoplanet discovered, and independently in 1989,[509] however, retracted in 1992[510] due to the possibility that the stellar activity of the star mimics a planet not allowing a solid discovery claim and then finally confirmed in 2003.[511]
(Antiquity – 1992, 1988 or 1995)Jupiter1
(11.209 R🜨)[g][11]
(71 492 km)
#1
(317.827 M🜨)[372]
(1.898 125 × 1027 kg)
Oldest, largest and most massiveplanet in theSolar System[373] Observations date back to 7th or 8th century BC. Using an early telescope theGalilean moons were discovered in 1610, the planet hosts95 known moons. Photograph took in 1879, making Jupiter the first planet to have recognisable photo of a planet.
Reported for reference.
For earlier entries, seeearly speculations anddiscredited claims.

Notes

[edit]
  1. ^This radius estimate might have been affected by the planet'scircumplanetary disk, as the spectrum not necessarily corresponds to a planet photosphere.[72]
  2. ^Calculated using Rp/R multiplied by R. The value is later multiplied by (142984km ÷ 1391400km) to convert fromR toRJ.
  3. ^convert to: 0.140+0.038
    −0.040
    M
  4. ^coverts to: 0.102+0.019
    −0.026
    M
  5. ^Estimated using the phase curve of reflected light
  6. ^abBased on the estimated temperature and luminosity via theStefan-Boltzmann law.
  7. ^Refers to the level of 1 bar atmospheric pressure

See also

[edit]

References

[edit]
  1. ^"Observing Exoplanets: What Can We Really See?".NASA Science. 28 October 2019. Retrieved2024-08-16.
  2. ^"Stanford scientists describe a gravity telescope that could image exoplanets".Stanford University - Stanford Report. Retrieved2024-08-16.
  3. ^"Just a few pixels would let astronomers map surface features like oceans and deserts on an exoplanet".Phys.org - (Universe Today). Retrieved2024-08-16.
  4. ^Jerry Coffey (8 July 2008)."What is the Biggest Planet in the Solar System?". Universe Today.Archived from the original on 16 November 2014. Retrieved7 November 2014.
  5. ^ab"Exoplanet Criteria for Inclusion in the Exoplanet Archive".exoplanetarchive.ipac.caltech.edu. Retrieved2022-08-10.
  6. ^ab"International Astronomical Union | IAU".www.iau.org. Retrieved2022-08-10.
  7. ^abcdLecavelier des Etangs, A.; Lissauer, Jack J. (June 2022)."The IAU working definition of an exoplanet".New Astronomy Reviews.94 101641.arXiv:2203.09520.Bibcode:2022NewAR..9401641L.doi:10.1016/j.newar.2022.101641.S2CID 247065421.
  8. ^ab"Planetary Systems Composite Data".NASA Exoplanet Archive. Retrieved15 May 2025.
  9. ^Britt, Robert Roy (2 November 2000)."What is a Planet? Debate Forces New Definition".Space.com. Archived fromthe original on 2 May 2001.
  10. ^"Position Statement on the Definition of "Planet"".IAU WGESP. 28 February 2003.
  11. ^abcdePrša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques (2016-08-01)."NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 * †".The Astronomical Journal.152 (2): 41.arXiv:1605.09788.Bibcode:2016AJ....152...41P.doi:10.3847/0004-6256/152/2/41.ISSN 0004-6256.
  12. ^Emilio, Marcelo; Kuhn, Jeff R.; Bush, Rock I.; Scholl, Isabelle F. (2012). "Measuring the Solar Radius from Space during the 2003 and 2006 Mercury Transits".The Astrophysical Journal.750 (2): 135.arXiv:1203.4898.Bibcode:2012ApJ...750..135E.doi:10.1088/0004-637X/750/2/135.S2CID 119255559.
  13. ^Haberreiter, M; Schmutz, W; Kosovichev, A.G. (2008). "Solving the Discrepancy between the Seismic and Photospheric Solar Radius".Astrophysical Journal.675 (1):L53 –L56.arXiv:0711.2392.Bibcode:2008ApJ...675L..53H.doi:10.1086/529492.S2CID 14584860.
  14. ^abMamajek, E.E.; Prsa, A.; Torres, G.; et, al. (2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties".arXiv:1510.07674.{{cite arXiv}}: CS1 maint: missing class (link) A bot will complete this citation soon.Click here to jump the queue
  15. ^Leverington, David (2003).Babylon to Voyager and beyond: a history of planetary astronomy.Cambridge University Press. p. 126.ISBN 978-0-521-80840-8.
  16. ^Burton, W. B. (1986). "Stellar parameters".Space Science Reviews.43 (3–4):244–250.doi:10.1007/BF00190626.S2CID 189796439.
  17. ^Bessell, M. S.; Castelli, F.; Plez, B. (1998). "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O–M stars".Astronomy and Astrophysics.333:231–250.Bibcode:1998A&A...333..231B.
  18. ^Liberatore, Paul (2009-09-30)."Mill Valley man's film on people who stare at the sun among featured at festival".Marin Independent Journal. Archived fromthe original on 2009-10-05. Retrieved2009-10-17.
  19. ^Bonanno, A.; Schlattl, H.; Paternò, L. (2002). "The age of the Sun and the relativistic corrections in the EOS".Astronomy and Astrophysics.390 (3):1115–1118.arXiv:astro-ph/0204331.Bibcode:2002A&A...390.1115B.doi:10.1051/0004-6361:20020749.S2CID 119436299.
  20. ^abAkeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (20 April 2021)."Precision millimeter astrometry of theα Centauri AB system".The Astronomical Journal.162 (1): 14.arXiv:2104.10086.Bibcode:2021AJ....162...14A.doi:10.3847/1538-3881/abfaff.S2CID 233307418.
  21. ^Henderson, Thomas (1839)."On the Parallax of α Centauri".Monthly Notices of the Royal Astronomical Society.4 (19):168–170.Bibcode:1839MNRAS...4..168H.doi:10.1093/mnras/4.19.168.
  22. ^Kameswara-Rao, N.; Vagiswari, A.; Louis, C. (1984). "Father J. Richaud and early telescope observations in India".Bulletin of the Astronomical Society of India.12: 81.Bibcode:1984BASI...12...81K.
  23. ^Joyce, M.; Chaboyer, B. (2018)."Classically and asteroseismically constrained 1D stellar evolution models ofα Centauri A and B using empirical mixing length calibrations".The Astrophysical Journal.864 (1): 99.arXiv:1806.07567.Bibcode:2018ApJ...864...99J.doi:10.3847/1538-4357/aad464.S2CID 119482849.
  24. ^abChabrier, G.; Johansen, A.; Janson, M.; Rafikov, R. (2014). "Giant Planet and Brown Dwarf Formation".Protostars and Planets VI.arXiv:1401.7559.doi:10.2458/azu_uapress_9780816531240-ch027.ISBN 978-0-8165-3124-0.S2CID 67776527.
  25. ^abcdeFang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (2016-12-12)."A candidate planetary-mass object with a photoevaporating disk in Orion".The Astrophysical Journal.833 (2): L16.arXiv:1611.09761.Bibcode:2016ApJ...833L..16F.doi:10.3847/2041-8213/833/2/L16.ISSN 2041-8213.
  26. ^abVila, Emilie; Amiot, Paul; Berné, Olivier; Schroetter, Ilane; Haworth, Thomas; Zeidler, Peter; Boersma, Christiaan; Cami, Jan; Fuente, Asuncion; Goicoechea, Javier R.; Onaka, Takashi; Peeters, Els; Robberto, Massimo; Röllig, Markus (2025). "Observation of an Accreting Planetary-Mass Companion with Signs of Disk-Disk Interaction in Orion".arXiv:2509.04944 [astro-ph.EP].
  27. ^abcdGómez Maqueo Chew, Yilen; Stassun, Keivan G.; Prša, Andrej; Mathieu, Robert D. (2009-07-10)."Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal?".The Astrophysical Journal.699 (2):1196–1208.arXiv:0905.0491.Bibcode:2009ApJ...699.1196G.doi:10.1088/0004-637X/699/2/1196.ISSN 0004-637X.
  28. ^Stassun, Keivan G.; Mathieu, Robert D.; Valenti, Jeff A. (March 2006). "Discovery of two young brown dwarfs in an eclipsing binary system".Nature.440 (7082):311–314.Bibcode:2006Natur.440..311S.doi:10.1038/nature04570.PMID 16541067.
  29. ^"Astronomers Measure Precise Mass of a Binary Brown Dwarf".hubblesite.org.STScI. 15 March 2006. Retrieved8 May 2024.
  30. ^Gómez Maqueo Chew, Yilen; Stassun, Keivan G.; Prša, Andrej; Mathieu, Robert D. (2009-07-10)."Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal?".The Astrophysical Journal.699 (2):1196–1208.arXiv:0905.0491.Bibcode:2009ApJ...699.1196G.doi:10.1088/0004-637X/699/2/1196.ISSN 0004-637X.
  31. ^abcdefBowler, Brendan P.; Hillenbrand, Lynne A. (2015-09-28)."Near-Infrared Spectroscopy of 2M0441+2301 AabBab: A Quadruple System Spanning the Stellar to Planetary Mass Regimes".The Astrophysical Journal.811 (2): L30.arXiv:1509.01658.Bibcode:2015ApJ...811L..30B.doi:10.1088/2041-8205/811/2/L30.ISSN 2041-8213.
  32. ^Todorov, K. O.; Luhman, K. L.; Konopacky, Q. M.; McLeod, K. K.; Apai, D.; Ghez, A. M.; Pascucci, I.; Robberto, M. (2014). "A Search for Companions to Brown Dwarfs in the Taurus and Chamaeleon Star-Forming Regions".The Astrophysical Journal.788 (1): 40.arXiv:1404.0213.Bibcode:2014ApJ...788...40T.doi:10.1088/0004-637X/788/1/40.S2CID 16636388.
  33. ^abcdeKraus, Adam L.; White, Russel J.; Hillenbrand, Lynne A. (2006-09-20)."Multiplicity and Optical Excess across the Substellar Boundary in Taurus".The Astrophysical Journal.649 (1):306–318.arXiv:astro-ph/0602449.Bibcode:2006ApJ...649..306K.doi:10.1086/503665.ISSN 0004-637X.
  34. ^ab"Planet KPNO-Tau 4".Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved2024-08-15.
  35. ^abJoncour, Isabelle; Duchêne, Gaspard; Moraux, Estelle (2017-03-01)."Multiplicity and clustering in Taurus star-forming region - I. Unexpected ultra-wide pairs of high-order multiplicity in Taurus".Astronomy & Astrophysics.599: A14.arXiv:1612.02098.Bibcode:2017A&A...599A..14J.doi:10.1051/0004-6361/201629398.ISSN 0004-6361.
  36. ^abcdefghijklmnoDamian, Belinda; Scholz, Aleks; Jayawardhana, Ray; Almendros-Abad, V.; Flagg, Laura; Mužić, Koraljka; Natta, Antonella; Pinilla, Paola; Testi, Leonardo (2025)."Spectroscopy of Free-Floating Planetary-Mass Objects and their disks with JWST".The Astronomical Journal.170 (2): 127.arXiv:2507.05155.Bibcode:2025AJ....170..127D.doi:10.3847/1538-3881/adea50.
  37. ^abcdefghijklmnoXuan, Jerry W.; Hsu, Chih-Chun; Finnerty, Luke; Wang, Jason; Ruffio, Jean-Baptiste; Zhang, Yapeng; Knutson, Heather A.; Mawet, Dimitri; Mamajek, Eric E.; Inglis, Julie; Wallack, Nicole L.; Bryan, Marta L.; Blake, Geoffrey A.; Mollière, Paul; Hejazi, Neda (2024-07-01)."Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ~10–30 M Jup Companions".The Astrophysical Journal.970 (1): 71.arXiv:2405.13128.Bibcode:2024ApJ...970...71X.doi:10.3847/1538-4357/ad4796.ISSN 0004-637X.
  38. ^abcdSun, Xilei; Huang, Pinghui; Dong, Ruobing; Liu, Shang-Fei (2024)."Observational characteristics of circum-planetary-mass-object disks in the era of James Webb Space Telescope".Astrophysical Journal.972 (1): 25.arXiv:2406.09501.Bibcode:2024ApJ...972...25S.doi:10.3847/1538-4357/ad57c2.
  39. ^abcdefNeuhäuser, R.; Mugrauer, M.; Seifahrt, A.; Schmidt, T. O. B.; Vogt, N. (2008-06-01). "Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion".Astronomy and Astrophysics.484 (1):281–291.arXiv:0801.2287.Bibcode:2008A&A...484..281N.doi:10.1051/0004-6361:20078493.ISSN 0004-6361.
  40. ^Alcalá, J. M.; et al. (2020)."2MASS J15491331-3539118: a new low-mass wide companion of the GQ Lup system".Astronomy & Astrophysics.635: L1.arXiv:2001.10879.Bibcode:2020A&A...635L...1A.doi:10.1051/0004-6361/201937309.S2CID 210942917.
  41. ^Stolker, Tomas; Haffert, Sebastiaan Y.; Kesseli, Aurora Y.; van Holstein, Rob G.; Aoyama, Yuhiko; Brinchmann, Jarle; Cugno, Gabriele; Girard, Julien H.; Marleau, Gabriel-Dominique; Meyer, Michael R.; Milli, Julien; Quanz, Sascha P.; Snellen, Ignas A. G.; Todorov, Kamen O. (2021-12-01)."Characterizing the Protolunar Disk of the Accreting Companion GQ Lupi B*".The Astronomical Journal.162 (6): 286.arXiv:2110.04307.Bibcode:2021AJ....162..286S.doi:10.3847/1538-3881/ac2c7f.ISSN 0004-6256.S2CID 238582841.
  42. ^abcSeifahrt, A.; Neuhäuser, R.; Hauschildt, P. H. (2007-02-01)."Near-infrared integral-field spectroscopy of the companion to GQ Lupi".Astronomy & Astrophysics.463 (1):309–313.arXiv:astro-ph/0612250.Bibcode:2007A&A...463..309S.doi:10.1051/0004-6361:20066463.ISSN 0004-6361.S2CID 119456238.
  43. ^abcdeZhou, Yifan; Herczeg, Gregory J; Kraus, Adam L; Metchev, Stanimir; Cruz, Kelle L (2014). "Accretion onto Planetary Mass Companions of Low-mass Young Stars".The Astrophysical Journal Letters.783 (1): L17.arXiv:1401.6545.Bibcode:2014ApJ...783L..17Z.doi:10.1088/2041-8205/783/1/L17.S2CID 119255447.
  44. ^abSissa, Elena (2017). "Observation of extrasolar planets at various ages".PhD Thesis, University of Padua, 2017.Bibcode:2017PhDT.......406S.
  45. ^Pineda, Jaime E.; Szulágyi, Judit; Quanz, Sascha P.; Van Dishoeck, Ewine F.; Garufi, Antonio; Meru, Farzana; Mulders, Gijs D.; Testi, Leonardo; Meyer, Michael R.; Reggiani, Maddalena (2019)."High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits".The Astrophysical Journal.871 (1): 48.arXiv:1811.10365.Bibcode:2019ApJ...871...48P.doi:10.3847/1538-4357/aaf389.
  46. ^Quanz, Sasch P.; Amara, Adam; Meyer, Michael P.; Kenworthy, Matthew P.; et al. (2014). "Confirmation and characterization of the protoplanet HD100546 b - Direct evidence for gas giant planet formation at 50 au".Astrophysical Journal.807 (1). 64.arXiv:1412.5173.Bibcode:2015ApJ...807...64Q.doi:10.1088/0004-637X/807/1/64.S2CID 119119314.
  47. ^Grady, C. A.; et al. (2001)."The Disk and Environment of the Herbig Be Star HD 100546".The Astronomical Journal.122 (6):3396–3406.Bibcode:2001AJ....122.3396G.doi:10.1086/324447.
  48. ^abcdBest, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Aller, Kimberly M.; Zhang, Zhoujian; Kotson, Michael C.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Metcalfe, N.; Wainscoat, R. J. (2017-03-01)."A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius–Centaurus".The Astrophysical Journal.837 (1): 95.arXiv:1702.00789.Bibcode:2017ApJ...837...95B.doi:10.3847/1538-4357/aa5df0.ISSN 0004-637X.
  49. ^abPineda, J. Sebastian; et al. (September 2021)."The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars".The Astrophysical Journal.918 (1): 23.arXiv:2106.07656.Bibcode:2021ApJ...918...40P.doi:10.3847/1538-4357/ac0aea.S2CID 235435757. 40.
  50. ^Dunbar, Brian (May 20, 2008). Smith, Yvette (ed.)."Pipsqueak Star Unleashes Monster Flare".NASA. Retrieved2010-06-12.
  51. ^abcdefghBonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Rojo, P.; Allard, F.; Pinte, C.; Dumas, C.; Homeier, D. (February 2014)."A library of near-infrared integral field spectra of young M–L dwarfs".Astronomy & Astrophysics.562: A127.arXiv:1306.3709.Bibcode:2014A&A...562A.127B.doi:10.1051/0004-6361/201118270.ISSN 0004-6361.
  52. ^Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (October 2013)."OTS 44: Disk and accretion at the planetary border".Astronomy & Astrophysics.558: L7.arXiv:1310.1936.Bibcode:2013A&A...558L...7J.doi:10.1051/0004-6361/201322432.ISSN 0004-6361.
  53. ^abLuhmann, K. L.; Peterson, D. E.; Megeath, S. T. (2004). "Spectroscopic Confirmation of the Least Massive Known Brown Dwarf in Chamaeleon".The Astrophysical Journal.617 (1):565–568.arXiv:astro-ph/0411445.Bibcode:2004ApJ...617..565L.doi:10.1086/425228.S2CID 18157277.
  54. ^Luhman, K. L.; et al. (February 2005). "Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk".The Astrophysical Journal.620 (1):L51 –L54.arXiv:astro-ph/0502100.Bibcode:2005ApJ...620L..51L.doi:10.1086/428613.S2CID 15340083.
  55. ^Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (2013). "OTS 44: Disk and accretion at the planetary border".Astronomy & Astrophysics.558 (7): L7.arXiv:1310.1936.Bibcode:2013A&A...558L...7J.doi:10.1051/0004-6361/201322432.S2CID 118456052.
  56. ^abWu, Ya-Lin; Cheng, Yu-Chi; Huang, Li-Ching; Bowler, Brendan P.; Close, Laird M.; Tseng, Wei-Ling; Chen, Ning; Chen, Da-Wei (2023-10-01)."Monitoring Hα Emission from the Wide-orbit Brown-dwarf Companion FU Tau B".The Astronomical Journal.166 (4): 143.arXiv:2309.07114.Bibcode:2023AJ....166..143W.doi:10.3847/1538-3881/acedb0.ISSN 0004-6256.
  57. ^Luhman, K. L.; Mamajek, E. E.; Allen, P. R.; Muench, A. A.; Finkbeiner, D. P. (2009-02-01)."Discovery of a Wide Binary Brown Dwarf Born in Isolation".The Astrophysical Journal.691 (2):1265–1275.arXiv:0902.0425.Bibcode:2009ApJ...691.1265L.doi:10.1088/0004-637X/691/2/1265.ISSN 0004-637X.
  58. ^abWu, Ya-Lin; Bowler, Brendan P.; Sheehan, Patrick D.; Andrews, Sean M.; Herczeg, Gregory J.; Kraus, Adam L.; Ricci, Luca; Wilner, David J.; Zhu, Zhaohuan (2020-05-01)."ALMA 0.88 mm Survey of Disks around Planetary-mass Companions".The Astronomical Journal.159 (5): 229.arXiv:2003.08658.Bibcode:2020AJ....159..229W.doi:10.3847/1538-3881/ab818c.ISSN 0004-6256.
  59. ^"2MASS J04414489+2301513 Overview".NASA Exoplanet Archive.
  60. ^"The Extrasolar Planet Encyclopaedia — 2MASS J0441+2301 Bb".Extrasolar Planets Encyclopaedia.Paris Observatory.
  61. ^Todorov, K.; Luhman, K. L.; McLeod, K. K. (2010). "Discovery of a Planetary-Mass Companion to a Brown Dwarf in Taurus".The Astrophysical Journal.714 (1):L84 –L88.arXiv:1004.0539.Bibcode:2010ApJ...714L..84T.doi:10.1088/2041-8205/714/1/L84.S2CID 119242529.
  62. ^Hoch, K. K. W.; Rowland, M.; Petrus, S.; Nasedkin, E.; Ingebretsen, C.; Kammerer, J.; Perrin, M.; d'Orazi, V.; Balmer, W. O.; Barman, T.; Bonnefoy, M.; Chauvin, G.; Chen, C.; De Rosa, R. J.; Girard, J.; Gonzales, E.; Kenworthy, M.; Konopacky, Q. M.; MacIntosh, B.; Moran, S. E.; Morley, C. V.; Palma-Bifani, P.; Pueyo, L.; Ren, B.; Rickman, E.; Ruffio, J.-B.; Theissen, C. A.; Ward-Duong, K.; Zhang, Y. (2025). "Silicate clouds and a circumplanetary disk in the YSES-1 exoplanet system".Nature.643 (8073):938–942.arXiv:2507.18861.Bibcode:2025Natur.643..938H.doi:10.1038/s41586-025-09174-w.PMID 40494394.
  63. ^abZhang, Yapeng; Snellen, Ignas A. G.; Bohn, Alexander J.; Mollière, Paul; Ginski, Christian; Hoeijmakers, H. Jens; Kenworthy, Matthew A.; Mamajek, Eric E.; Meshkat, Tiffany; Reggiani, Maddalena; Snik, Frans (2021-07-15)."The 13CO-rich atmosphere of a young accreting super-Jupiter".Nature.595 (7867):370–372.arXiv:2107.06297.Bibcode:2021Natur.595..370Z.doi:10.1038/s41586-021-03616-x.hdl:1887/3254588.ISSN 0028-0836.PMID 34262209.S2CID 235829633.
  64. ^Wood, Mackenna L.; Mann, Andrew W.; Barber, Madyson G.; Bush, Jonathan L.; Kraus, Adam L.; Tofflemire, Benjamin M.; Vanderburg, Andrew; Newton, Elisabeth R.; Feiden, Gregory A.; Zhou, George; Bouma, Luke G.; Quinn, Samuel N.; Armstrong, David J.; Osborn, Ares; Adibekyan, Vardan (2023-03-01)."TESS Hunt for Young and Maturing Exoplanets (THYME). IX. A 27 Myr Extended Population of Lower Centaurus Crux with a Transiting Two-planet System".The Astronomical Journal.165 (3): 85.arXiv:2212.03266.Bibcode:2023AJ....165...85W.doi:10.3847/1538-3881/aca8fc.ISSN 0004-6256.
  65. ^Starr, Michelle (14 July 2021)."Isotopes Detected in The Atmosphere of an Exoplanet For The First Time".ScienceAlert. Retrieved14 July 2021.
  66. ^ESO/Bohn (22 July 2020)."First ever image of a multi-planet system around a Sun-like star (uncropped, with annotations)".ESO. European Southern Observatory. Archived fromthe original on 24 July 2020. Retrieved24 July 2020.
  67. ^Wall, Mike (22 July 2020)."Multiplanet system around sunlike star photographed for 1st time ever - The two newly imaged planets are huge — 14 and 6 times more massive than Jupiter".Space.com. Retrieved22 July 2020.
  68. ^abGuinan, Edward F.; Engle, Scott G.; Durbin, Allyn (2016-04-20)."LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN'S STAR*".The Astrophysical Journal.821 (2): 81.arXiv:1602.01912.Bibcode:2016ApJ...821...81G.doi:10.3847/0004-637X/821/2/81.ISSN 0004-637X.
  69. ^Anglada-Escudé, Guillem; et al. (2014)."Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red-dwarf".Monthly Notices of the Royal Astronomical Society: Letters.443:L89 –L93.arXiv:1406.0818.Bibcode:2014MNRAS.443L..89A.doi:10.1093/mnrasl/slu076.S2CID 67807856.
  70. ^abFlagg, Laura; Scholz, Aleks; Almendros-Abad, V.; Jayawardhana, Ray; Damian, Belinda; Muzic, Koraljka; Natta, Antonella; Pinilla, Paola; Testi, Leonardo (2025)."Detection of Hydrocarbons in the Disk around an Actively-Accreting Planetary-Mass Object".The Astrophysical Journal.986 (2): 200.arXiv:2505.13714.Bibcode:2025ApJ...986..200F.doi:10.3847/1538-4357/add71d.
  71. ^Almendros-Abad, Victor; Scholz, Aleks; Damian, Belinda; Jayawardhana, Ray; Bayo, Amelia; Flagg, Laura; Mužić, Koraljka; Natta, Antonella; Pinilla, Paola; Testi, Leonardo (2025-10-02)."Discovery of an Accretion Burst in a Free-floating Planetary-mass Object".The Astrophysical Journal Letters.992 (1): L2.arXiv:2510.01747.Bibcode:2025ApJ...992L...2A.doi:10.3847/2041-8213/ae09a8.ISSN 2041-8205.
  72. ^abcdefgCurrie, Thayne; Lawson, Kellen; Schneider, Glenn; Lyra, Wladimir; Wisniewski, John; Grady, Carol; Guyon, Olivier; Tamura, Motohide; Kotani, Takayuki; Kawahara, Hajime; Brandt, Timothy; Uyama, Taichi; Muto, Takayuki; Dong, Ruobing; Kudo, Tomoyuki (2022-04-04)."Images of embedded Jovian planet formation at a wide separation around AB Aurigae".Nature Astronomy.6 (6):751–759.arXiv:2204.00633.Bibcode:2022NatAs...6..751C.doi:10.1038/s41550-022-01634-x.hdl:1887/3561800.ISSN 2397-3366.
  73. ^abcdGinski, Christian (2022-05-09)."A massive gas giant caught in formation".Nature Astronomy.6 (6):639–640.Bibcode:2022NatAs...6..639G.doi:10.1038/s41550-022-01665-4.hdl:1887/3561614.ISSN 2397-3366.
  74. ^abcdShibaike, Yuhito; Hashimoto, Jun; Dong, Ruobing; Mordasini, Christoph; Fukagawa, Misato; Muto, Takayuki (2025-01-15)."Predictions of Dust Continuum Emission from a Potential Circumplanetary Disk: A Case Study of the Planet Candidate AB Aurigae b".The Astrophysical Journal.979 (1): 24.arXiv:2412.03923.Bibcode:2025ApJ...979...24S.doi:10.3847/1538-4357/ad9b21.ISSN 0004-637X.
  75. ^abcdZhou, Yifan; Sanghi, Aniket; Bowler, Brendan P.; Wu, Ya-Lin; Close, Laird M.; Long, Feng; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L.; Follette, Katherine B.; Bae, Jaehan (2022-07-01)."HST/WFC3 Hα Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur".The Astrophysical Journal Letters.934 (1): L13.arXiv:2207.06525.Bibcode:2022ApJ...934L..13Z.doi:10.3847/2041-8213/ac7fef.ISSN 2041-8205.
  76. ^Rodríguez, Luis F.; Zapata, Luis A.; Dzib, Sergio A.; Ortiz-León, Gisela N.; Loinard, Laurent; Macías, Enrique; Anglada, Guillem (2014-09-09)."An Ionized Outflow from Ab Aur, A Herbig Ae Star with a Transitional Disk".The Astrophysical Journal.793 (1): L21.arXiv:1408.7068.Bibcode:2014ApJ...793L..21R.doi:10.1088/2041-8205/793/1/L21.ISSN 2041-8213.
  77. ^Herczeg, Gregory J.; Hillenbrand, Lynne A. (2014-04-22)."An Optical Spectroscopic Study of T Tauri Stars. I. Photospheric Properties".The Astrophysical Journal.786 (2): 97.arXiv:1403.1675.Bibcode:2014ApJ...786...97H.doi:10.1088/0004-637X/786/2/97.ISSN 0004-637X.
  78. ^abcdSchmidt, T. O. B.; Neuhäuser, R.; Seifahrt, A.; Vogt, N.; Bedalov, A.; Helling, Ch.; Witte, S.; Hauschildt, P. H. (2008). "Direct evidence of a sub-stellar companion around CT Chamaeleontis".Astronomy & Astrophysics.491 (1):311–320.arXiv:0809.2812.Bibcode:2008A&A...491..311S.doi:10.1051/0004-6361:20078840.S2CID 17161561.
  79. ^Wu, Ya-Lin; Close, Laird M.; Males, Jared R.; Barman, Travis S.; Morzinski, Katie M.; Follette, Katherine B.; Bailey, Vanessa; Rodigas, Timothy J.; Hinz, Philip; Puglisi, Alfio; Xompero, Marco; Briguglio, Runa (2015). "New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System".The Astrophysical Journal.801 (1): 4.arXiv:1501.01396.Bibcode:2015ApJ...801....4W.doi:10.1088/0004-637X/801/1/4.S2CID 96467798.
  80. ^abcdefWu, Ya-Lin; Bowler, Brendan P.; Sheehan, Patrick D.; Close, Laird M.; Eisner, Joshua A.; Best, William M. J.; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L. (2022-05-01)."ALMA Discovery of a Disk around the Planetary-mass Companion SR 12 c".The Astrophysical Journal Letters.930 (1): L3.arXiv:2204.06013.Bibcode:2022ApJ...930L...3W.doi:10.3847/2041-8213/ac6420.ISSN 2041-8205.
  81. ^"Planetary Systems Composite Data".NASA Exoplanet Archive. Retrieved12 December 2021.
  82. ^abvan Holstein, R.G.; Stolker, T.; Jensen-Clem, R.; Ginski, C.; Milli, J.; de Boer, J.; Girard, J.H.; Wahhaj, Z.; Bohn, A.J.; Millar-Blanchaer, M.A.; Benisty, M.; Bonnefoy, M.; Chauvin, G.; Dominik, C.; Hinkley, S. (March 2021)."A survey of the linear polarization of directly imaged exoplanets and brown dwarf companions with SPHERE-IRDIS: First polarimetric detections revealing disks around DH Tau B and GSC 6214-210 B".Astronomy & Astrophysics.647: A21.arXiv:2101.04033.Bibcode:2021A&A...647A..21V.doi:10.1051/0004-6361/202039290.ISSN 0004-6361.
  83. ^Lazzoni, C.; Zurlo, A.; Desidera, S.; Mesa, D.; Fontanive, C.; Bonavita, M.; Ertel, S.; Rice, K.; Vigan, A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Delorme, P.; Gratton, R.; Houllé, M. (September 2020)."The search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B".Astronomy & Astrophysics.641: A131.arXiv:2007.10097.Bibcode:2020A&A...641A.131L.doi:10.1051/0004-6361/201937290.ISSN 0004-6361.
  84. ^abXuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-03-01)."A Rotation Rate for the Planetary-mass Companion DH Tau b".The Astronomical Journal.159 (3): 97.arXiv:2001.01759.Bibcode:2020AJ....159...97X.doi:10.3847/1538-3881/ab67c4.ISSN 0004-6256.
  85. ^abMartinez, Raquel A.; Kraus, Adam L. (2021-12-23)."A Mid-infrared Study of Directly Imaged Planetary-mass Companions Using Archival Spitzer/IRAC Images".The Astronomical Journal.163 (1): 36.arXiv:2111.03087.Bibcode:2022AJ....163...36M.doi:10.3847/1538-3881/ac3745.ISSN 0004-6256.
  86. ^abJanson, Markus; Asensio-Torres, Ruben; André, Damien; Bonnefoy, Mickaël; Delorme, Philippe; Reffert, Sabine; Desidera, Silvano; Langlois, Maud; Chauvin, Gaël; Gratton, Raffaele; Bohn, Alexander J.; Eriksson, Simon C.; Marleau, Gabriel-Dominique; Mamajek, Eric E.; Vigan, Arthur (June 2019)."The B-Star Exoplanet Abundance Study: a co-moving 16–25 MJup companion to the young binary system HIP 79098".Astronomy & Astrophysics.626: A99.arXiv:1906.02787.Bibcode:2019A&A...626A..99J.doi:10.1051/0004-6361/201935687.ISSN 0004-6361.
  87. ^abcdMartin, David V.; Sethi, Ritika; et al. (February 2024)."The benchmark M dwarf eclipsing binary CM Draconis with TESS: spots, flares, and ultra-precise parameters".Monthly Notices of the Royal Astronomical Society.528 (1):963–975.arXiv:2301.10858.Bibcode:2024MNRAS.528..963M.doi:10.1093/mnras/stae015.
  88. ^abLacy, C. H. (December 1977). "Absolute dimensions and masses of the remarkable spotted dM4e eclipsing binary flare star CM Draconis".Astrophysical Journal.218:444–460.Bibcode:1977ApJ...218..444L.doi:10.1086/155698.
  89. ^abMorales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D. (2009-02-01)."Absolute Properties of the Low-Mass Eclipsing Binary Cm Draconis".The Astrophysical Journal.691 (2):1400–1411.arXiv:0810.1541.Bibcode:2009ApJ...691.1400M.doi:10.1088/0004-637X/691/2/1400.ISSN 0004-637X.
  90. ^Schmidt, T. O. B.; Mugrauer, M.; Neuhäuser, R.; Vogt, N.; Witte, S.; Hauschildt, P. H.; Helling, Ch.; Seifahrt, A. (June 2014)."First spectroscopic observations of the substellar companion of the young debris disk star PZ Telescopii".Astronomy & Astrophysics.566: A85.arXiv:1404.2870.Bibcode:2014A&A...566A..85S.doi:10.1051/0004-6361/201321625.ISSN 0004-6361.
  91. ^Franson, Kyle; Bowler, Brendan P. (2023-06-01)."Dynamical Mass of the Young Brown Dwarf Companion PZ Tel B".The Astronomical Journal.165 (6): 246.arXiv:2304.01302.Bibcode:2023AJ....165..246F.doi:10.3847/1538-3881/acca18.ISSN 0004-6256.
  92. ^Jenkins, J. S.; Pavlenko, Y. V.; Ivanyuk, O.; Gallardo, J.; et al. (2012)."Benchmark Cool Companions: Ages and Abundances for the PZ Telescopii System".Monthly Notices of the Royal Astronomical Society.420 (4):3587–98.arXiv:1111.7001.Bibcode:2012MNRAS.420.3587J.doi:10.1111/j.1365-2966.2011.20280.x.S2CID 18735984.
  93. ^abcdPatience, J.; King, R. R.; De Rosa, R. J.; Vigan, A.; Witte, S.; Rice, E.; Helling, Ch.; Hauschildt, P. (April 2012)."Spectroscopy across the brown dwarf/planetary mass boundary: I. Near-infrared JHK spectra⋆⋆⋆".Astronomy & Astrophysics.540: A85.arXiv:1201.3921.Bibcode:2012A&A...540A..85P.doi:10.1051/0004-6361/201118058.ISSN 0004-6361.
  94. ^Neuhäuser, R.; Schmidt, T. O. B.; Hambaryan, V. V.; Vogt, N. (June 2010)."Orbital motion of the young brown dwarf companion TWA 5 B".Astronomy and Astrophysics.516: A112.arXiv:1005.1244.Bibcode:2010A&A...516A.112N.doi:10.1051/0004-6361/200913917.ISSN 0004-6361.
  95. ^Neuhaeuser, R.; Guenther, E. W.; Petr, M. G.; Brandner, W.; Huelamo, N.; Alves, J. (2000). "Spectrum and proper motion of a brown dwarf companion of the T Tauri star CoD-33 7795".Astronomy and Astrophysics.360:L39 –L42.arXiv:astro-ph/0007301.Bibcode:2000A&A...360L..39N.doi:10.1088/0004-637X/786/2/97.
  96. ^abcTu, Zhijun; Wang, Shu; Chen, Xiaodian; Liu, Jifeng (2025)."Three Brown Dwarfs Masquerading as High-Redshift Galaxies in JWST Observations".The Astrophysical Journal.980 (2): 230.arXiv:2501.16648.Bibcode:2025ApJ...980..230T.doi:10.3847/1538-4357/adaf9f.
  97. ^abChai, Yiwei; Chen, Christine H.; Worthen, Kadin; Li, Alexis; Sefilian, Antranik A.; Balmer, William; Hines, Dean C.; Law, David R.; Sargent, B. A.; Wyatt, Mark; Lu, Cicero X.; Perrin, Marshall D.; Rebollido, Isabel; Rickman, Emily; Sloan, G. C. (2024-12-01)."A JWST MIRI MRS View of the η Tel Debris Disk and Its Brown Dwarf Companion".The Astrophysical Journal.976 (2): 167.arXiv:2408.11692.Bibcode:2024ApJ...976..167C.doi:10.3847/1538-4357/ad74f4.ISSN 0004-637X.
  98. ^abcdefghHurt, Spencer A.; Liu, Michael C.; Zhang, Zhoujian; Phillips, Mark; Allers, Katelyn N.; Deacon, Niall R.; Aller, Kimberly M.; Best, William M. J. (2024-01-01)."Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades".The Astrophysical Journal.961 (1): 121.arXiv:2311.04268.Bibcode:2024ApJ...961..121H.doi:10.3847/1538-4357/ad0b12.ISSN 0004-637X.
  99. ^abcBryant, Edward M.; Jordán, Andrés; Hartman, Joel D.; Bayliss, Daniel; Sedaghati, Elyar; Barkaoui, Khalid; Chouqar, Jamila; Pozuelos, Francisco J.; Thorngren, Daniel P.; Timmermans, Mathilde; Almenara, Jose Manuel; Chilingarian, Igor V.; Collins, Karen A.; Gan, Tianjun; Howell, Steve B. (June 2025)."A transiting giant planet in orbit around a 0.2-solar-mass host star".Nature Astronomy.9 (7):1031–1044.arXiv:2506.07931.Bibcode:2025NatAs...9.1031B.doi:10.1038/s41550-025-02552-4.ISSN 2397-3366.PMC 12274134.PMID 40687772.
  100. ^abKraus, Adam L.; Ireland, Michael J.; Cieza, Lucas A.; Hinkley, Sasha; Dupuy, Trent J.; Bowler, Brendan P.; Liu, Michael C. (2013-12-31)."THREE WIDE PLANETARY-MASS COMPANIONS TO FW TAU, ROXs 12, AND ROXs 42B".The Astrophysical Journal.781 (1): 20.arXiv:1311.7664.Bibcode:2014ApJ...781...20K.doi:10.1088/0004-637X/781/1/20.ISSN 0004-637X.
  101. ^Ratzka, T.; Köhler, R.; Leinert, Ch. (July 2005)."A multiplicity survey of the ρ Ophiuchi molecular clouds".Astronomy & Astrophysics.437 (2):611–626.arXiv:astro-ph/0504593.Bibcode:2005A&A...437..611R.doi:10.1051/0004-6361:20042107.ISSN 0004-6361.
  102. ^abHou, Qiang; Wei, Xing (2022)."Why hot Jupiters can be large but not too large".Monthly Notices of the Royal Astronomical Society.511 (3):3133–3137.arXiv:2201.07008.doi:10.1093/mnras/stac169.
  103. ^abWinn, Joshua N.; Fabrycky, Daniel; Albrecht, Simon; Johnson, John Asher (2010-08-01)."Hot Stars with Hot Jupiters Have High Obliquities".The Astrophysical Journal.718 (2):L145 –L149.arXiv:1006.4161.Bibcode:2010ApJ...718L.145W.doi:10.1088/2041-8205/718/2/L145.ISSN 2041-8205.
  104. ^abcdefWang, Gavin; Balmer, William O.; Pueyo, Laurent; Thorngren, Daniel; Schmidt, Stephen P.; Wang, Le-Chris; Schlaufman, Kevin C.; Stefánsson, Guðmundur; Rustamkulov, Zafar; Sing, David K. (2025-06-02)."A Revised Density Estimate for the Largest Known Exoplanet, HAT-P-67 b".The Astronomical Journal.169 (6): 336.arXiv:2504.13997.Bibcode:2025AJ....169..336W.doi:10.3847/1538-3881/adcec9.ISSN 0004-6256.
  105. ^abQuanz, Sascha P.; Goldman, Bertrand; Henning, Thomas; Brandner, Wolfgang; Burrows, Adam; Hofstetter, Lorne W. (2010-01-01)."Search for Very Low-Mass Brown Dwarfs and Free-Floating Planetary-Mass Objects in Taurus".The Astrophysical Journal.708 (1):770–784.arXiv:0911.1925.Bibcode:2010ApJ...708..770Q.doi:10.1088/0004-637X/708/1/770.ISSN 0004-637X.
  106. ^ab"Planet CAHA Tau 1".Encyclopaedia of exoplanetary systems / exoplanet.eu. Retrieved9 September 2024.
  107. ^abDaemgen, Sebastian; Todorov, Kamen; Silva, Jasmin; Hand, Derek; Garcia, Eugenio V.; Currie, Thayne; Burrows, Adam; Stassun, Keivan G.; Ratzka, Thorsten; Debes, John H.; Lafreniere, David; Jayawardhana, Ray; Correia, Serge (2017-05-01)."Mid-infrared characterization of the planetary-mass companion ROXs 42B b".Astronomy & Astrophysics.601: A65.arXiv:1702.06549.Bibcode:2017A&A...601A..65D.doi:10.1051/0004-6361/201629949.ISSN 0004-6361.
  108. ^abCurrie, Thayne; Burrows, Adam; Daemgen, Sebastian (2014-05-08)."A FIRST-LOOK ATMOSPHERIC MODELING STUDY OF THE YOUNG DIRECTLY IMAGED PLANET-MASS COMPANION, ROXS 42Bb".The Astrophysical Journal.787 (2): 104.arXiv:1404.0131.Bibcode:2014ApJ...787..104C.doi:10.1088/0004-637X/787/2/104.ISSN 0004-637X.
  109. ^abInglis, Julie; Wallack, Nicole L.; Xuan, Jerry W.; Knutson, Heather A.; Chachan, Yayaati; Bryan, Marta L.; Bowler, Brendan P.; Iyer, Aishwarya; Kataria, Tiffany; Benneke, Björn; et al. (15 April 2024)."Atmospheric Retrievals of the Young Giant Planet ROXs 42B b from Low- and High-resolution Spectroscopy".The Astronomical Journal.167 (5): 19.arXiv:2402.09533.Bibcode:2024AJ....167..218I.doi:10.3847/1538-3881/ad2771.ISSN 1538-3881.S2CID 267681834.
  110. ^abCurrie, Thayne; Daemgen, Sebastian; Debes, John; Lafreniere, David; Itoh, Yoichi; Jayawardhana, Ray; Ratzka, Thorsten; Correia, Serge (2013-12-19)."Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit in the Young Binary Star System, ROXs 42B".The Astrophysical Journal.780 (2): L30.arXiv:1310.4825.Bibcode:2014ApJ...780L..30C.doi:10.1088/2041-8205/780/2/L30.ISSN 2041-8205.
  111. ^abKraus, Adam L.; Ireland, Michael J.; Cieza, Lucas A.; Hinkley, Sasha; Dupuy, Trent J.; Bowler, Brendan P.; Liu, Michael C. (2013-12-31)."Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B".The Astrophysical Journal.781 (1): 20.arXiv:1311.7664.Bibcode:2014ApJ...781...20K.doi:10.1088/0004-637X/781/1/20.ISSN 0004-637X.
  112. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahJohns, Daniel; Marti, Connor; Huff, Madison; McCann, Jacob; Wittenmyer, Robert A.; Horner, Jonathan; Wright, Duncan J. (2018-11-01)."Revised Exoplanet Radii and Habitability Using Gaia Data Release 2".The Astrophysical Journal Supplement Series.239 (1): 14.arXiv:1808.04533.Bibcode:2018ApJS..239...14J.doi:10.3847/1538-4365/aae5fb.ISSN 0067-0049.
  113. ^Batygin, Konstantin; Adams, Fred C. (2025-05-20)."Determination of Jupiter's primordial physical state".Nature Astronomy.9 (6):835–844.arXiv:2505.12652.Bibcode:2025NatAs...9..835B.doi:10.1038/s41550-025-02512-y.ISSN 2397-3366.
  114. ^Richards, Tricia (16 June 2025)."4.5 billion years ago, Jupiter was 2.5 times its current size, scientists discover".Think Stewartville. Retrieved18 June 2025.
  115. ^D'Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P. (2021)."Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch".Icarus.355 114087.arXiv:2009.05575.Bibcode:2021Icar..35514087D.doi:10.1016/j.icarus.2020.114087.S2CID 221654962.
  116. ^Kruijer, Thomas S.; Burkhardt, Christoph; Budde, Gerrit; Kleine, Thorsten (June 2017)."Age of Jupiter inferred from the distinct genetics and formation times of meteorites".Proceedings of the National Academy of Sciences.114 (26):6712–6716.Bibcode:2017PNAS..114.6712K.doi:10.1073/pnas.1704461114.PMC 5495263.PMID 28607079.
  117. ^abGuillot, Tristan (1999)."Interiors of Giant Planets Inside and Outside the Solar System"(PDF).Science.286 (5437):72–77.Bibcode:1999Sci...286...72G.doi:10.1126/science.286.5437.72.PMID 10506563.Archived(PDF) from the original on October 9, 2022. RetrievedApril 24, 2022.
  118. ^abLissauer, J. J.; Hubickyj, O.; D'Angelo, G.; Bodenheimer, P. (2009)."Models of Jupiter's growth incorporating thermal and hydrodynamic constraints".Icarus.199 (2):338–350.arXiv:0810.5186.Bibcode:2009Icar..199..338L.doi:10.1016/j.icarus.2008.10.004.S2CID 18964068.
  119. ^Fesenmaier, Kimm (23 March 2015)."New research suggests Solar system may have once harbored super-Earths".Caltech. Retrieved5 November 2015.
  120. ^Morbidelli, Alessandro; Crida, Aurélien (2007). "The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk".Icarus.191 (1):158–171.arXiv:0704.1210.Bibcode:2007Icar..191..158M.doi:10.1016/j.icarus.2007.04.001.S2CID 17672873.
  121. ^Mustill, Alexander J.; Raymond, Sean N.; Davies, Melvyn B. (21 July 2016)."Is there an exoplanet in the Solar System?".Monthly Notices of the Royal Astronomical Society: Letters.460 (1):L109 –L113.arXiv:1603.07247.Bibcode:2016MNRAS.460L.109M.doi:10.1093/mnrasl/slw075.
  122. ^Kenyon, Scott J.; Bromley, Benjamin C. (2016)."Making Planet Nine: Pebble Accretion at 250–750 AU in a Gravitationally Unstable Ring".The Astrophysical Journal.825 (1): 33.arXiv:1603.08008.Bibcode:2016ApJ...825...33K.doi:10.3847/0004-637X/825/1/33.S2CID 119212968.
  123. ^abCheng, Sihao; Li, Jiaxuan; Yang, Eritas (2025). "Discovery of a dwarf planet candidate in an extremely wide orbit: 2017 OF201".arXiv:2505.15806 [astro-ph.EP].
  124. ^abChen, Ying-Tung; Lykawka, Patryk Sofia; Huang, Yukun; Kavelaars, J. J.; Fraser, Wesley C.; Bannister, Michele T.; et al. (July 2025)."Discovery and dynamics of a Sedna-like object with a perihelion of 66 au".Nature Astronomy.9 (9):1309–1316.arXiv:2508.02162.Bibcode:2025NatAs...9.1309C.doi:10.1038/s41550-025-02595-7.
  125. ^abChandler, David L. (27 May 2025)."Another Dwarf Planet in Our Solar System?".Sky & Telescope. Retrieved29 May 2025.
  126. ^ab"Astronomers uncover a hidden world on the solar system's edge".Science Daily. 6 September 2025. Retrieved7 September 2025.
  127. ^abChang, Kenneth (29 May 2025)."Scientists Say They've Found a Dwarf Planet Very Far From the Sun".The New York Times. Archived fromthe original on 2025-05-31. Retrieved1 June 2025.
  128. ^Nesvorný, David (2011). "Young Solar System's Fifth Giant Planet?".The Astrophysical Journal Letters.742 (2): L22.arXiv:1109.2949.Bibcode:2011ApJ...742L..22N.doi:10.1088/2041-8205/742/2/L22.S2CID 118626056.
  129. ^Elkins-Tanton, Linda T. (2011).Jupiter and Saturn (revised ed.). New York: Chelsea House.ISBN 978-0-8160-7698-7.
  130. ^Irwin, Patrick (2003).Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. Springer Science & Business Media. p. 62.ISBN 978-3-540-00681-7.Archived from the original on June 19, 2024. RetrievedApril 23, 2022.
  131. ^Irwin, Patrick G. J. (2009) [2003].Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (Second ed.). Springer. p. 4.ISBN 978-3-642-09888-8.Archived from the original on June 19, 2024. RetrievedMarch 6, 2021.the radius of Jupiter is estimated to be currently shrinking by approximately 1 mm/yr
  132. ^Guillot, Tristan; Stevenson, David J.; Hubbard, William B.; Saumon, Didier (2004). "Chapter 3: The Interior of Jupiter". In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.).Jupiter: The Planet, Satellites and Magnetosphere.Cambridge University Press.ISBN 978-0-521-81808-7.
  133. ^Bodenheimer, P. (1974). "Calculations of the early evolution of Jupiter".Icarus. 23.23 (3):319–325.Bibcode:1974Icar...23..319B.doi:10.1016/0019-1035(74)90050-5.
  134. ^Luhman, K. L.; Adame, Lucía; D'Alessio, Paola; Calvet, Nuria; Hartmann, Lee; Megeath, S. T.; Fazio, G. G. (2005-12-10)."Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk".The Astrophysical Journal.635 (1):L93 –L96.arXiv:astro-ph/0511807.Bibcode:2005ApJ...635L..93L.doi:10.1086/498868.ISSN 0004-637X.
  135. ^abcdefghijBryan, Marta L.; Ginzburg, Sivan; Chiang, Eugene; Morley, Caroline; Bowler, Brendan P.; Xuan, Jerry W.; Knutson, Heather A. (2020-12-01)."As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime".The Astrophysical Journal.905 (1): 37.arXiv:2010.07315.Bibcode:2020ApJ...905...37B.doi:10.3847/1538-4357/abc0ef.ISSN 0004-637X.
  136. ^abcdeRilinger, Anneliese M.; Espaillat, Catherine C. (November 2021)."Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs".The Astrophysical Journal.921 (2): 182.arXiv:2106.05247.Bibcode:2021ApJ...921..182R.doi:10.3847/1538-4357/ac09e5.ISSN 0004-637X.
  137. ^"Planet CFHTWIR-Oph 90".Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved2024-08-15.
  138. ^abcdBarrado, D.; Morales-Calderón, M.; Palau, A.; Bayo, A.; I., de Gregorio-Monsalvo; Eiroa, C.; Huélamo1, N.; Bouy, H.; Morata, O.; Schmidtobreick, L. (21 October 2009)."A proto brown dwarf candidate in Taurus".Astronomy & Astrophysics.508 (2):859–867.Bibcode:2009A&A...508..859B.doi:10.1051/0004-6361/200912276.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  139. ^abPalau, Aina; Durán-García, Mariano; Fernández-López, Manue; Zapata, Luis A.; Morata, Oscar; de Gregorio-Monsalvo, Itziar; Barrado, David; Huelamo, Nuria; Bayo, Amelia; Ruiz, Maria Teresa; Bouy, Herve; Ribas, Alvaro; Morales-Calderon, Maria; Rodriguez, Luis Felipe (January 31, 2023)."Confirmation of the proto-brown dwarf SSTB213-J041757B and discovery of a nearby new candidate with ALMA and CARMA".Zenodo.doi:10.5281/zenodo.7593206.
  140. ^abAlmenara, J. M; Damiani, C; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R. F; Deleuil, M; Barros, S. C. C; Boisse, I; Bonomo, A. S; Montagnier, G; Santerne, A (2015). "SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: A massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars".Astronomy & Astrophysics.575: A71.arXiv:1501.01486.Bibcode:2015A&A...575A..71A.doi:10.1051/0004-6361/201424291.S2CID 118701259.
  141. ^abcdWang, J. J.; et al. (2021)."Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗".The Astronomical Journal.161 (3): 148.arXiv:2101.04187.Bibcode:2021AJ....161..148W.doi:10.3847/1538-3881/abdb2d.S2CID 231583118.
  142. ^abcWang 王, J. J. 劲飞; Vigan, A.; Lacour, S.; Nowak, M.; Stolker, T.; De Rosa, R. J.; Ginzburg, S.; Gao, P.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Bauböck, M.; Benisty, M.; Berger, J. P.; Beust, H. (2021-03-01)."Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗".The Astronomical Journal.161 (3): 148.arXiv:2101.04187.Bibcode:2021AJ....161..148W.doi:10.3847/1538-3881/abdb2d.ISSN 0004-6256.
  143. ^Benisty, Myriam; Bae, Jaehan; Facchini, Stefano; Keppler, Miriam; Teague, Richard; Isella, Andrea; Kurtovic, Nicolas T.; Pérez, Laura M.; Sierra, Anibal; Andrews, Sean M.; Carpenter, John; Czekala, Ian; Dominik, Carsten; Henning, Thomas; Menard, Francois (2021-07-01)."A Circumplanetary Disk around PDS70c".The Astrophysical Journal Letters.916 (1): L2.arXiv:2108.07123.Bibcode:2021ApJ...916L...2B.doi:10.3847/2041-8213/ac0f83.ISSN 2041-8205.
  144. ^Leonardi, P.; Nascimbeni, V.; Granata, V.; Malavolta, L.; Borsato, L.; Biazzo, K.; Lanza, A. F.; Desidera, S.; Piotto, G.; Nardiello, D.; Damasso, M.; Cunial, A.; Bedin, L. R. (June 2024)."TASTE: V. A new ground-based investigation of orbital decay in the ultra-hot Jupiter WASP-12b".Astronomy & Astrophysics.686: A84.arXiv:2402.12120.Bibcode:2024A&A...686A..84L.doi:10.1051/0004-6361/202348363.ISSN 0004-6361.
  145. ^Collins, Karen A; Kielkopf, John F; Stassun, Keivan G (2017)."Transit Timing Variation Measurements of WASP-12b and Qatar-1b: No Evidence for Additional Planets".The Astronomical Journal.153 (2): 78.arXiv:1512.00464.Bibcode:2017AJ....153...78C.doi:10.3847/1538-3881/153/2/78.S2CID 55191644.
  146. ^Li, Shu-lin; Miller, N.; Lin, Douglas N. C. & Fortney, Jonathan J. (2010). "WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation".Nature.463 (7284):1054–1056.arXiv:1002.4608.Bibcode:2010Natur.463.1054L.doi:10.1038/nature08715.PMID 20182506.S2CID 4414948.
  147. ^Hubble Finds a Star Eating a Planet nasa.gov. 2010-05-20. Retrieved on 2010-12-10.
  148. ^waspplanets (2019-11-26)."The orbit of WASP-12b is decaying".WASP Planets. Retrieved2020-01-01.
  149. ^Wong, Ian; Shporer, Avi; Vissapragada, Shreyas; Greklek-McKeon, Michael; Knutson, Heather A.; Winn, Joshua N.; Benneke, Björn (20 January 2022)."TESS Revisits WASP-12: Updated Orbital Decay Rate and Constraints on Atmospheric Variability".The Astronomical Journal.163 (4): 175.arXiv:2201.08370.Bibcode:2022AJ....163..175W.doi:10.3847/1538-3881/ac5680.S2CID 246063389.
  150. ^Российские астрономы впервые открыли луну возле экзопланеты (in Russian) - "Studying of a curve of change of shine of WASP-12b has brought to the Russian astronomers unusual result: regular splashes were found out.<...> Though stains on a star surface also can cause similar changes of shine, observable splashes are very similar on duration, a profile and amplitude that testifies for benefit of exomoon existence."
  151. ^"First confirmed image of newborn planet caught with ESO's VLT - Spectrum reveals cloudy atmosphere".EurekAlert!. 2 July 2018. Retrieved2 July 2018.
  152. ^Keppler, M; et al. (2018). "Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70".Astronomy & Astrophysics.617: A44.arXiv:1806.11568.Bibcode:2018A&A...617A..44K.doi:10.1051/0004-6361/201832957.S2CID 49562730.
  153. ^Snellen; Koppenhoefer, J.; Van Der Burg, R. F. J.; Dreizler, S.; Greiner, J.; De Hoon, M. D. J.; Husser, T. O.; Krühler, T.; Saglia, R. P.; Vuijsje, F. N. (2009)."OGLE2-TR-L9b: an exoplanet transiting a rapidly rotating F3 star"(PDF).Astronomy and Astrophysics.497 (2):545–550.arXiv:0812.0599.Bibcode:2009A&A...497..545S.doi:10.1051/0004-6361/200810917.S2CID 15639369.
  154. ^ab"Planet CFHTWIR-Oph 98 b".Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved2024-08-15.
  155. ^abcdefFontanive, Clémence; Allers, Katelyn N.; Pantoja, Blake; Biller, Beth; Dubber, Sophie; Zhang, Zhoujian; Dupuy, Trent; Liu, Michael C.; Albert, Loïc (2020-12-01)."A Wide Planetary-mass Companion to a Young Low-mass Brown Dwarf in Ophiuchus".The Astrophysical Journal Letters.905 (2): L14.arXiv:2011.08871.Bibcode:2020ApJ...905L..14F.doi:10.3847/2041-8213/abcaf8.ISSN 2041-8205.
  156. ^abMartínez, Romy Rodríguez; Gaudi, B. Scott; Rodriguez, Joseph E.; Zhou, George; Labadie-Bartz, Jonathan; Quinn, Samuel N.; Penev, Kaloyan; Tan, Thiam-Guan; Latham, David W.; Paredes, Leonardo A.; Kielkopf, John F.; Addison, Brett; Wright, Duncan J.; Teske, Johanna; Howell, Steve B. (2020-09-01)."KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS*".The Astronomical Journal.160 (3): 111.arXiv:1912.01017.Bibcode:2020AJ....160..111R.doi:10.3847/1538-3881/ab9f2d.ISSN 0004-6256.
  157. ^Lothringer, Joshua D.; Sing, David K.; Rustamkulov, Zafar; Wakeford, Hannah R.; Stevenson, Kevin B.; Nikolov, Nikolay; Lavvas, Panayotis; Spake, Jessica J.; Winch, Autumn T. (2022-04-07). "UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b".Nature.604 (7904):49–52.arXiv:2204.03639.Bibcode:2022Natur.604...49L.doi:10.1038/s41586-022-04453-2.ISSN 0028-0836.PMID 35388193.
  158. ^Damasceno, Y. C.; et al. (2024)."The atmospheric composition of the ultra-hot Jupiter WASP-178 b observed with ESPRESSO".Astronomy & Astrophysics.689. EDP Sciences: A54.arXiv:2406.08348.Bibcode:2024A&A...689A..54D.doi:10.1051/0004-6361/202450119.ISSN 0004-6361.
  159. ^Hellier, Coel; Anderson, D. R.; Barkaoui, K.; Benkhaldoun, Z.; Bouchy, F.; Burdanov, A.; Cameron, A Collier; Delrez, L.; Gillon, M.; Jehin, E.; Nielsen, L. D.; Maxted, P F L.; Pepe, F.; Pollacco, D.; Pozuelos, F. J.; Queloz, D.; Ségransan, D.; Smalley, B.; Triaud, A H M J.; Turner, O. D.; Udry, S.; West, R. G. (2019)."WASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b".Monthly Notices of the Royal Astronomical Society.490:1479–1487.arXiv:1907.11667.doi:10.1093/mnras/stz2713.
  160. ^abcŠubjak, Ján; Latham, David W.; Quinn, Samuel N.; Berlind, Perry; Calkins, Michael L.; Esquerdo, Gilbert A.; Brahm, Rafael; Guenther, Eike; Janík, Jan (2024-03-18). "Evolution of BD-14 3065b (TOI-4987b) from giant planet to brown dwarf as possible evidence of deuterium burning at old stellar ages".Astronomy & Astrophysics.688: A120.arXiv:2403.12311.Bibcode:2024A&A...688A.120S.doi:10.1051/0004-6361/202349028.
  161. ^abcdHowell, Steve B.; Scott, Nicholas J.; Matson, Rachel A.; Horch, Elliott P.; Stephens, Andrew (2019-09-01)."High-resolution Imaging Transit Photometry of Kepler-13AB".The Astronomical Journal.158 (3): 113.Bibcode:2019AJ....158..113H.doi:10.3847/1538-3881/ab2f7b.ISSN 0004-6256.
  162. ^abEsteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray (2015)."Changing Phases of Alien Worlds: Probing Atmospheres Of Kepler planets with High-Precision Photometry".The Astrophysical Journal.804 (2) 150.arXiv:1407.2245.Bibcode:2015ApJ...804..150E.doi:10.1088/0004-637X/804/2/150.
  163. ^abBorucki, William J.; et al. (2011)."Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data".The Astrophysical Journal.736 (1) 19.arXiv:1102.0541.Bibcode:2011ApJ...736...19B.doi:10.1088/0004-637X/736/1/19.
  164. ^Gaudi, B. Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L. N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; d'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; et al. (2017). "A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host".Nature.546 (7659):514–518.arXiv:1706.06723.Bibcode:2017Natur.546..514G.doi:10.1038/nature22392.PMID 28582774.S2CID 205256410.
  165. ^Pai Asnodkar, Anusha; Wang 王, Ji 吉; Gaudi, B. Scott; Cauley, P. Wilson; Eastman, Jason D.; Ilyin, Ilya; Strassmeier, Klaus; Beatty, Thomas (2022-02-01)."KELT-9 as an Eclipsing Double-lined Spectroscopic Binary: A Unique and Self-consistent Solution to the System".The Astronomical Journal.163 (2): 40.arXiv:2110.15275.Bibcode:2022AJ....163...40P.doi:10.3847/1538-3881/ac32c7.ISSN 0004-6256.
  166. ^Gaudi, B. Scott; et al. (5 June 2017)."A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host"(pdf).Nature.546 (7659):514–518.arXiv:1706.06723.Bibcode:2017Natur.546..514G.doi:10.1038/nature22392.ISSN 1476-4687.PMID 28582774.S2CID 205256410. Retrieved2017-06-06.
  167. ^Borsato, N. W.; Hoeijmakers, H. J.; Prinoth, B.; Thorsbro, B.; Forsberg, R.; Kitzmann, D.; Jones, K.; Heng, K. (2023). "The Mantis Network".Astronomy & Astrophysics.673: A158.arXiv:2304.04285.doi:10.1051/0004-6361/202245121.
  168. ^Cabot, Samuel H. C.; Bello-Arufe, Aaron; Mendonça, João M.; Tronsgaard, René; Wong, Ian; Zhou, George; Buchhave, Lars A.; Fischer, Debra A.; Stassun, Keivan G.; Antoci, Victoria; Baker, David; Belinski, Alexander A.; Benneke, Björn; Bouma, Luke G.; Christiansen, Jessie L. (2021-11-01)."TOI-1518b: A Misaligned Ultra-hot Jupiter with Iron in Its Atmosphere".The Astronomical Journal.162 (5): 218.arXiv:2108.11403.Bibcode:2021AJ....162..218C.doi:10.3847/1538-3881/ac1ba3.ISSN 0004-6256.
  169. ^A., Simonnin; V., Parmentier; J.P., Wardenier; G., Chauvin; A., Chiavassa; M., N'Diaye; X., Tan; N., Heidari; B., Prinoth; J., Bean; G., H'ebrard; M., Line; D., Kitzmann; D., Kasper; S., Pelletier; J.V., Seidel; A., Seifhart; B., Benneke; X., Bonfils; M., Brogi; J-M., Désert; S., Gandhi; E.K.H., Hammond; C., Moutou; P., Palma-Bifani; L., Pino; E., Rauscher; M., Weiner Mansfield; J., Serrano Bell; P., Smith (2025-04-08)."Time-resolved absorption of six chemical species with MAROON-X points to a strong drag in the ultra-hot Jupiter TOI-1518 b".Astronomy & Astrophysics.698: A314.arXiv:2412.01472.Bibcode:2025A&A...698A.314S.doi:10.1051/0004-6361/202453241.
  170. ^abcZhou, G.; Huang, C. X.; Bakos, G. á.; Hartman, J. D.; Latham, David W.; Quinn, S. N.; Collins, K. A.; Winn, J. N.; Wong, I.; Kovács, G.; Csubry, Z.; Bhatti, W.; Penev, K.; Bieryla, A.; Esquerdo, G. A. (2019-10-01)."Two New HATNet Hot Jupiters around A Stars and the First Glimpse at the Occurrence Rate of Hot Jupiters from TESS ∗".The Astronomical Journal.158 (4): 141.arXiv:1906.00462.Bibcode:2019AJ....158..141Z.doi:10.3847/1538-3881/ab36b5.ISSN 0004-6256.
  171. ^abBento, J; Schmidt, B; Hartman, J. D; Bakos, G. Á; Ciceri, S; Brahm, R; Bayliss, D; Espinoza, N; Zhou, G; Rabus, M; Bhatti, W; Penev, K; Csubry, Z; Jordán, A; Mancini, L; Henning, T; De Val-Borro, M; Tinney, C. G; Wright, D. J; Durkan, S; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P (2017)."HATS-22b, HATS-23b and HATS-24b: Three new transiting super-Jupiters from the HATSouth project".Monthly Notices of the Royal Astronomical Society.468 (1):835–848.arXiv:1607.00688.Bibcode:2017MNRAS.468..835B.doi:10.1093/mnras/stx500.S2CID 119228961.
  172. ^abFulton, Benjamin J; Collins, Karen A; Gaudi, B. Scott; Stassun, Keivan G; Pepper, Joshua; Beatty, Thomas G; Siverd, Robert J; Penev, Kaloyan; Howard, Andrew W; Baranec, Christoph; Corfini, Giorgio; Eastman, Jason D; Gregorio, Joao; Law, Nicholas M; Lund, Michael B; Oberst, Thomas E; Penny, Matthew T; Riddle, Reed; Rodriguez, Joseph E; Stevens, Daniel J; Zambelli, Roberto; Ziegler, Carl; Bieryla, Allyson; d'Ago, Giuseppe; Depoy, Darren L; Jensen, Eric L. N; Kielkopf, John F; Latham, David W; Manner, Mark; et al. (2015). "KELT-8b: A Highly Inflated Transiting Hot Jupiter and a New Technique for Extracting High-precision Radial Velocities from Noisy Spectra".The Astrophysical Journal.810 (1): 30.arXiv:1505.06738.Bibcode:2015ApJ...810...30F.doi:10.1088/0004-637X/810/1/30.S2CID 17747458.
  173. ^abWang, Weilong; Gu, Shenghong; Wang, Xiaobin; Sun, Leilei; Lee, Byeong-Cheol; Kwok, Chi-Tai; Hui, Ho-Keung; Dou, Jiangpei; Xiang, Yue; Cao, Dongtao; Xu, Fukun (2025-06-02)."Observations and Studies on the Transiting Systems HAT-P-36, XO-2 and WASP-76".The Astronomical Journal.169 (6): 342.Bibcode:2025AJ....169..342W.doi:10.3847/1538-3881/add1de.ISSN 0004-6256.
  174. ^abcdefSaha, Suman (August 2023)."Precise Transit Photometry Using TESS: Updated Physical Properties for 28 Exoplanets around Bright Stars".The Astrophysical Journal Supplement Series.268 (1): 2.arXiv:2306.02951.Bibcode:2023ApJS..268....2S.doi:10.3847/1538-4365/acdb6b.ISSN 0067-0049.
  175. ^European Space Agency (April 5, 2024)."Astronomers detect potential 'glory effect' on a hellish distant world for the first time".phys.org. Retrieved2024-04-07.
  176. ^Strickland, Ashley (19 April 2024)."Scientists spot 'glory effect' on a world beyond our solar system for the first time".CNN.Archived from the original on 19 April 2024. Retrieved20 April 2024.
  177. ^Seidel, J.V.; Ehrenreich, D.; Wyttenbach, A.; Allart, R.; Lendl, M.; Pino, L.; Bourrier, V.; Cegla, H.M.; Lovis, C.; Barrado, D.; Bayliss, D.; Astudillo-Defru, N.; Deline, A.; Fisher, C.; Heng, K.; Joseph, R.; Lavie, B.; Melo, C.; Pepe, F.; Segransan, D.; Udry, S. (27 March 2019). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)★ II. A broadened sodium feature on the ultra-hot giant WASP-76b".Astronomy & Astrophysics.623: A166.arXiv:1902.00001.Bibcode:2019A&A...623A.166S.doi:10.1051/0004-6361/201834776.S2CID 119348582.
  178. ^Kirk, Helen; Myers, Philip C. (February 2011)."Young Stellar Groups and Their Most Massive Stars".The Astrophysical Journal.727 (2): 64.arXiv:1011.1416.Bibcode:2011ApJ...727...64K.doi:10.1088/0004-637X/727/2/64.ISSN 0004-637X.
  179. ^Canty, J. I.; Lucas, P. W.; Roche, P. F.; Pinfield, D. J. (November 2013)."Towards precise ages and masses of Free Floating Planetary Mass Brown Dwarfs".Monthly Notices of the Royal Astronomical Society.435 (3):2650–2664.arXiv:1308.1296.Bibcode:2013MNRAS.435.2650C.doi:10.1093/mnras/stt1477.ISSN 0035-8711.
  180. ^Pascucci, I.; Testi, L.; Herczeg, G. J.; Long, F.; Manara, C. F.; Hendler, N.; Mulders, G. D.; Krijt, S.; Ciesla, F.; Henning, Th; Mohanty, S.; Drabek-Maunder, E.; Apai, D.; Szűcs, L.; Sacco, G. (November 2016)."A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation".The Astrophysical Journal.831 (2): 125.arXiv:1608.03621.Bibcode:2016ApJ...831..125P.doi:10.3847/0004-637X/831/2/125.ISSN 0004-637X.
  181. ^Akeson, Rachel L.; Jensen, Eric L. N.; Carpenter, John; Ricci, Luca; Laos, Emily; Nogueira, Natasha F.; Suen-Lewis, Emma M. (February 2019)."Resolved Young Binary Systems and Their Disks".The Astrophysical Journal.872 (2): 158.arXiv:1901.05029.Bibcode:2019ApJ...872..158A.doi:10.3847/1538-4357/aaff6a.ISSN 0004-637X.
  182. ^abcdefghijklmnopStassun, Keivan G.; Collins, Karen A.; Gaudi, B. Scott (2017-03-01)."Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes".The Astronomical Journal.153 (3): 136.arXiv:1609.04389.Bibcode:2017AJ....153..136S.doi:10.3847/1538-3881/aa5df3.ISSN 0004-6256.
  183. ^abcMandushev, Georgi; O'Donovan, Francis T.; Charbonneau, David; Torres, Guillermo; Latham, David W.; Bakos, Gáspár Á.; Dunham, Edward W.; Sozzetti, Alessandro; Fernández, José M.; Esquerdo, Gilbert A.; Everett, Mark E.; Brown, Timothy M.; Rabus, Markus; Belmonte, Juan A.; Hillenbrand, Lynne A. (2007-10-01)."TrES-4: A Transiting Hot Jupiter of Very Low Density".The Astrophysical Journal.667 (2):L195 –L198.arXiv:0708.0834.Bibcode:2007ApJ...667L.195M.doi:10.1086/522115.ISSN 0004-637X.
  184. ^abPetrus, S.; Bonnefoy, M.; Chauvin, G.; Babusiaux, C.; Delorme, P.; Lagrange, A.-M.; Florent, N.; Bayo, A.; Janson, M.; Biller, B.; Manjavacas, E.; Marleau, G.-D.; Kopytova, T. (January 2020)."A new take on the low-mass brown dwarf companions on wide orbits in Upper-Scorpius".Astronomy & Astrophysics.633: A124.arXiv:1910.00347.Bibcode:2020A&A...633A.124P.doi:10.1051/0004-6361/201935732.ISSN 0004-6361.
  185. ^Lafrenière, D.; Jayawardhana, R. (2011). "DISCOVERY OF A ~23 MJup BROWN DWARF ORBITING ~700 AU FROM THE MASSIVE STAR HIP 78530 IN UPPER SCORPIUS".Astrophysical Journal.730 (1): 42.arXiv:1101.4666.Bibcode:2011ApJ...730...42L.doi:10.1088/0004-637x/730/1/42.S2CID 119113383.
  186. ^abcdefghiHartman, J. D; Bakos, G. Á; Torres, G; Latham, D. W; Kovács, G; Béky, B; Quinn, S. N; Mazeh, T; Shporer, A; Marcy, G. W; Howard, A. W; Fischer, D. A; Johnson, J. A; Esquerdo, G. A; Noyes, R. W; Sasselov, D. D; Stefanik, R. P; Fernandez, J. M; Szklenár, T; Lázár, J; Papp, I; Sári, P (2011). "HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-Jitter Stars".The Astrophysical Journal.742 (1): 59.arXiv:1106.1212.Bibcode:2011ApJ...742...59H.doi:10.1088/0004-637X/742/1/59.S2CID 118590713.
  187. ^abWang, Yong-Hao; et al. (2017)."Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b".The Astronomical Journal.154 (2). 49.arXiv:1705.08605.Bibcode:2017AJ....154...49W.doi:10.3847/1538-3881/aa7519.S2CID 119245125.
  188. ^abPineda, J. Sebastian; Youngblood, Allison; France, Kevin (2021-09-01)."The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars".The Astrophysical Journal.918 (1): 40.arXiv:2106.07656.Bibcode:2021ApJ...918...40P.doi:10.3847/1538-4357/ac0aea.ISSN 0004-637X.
  189. ^González Hernández, J. I.; et al. (October 2024). "A sub-Earth-mass planet orbiting Barnard's star".Astronomy & Astrophysics.690: A79.arXiv:2410.00569.Bibcode:2024A&A...690A..79G.doi:10.1051/0004-6361/202451311. A79.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  190. ^Basant, Ritvik; Luque, Rafael; et al. (March 2025)."Four Sub-Earth Planets Orbiting Barnard's Star from MAROON-X and ESPRESSO".The Astrophysical Journal Letters.982 (1): L1.arXiv:2503.08095.Bibcode:2025ApJ...982L...1B.doi:10.3847/2041-8213/adb8d5.
  191. ^Ignas A. G. Snellen; Ernst J. W. de Mooij; Simon Albrecht (2009-05-28). "The changing phases of extrasolar planet CoRoT-1b".Nature.459 (7246):543–545.arXiv:0904.1208.Bibcode:2009Natur.459..543S.doi:10.1038/nature08045.PMID 19478779.S2CID 4347612.
  192. ^abDeitrick, Russell; Barnes, Rory; McArthur, Barbara; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G. Fritz (2014-12-18). "The 3-dimensional architecture of the Upsilon Andromedae planetary system".The Astrophysical Journal.798 (1): 46.arXiv:1411.1059.Bibcode:2015ApJ...798...46D.doi:10.1088/0004-637X/798/1/46.ISSN 1538-4357.
  193. ^abPiskorz, Danielle; Benneke, Björn; Crockett, Nathan R.; Lockwood, Alexandra C.; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Carr, John S.; Johnson, John A. (2017-08-01)."Detection of Water Vapor in the Thermal Spectrum of the Non-transiting Hot Jupiter Upsilon Andromedae b".The Astronomical Journal.154 (2): 78.arXiv:1707.01534.Bibcode:2017AJ....154...78P.doi:10.3847/1538-3881/aa7dd8.ISSN 0004-6256.
  194. ^Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets".The Astrophysical Journal.646 (1):505–522.arXiv:astro-ph/0607493.Bibcode:2006ApJ...646..505B.doi:10.1086/504701.S2CID 119067572. (web version)
  195. ^Turner, O. D.; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Evans, D. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B. (2016-06-01)."WASP-120 b, WASP-122 b, and WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey".Publications of the Astronomical Society of the Pacific.128 (964) 064401.arXiv:1509.02210.Bibcode:2016PASP..128f4401T.doi:10.1088/1538-3873/128/964/064401.hdl:10023/10795.ISSN 0004-6280.
  196. ^abStevens, Daniel J; Collins, Karen A; Gaudi, B. Scott; Beatty, Thomas G; Siverd, Robert J; Bieryla, Allyson; Fulton, Benjamin J; Crepp, Justin R; Gonzales, Erica J; Coker, Carl T; Penev, Kaloyan; Stassun, Keivan G; Jensen, Eric L. N; Howard, Andrew W; Latham, David W; Rodriguez, Joseph E; Zambelli, Roberto; Bozza, Valerio; Reed, Phillip A; Gregorio, Joao; Buchhave, Lars A; Penny, Matthew T; Pepper, Joshua; Berlind, Perry; Calchi Novati, Sebastiano; Calkins, Michael L; d'Ago, Giuseppe; Eastman, Jason D; Bayliss, D; et al. (2017)."KELT-12b: A P ˜ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star".The Astronomical Journal.153 (4): 178.arXiv:1608.04714.Bibcode:2017AJ....153..178S.doi:10.3847/1538-3881/aa5ffb.S2CID 27321568.
  197. ^abBourrier, V.; Ehrenreich, D.; et al. (March 2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). III. Atmospheric structure of the misaligned ultra-hot Jupiter WASP-121b".Astronomy & Astrophysics.635: A205.arXiv:2001.06836.Bibcode:2020A&A...635A.205B.doi:10.1051/0004-6361/201936640.
  198. ^Hoeijmakers, H.J.; Seidel, J.V.; Pino, L.; Kitzmann, D.; Sindel, J.P.; Ehrenreich, D.; Oza, A.V.; Bourrier, V.; Allart, R.; Gebek, A.; Lovis, C.; Yurchenko, S.N.; Astudillo-Defru, N.; Bayliss, D.; Cegla, H.; Lavie, B.; Lendl, M.; Melo, C.; Murgas, F.; Nascimbeni, V.; Pepe, F.; Segransan, D.; Udry, S.; Wyttenbach, A.; Heng, K. (18 September 2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) - IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b".Astronomy & Astrophysics.641: A123.arXiv:2006.11308.Bibcode:2020A&A...641A.123H.doi:10.1051/0004-6361/202038365.S2CID 219966241.
  199. ^abRodriguez, Joseph E.; Quinn, Samuel N.; Zhou, George; Vanderburg, Andrew; Nielsen, Louise D.; Wittenmyer, Robert A.; Brahm, Rafael; Reed, Phillip A.; Huang, Chelsea X.; Vach, Sydney; Ciardi, David R.; Oelkers, Ryan J.; Stassun, Keivan G.; Hellier, Coel; Gaudi, B. Scott (2021-04-01)."TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images".The Astronomical Journal.161 (4): 194.arXiv:2101.01726.Bibcode:2021AJ....161..194R.doi:10.3847/1538-3881/abe38a.ISSN 0004-6256.
  200. ^Knudstrup, E.; Albrecht, S. H.; Gandolfi, D.; Marcussen, M. L.; Goffo, E.; Serrano, L. M.; Dai, F.; Redfield, S.; Hirano, T.; Csizmadia, Sz.; Deeg, H. J.; Fridlund, M.; Lam, K. W. F.; Livingston, J. H.; Luque, R.; Narita, N.; Palle, E.; Persson, C. M.; Van Eylen, V.; Vincent Van Eylen (2023). "A puffy polar planet. The low density, hot Jupiter TOI-640 b is on a polar orbit".Astronomy & Astrophysics.671.arXiv:2302.01702.Bibcode:2023A&A...671A.164K.doi:10.1051/0004-6361/202245301.S2CID 256537549.
  201. ^abcdefghijkSaha, Suman (September 3, 2024)."Precise Transit Photometry Using TESS II: Revisiting 28 Additional Transiting Systems With Updated Physical Properties".The Astrophysical Journal Supplement Series.274 (1): 13.arXiv:2407.20846v1.Bibcode:2024ApJS..274...13S.doi:10.3847/1538-4365/ad6a60.
  202. ^abGrunblatt, Samuel K.; Saunders, Nicholas; Sun, Meng; Chontos, Ashley; Soares-Furtado, Melinda; Eisner, Nora; Pereira, Filipe; Komacek, Thaddeus; Huber, Daniel; Collins, Karen; Wang, Gavin; Stockdale, Chris; Quinn, Samuel N.; Tronsgaard, Rene; Zhou, George (2022-03-01)."TESS Giants Transiting Giants. II. The Hottest Jupiters Orbiting Evolved Stars".The Astronomical Journal.163 (3): 120.arXiv:2201.04140.Bibcode:2022AJ....163..120G.doi:10.3847/1538-3881/ac4972.ISSN 0004-6256.
  203. ^abBurgasser, Adam J.; Lopez, Mike A.; Mamajek, Eric E.; Gagné, Jonathan; Faherty, Jacqueline K.; Tallis, Melisa; Choban, Caleb; Tamiya, Tomoki; Escala, Ivanna; Aganze, Christian (2016-03-20)."THE FIRST BROWN DWARF/PLANETARY-MASS OBJECT IN THE 32 ORIONIS GROUP*".The Astrophysical Journal.820 (1): 32.arXiv:1602.03022.Bibcode:2016ApJ...820...32B.doi:10.3847/0004-637X/820/1/32.ISSN 0004-637X.
  204. ^abEspinoza, N; Bayliss, D; Hartman, J. D; Bakos, G. Á; Jordán, A; Zhou, G; Mancini, L; Brahm, R; Ciceri, S; Bhatti, W; Csubry, Z; Rabus, M; Penev, K; Bento, J; De Val-Borro, M; Henning, T; Schmidt, B; Suc, V; Wright, D. J; Tinney, C. G; Tan, T. G; Noyes, R (2016)."HATS-25b through HATS-30b: A Half-dozen New Inflated Transiting Hot Jupiters from the HATSouth Survey".The Astronomical Journal.152 (4): 108.arXiv:1606.00023.Bibcode:2016AJ....152..108E.doi:10.3847/0004-6256/152/4/108.S2CID 119104881.
  205. ^abcBerger, Travis A.; Huber, Daniel; Gaidos, Eric; van Saders, Jennifer L. (2018-10-01)."Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2".The Astrophysical Journal.866 (2): 99.arXiv:1805.00231.Bibcode:2018ApJ...866...99B.doi:10.3847/1538-4357/aada83.ISSN 0004-637X.
  206. ^Fortney, Jonathan J; Demory, Brice-Olivier; Desert, Jean-Michel; Rowe, Jason; Marcy, Geoffrey W; Isaacson, Howard; Buchhave, Lars A; Ciardi, David; Gautier, Thomas N; Batalha, Natalie M; Caldwell, Douglas A; Bryson, Stephen T; Nutzman, Philip; Jenkins, Jon M; Howard, Andrew; Charbonneau, David; Knutson, Heather A; Howell, Steve B; Everett, Mark; Fressin, Francois; Deming, Drake; Borucki, William J; Brown, Timothy M; Ford, Eric B; Gilliland, Ronald L; Latham, David W; Miller, Neil; Seager, Sara; Fischer, Debra A; et al. (2011). "Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier".The Astrophysical Journal Supplement Series.197 (1): 9.arXiv:1109.1611.Bibcode:2011ApJS..197....9F.doi:10.1088/0067-0049/197/1/9.S2CID 688362.
  207. ^Hartman, J. D; Bakos, G. Á; Bhatti, W; Penev, K; Bieryla, A; Latham, D. W; Kovács, G; Torres, G; Csubry, Z; De Val-Borro, M; Buchhave, L; Kovács, T; Quinn, S; Howard, A. W; Isaacson, H; Fulton, B. J; Everett, M. E; Esquerdo, G; Béky, B; Szklenar, T; Falco, E; Santerne, A; Boisse, I; Hébrard, G; Burrows, A; Lázár, J; Papp, I; Sári, P (2016)."HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets".The Astronomical Journal.152 (6): 182.arXiv:1609.02767.Bibcode:2016AJ....152..182H.doi:10.3847/0004-6256/152/6/182.S2CID 118546031.
  208. ^abAlvarado-Montes, Jaime A; García-Carmona, Carolina (2019-07-01)."Orbital decay of short-period gas giants under evolving tides".Monthly Notices of the Royal Astronomical Society.486 (3):3963–3974.arXiv:1904.07596.doi:10.1093/mnras/stz1081.ISSN 0035-8711.
  209. ^Grant, David; Lewis, Nikole K.; Wakeford, Hannah R.; Batalha, Natasha E.; Glidden, Ana; Goyal, Jayesh; Mullens, Elijah; MacDonald, Ryan J.; May, Erin M.; Seager, Sara; Stevenson, Kevin B.; Valenti, Jeff A.; Visscher, Channon; Alderson, Lili; Allen, Natalie H. (2023-10-01)."JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b".The Astrophysical Journal Letters.956 (2): L32.arXiv:2310.08637.Bibcode:2023ApJ...956L..32G.doi:10.3847/2041-8213/acfc3b.ISSN 2041-8205.
  210. ^abcdefghijklBonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R. (2017-06-01)."The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets".Astronomy and Astrophysics.602: A107.arXiv:1704.00373.Bibcode:2017A&A...602A.107B.doi:10.1051/0004-6361/201629882.hdl:2434/512656.ISSN 0004-6361.
  211. ^abcdeAnderson, D. R.; et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit".The Astrophysical Journal.709 (1):159–167.arXiv:0908.1553.Bibcode:2010ApJ...709..159A.doi:10.1088/0004-637X/709/1/159.S2CID 53628741.
  212. ^ab"Composition of cloud particles - hot gas giant exoplanet WASP-17b". October 20, 2023.
  213. ^abKaufman, Rachel (17 August 2009).""Backward" Planet Has Density of Foam Coffee Cups".National Geographic.National Geographic Society. Archived fromthe original on August 20, 2009. Retrieved6 February 2011.
  214. ^Kawai, Yugo; et al. (20 December 2023)."The flipped orbit of KELT-19Ab inferred from the symmetric TESS transit light curves".Monthly Notices of the Royal Astronomical Society.528 (1):270–280.arXiv:2312.11815.doi:10.1093/mnras/stad3915.
  215. ^abEastman, Jason D; Beatty, Thomas G; Siverd, Robert J; Antognini, Joseph M. O; Penny, Matthew T; Gonzales, Erica J; Crepp, Justin R; Howard, Andrew W; Avril, Ryan L; Bieryla, Allyson; Collins, Karen; Fulton, Benjamin J; Ge, Jian; Gregorio, Joao; Ma, Bo; Mellon, Samuel N; Oberst, Thomas E; Wang, Ji; Gaudi, B. Scott; Pepper, Joshua; Stassun, Keivan G; Buchhave, Lars A; Jensen, Eric L. N; Latham, David W; Berlind, Perry; Calkins, Michael L; Cargile, Phillip A; Colón, Knicole D; Dhital, Saurav; et al. (2016)."KELT-4Ab: An Inflated Hot Jupiter Transiting the Bright (V ˜ 10) Component of a Hierarchical Triple".The Astronomical Journal.151 (2): 45.arXiv:1510.00015.Bibcode:2016AJ....151...45E.doi:10.3847/0004-6256/151/2/45.S2CID 17613522.
  216. ^Bob Yirka (1 April 2016)."Planet with triple-star system found".Phys.org. Retrieved3 April 2016.
  217. ^Nola Taylor Redd (31 March 2016)."New Alien Planet Boasts Rare Triple Suns".Scientific American. Retrieved2 April 2016.
  218. ^abcdBakos, G. á.; Hartman, J. D.; Bhatti, W.; Csubry, Z.; Penev, K.; Bieryla, A.; Latham, D. W.; Quinn, S.; Buchhave, L. A.; Kovács, G.; Torres, Guillermo; Noyes, R. W.; Falco, E.; Béky, Bence; Szklenár, T. (2021-07-01)."HAT-P-58b–HAT-P-64b: Seven Planets Transiting Bright Stars*".The Astronomical Journal.162 (1): 7.arXiv:2007.05528.Bibcode:2021AJ....162....7B.doi:10.3847/1538-3881/abf637.ISSN 0004-6256.
  219. ^abcdefSmalley, B; Anderson, D. R; Collier-Cameron, A; Doyle, A. P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S; West, R. G (November 2012). "WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus".Astronomy & Astrophysics.547: A61.arXiv:1206.1177.Bibcode:2012A&A...547A..61S.doi:10.1051/0004-6361/201219731.S2CID 119233646.
  220. ^Valsecchi, Francesca (2014). "Planets on the Edge".The Astrophysical Journal.787 (1): L9.arXiv:1403.1870.Bibcode:2014ApJ...787L...9V.doi:10.1088/2041-8205/787/1/L9.S2CID 118451863.
  221. ^abAlsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Pyrzas, Stylianos; Mislis, Dimitris; Esquerdo, Gilbert A.; Esamdin, Ali; Liu, Jinzhong; Ma, Lu; Bretton, Marc; Pallé, Enric; Murgas, Felipe; Vilchez, Nicolas P. E.; Morton, Timothy D. (2019-02-01)."Qatar Exoplanet Survey: Qatar-7b—A Very Hot Jupiter Orbiting a Metal-rich F-Star".The Astronomical Journal.157 (2): 74.arXiv:1812.05601.Bibcode:2019AJ....157...74A.doi:10.3847/1538-3881/aaf80a.ISSN 0004-6256.
  222. ^abPsaridi, Angelica; Bouchy, François; Lendl, Monika; Akinsanmi, Babatunde; Stassun, Keivan G.; Smalley, Barry; Armstrong, David J.; Howard, Saburo; Ulmer-Moll, Solène; Grieves, Nolan; Barkaoui, Khalid; Rodriguez, Joseph E.; Bryant, Edward M.; Suárez, Olga; Guillot, Tristan (2023-07-01)."Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS: TOI-615b, TOI-622b, and TOI-2641b".Astronomy and Astrophysics.675: A39.arXiv:2303.15080.Bibcode:2023A&A...675A..39P.doi:10.1051/0004-6361/202346406.ISSN 0004-6361.
  223. ^abSebastian, D.; Guenther, E. W.; Deleuil, M.; Dorsch, M.; Heber, U.; Heuser, C.; Gandolfi, D.; Grziwa, S.; Deeg, H. J.; Alonso, R.; Bouchy, F.; Csizmadia, Sz; Cusano, F.; Fridlund, M.; Geier, S.; Irrgang, A.; Korth, J.; Nespral, D.; Rauer, H.; Tal-Or, L. (2022)."Sub-stellar companions of intermediate-mass stars with CoRoT: CoRoT–34b, CoRoT–35b, and CoRoT–36b".Monthly Notices of the Royal Astronomical Society.516:636–655.arXiv:2207.08742.doi:10.1093/mnras/stac2131.
  224. ^abLafrenière, David; Jayawardhana, Ray; van Kerkwijk, Marten H. (2008-12-20)."Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog".The Astrophysical Journal.689 (2):L153 –L156.arXiv:0809.1424.Bibcode:2008ApJ...689L.153L.doi:10.1086/595870.ISSN 0004-637X.
  225. ^abcWu, Ya-Lin; Close, Laird M.; Males, Jared R.; Barman, Travis S.; Morzinski, Katie M.; Follette, Katherine B.; Bailey, Vanessa P.; Rodigas, Timothy J.; Hinz, Philip; Puglisi, Alfio; Xompero, Marco; Briguglio, Runa (2015-06-30)."New Extinction and Mass Estimates of the Low-Mass Companion 1Rxs 1609 B with the Magellan Ao System: Evidence of an Inclined Dust Disk".The Astrophysical Journal.807 (1): L13.arXiv:1506.05816.Bibcode:2015ApJ...807L..13W.doi:10.1088/2041-8205/807/1/L13.ISSN 2041-8213.
  226. ^abPecaut, Mark J.; Mamajek, Eric E.; Bubar, Eric J. (2012-02-20)."A Revised Age for Upper Scorpius and the Star Formation History Among the F-Type Members of the Scorpius-Centaurus Ob Association".The Astrophysical Journal.746 (2): 154.arXiv:1112.1695.Bibcode:2012ApJ...746..154P.doi:10.1088/0004-637X/746/2/154.ISSN 0004-637X.
  227. ^abYee, Samuel W.; et al. (2025)."The TESS Grand Unified Hot Jupiter Survey. III. Thirty More Giant Planets".The Astrophysical Journal Supplement Series.280 (1): 30.arXiv:2507.01855.Bibcode:2025ApJS..280...30Y.doi:10.3847/1538-4365/aded0d.
  228. ^abSchulte, Jack; Rodriguez, Joseph E.; Bieryla, Allyson; Quinn, Samuel N.; Collins, Karen A.; Yee, Samuel W.; Nine, Andrew C.; Soares-Furtado, Melinda; Latham, David W. (2024-01-11)."Migration and Evolution of giant ExoPlanets (MEEP) I: Nine Newly Confirmed Hot Jupiters from the TESS Mission".The Astronomical Journal.168 (1): 32.arXiv:2401.05923.Bibcode:2024AJ....168...32S.doi:10.3847/1538-3881/ad4a57.
  229. ^abYee, Samuel W.; Winn, Joshua N.; Hartman, Joel D.; Bouma, Luke G.; Zhou, George; Quinn, Samuel N.; Latham, David W.; Bieryla, Allyson; Rodriguez, Joseph E.; Collins, Karen A.; Alfaro, Owen; Barkaoui, Khalid; Beard, Corey; Belinski, Alexander A.; Benkhaldoun, Zouhair (2023-03-01)."The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets*".The Astrophysical Journal Supplement Series.265 (1): 1.arXiv:2210.15473.Bibcode:2023ApJS..265....1Y.doi:10.3847/1538-4365/aca286.ISSN 0067-0049.
  230. ^Rhodes, Michael D.; Puskullu, Caglar; Budding, Edwin; Banks, Timothy S. (2020). "Exoplanet system Kepler-2 with comparisons to Kepler-1 and 13".Astrophysics and Space Science.365 (4): 77.arXiv:2004.07971.Bibcode:2020Ap&SS.365...77R.doi:10.1007/s10509-020-03789-3.S2CID 215814387.
  231. ^Second backwards planet found, a day after the first
  232. ^Winn, Joshua N.; et al. (2009)."HAT-P-7: A Retrograde or Polar Orbit, and a Third Body".The Astrophysical Journal Letters.703 (2):L99 –L103.arXiv:0908.1672.Bibcode:2009ApJ...703L..99W.doi:10.1088/0004-637X/703/2/L99.
  233. ^Welsh, William F.; et al. (2010)."The Discovery of Ellipsoidal Variations in the Kepler Light Curve of HAT-P-7".The Astrophysical Journal Letters.713 (2):L145 –L149.arXiv:1001.0413.Bibcode:2010ApJ...713L.145W.doi:10.1088/2041-8205/713/2/L145.
  234. ^abAlves, Douglas R.; Jenkins, James S.; Vines, Jose I.; Battley, Matthew P.; Lendl, Monika; Bouchy, François; Nielsen, Louise D.; Gill, Samuel; Moyano, Maximiliano; Anderson, D. R.; Burleigh, Matthew R.; Casewell, Sarah L.; Goad, Michael R.; Hawthorn, Faith; Kendall, Alicia; McCormac, James; Osborn, Ares; Smith, Alexis M. S.; Udry, Stéphane; Wheatley, Peter J.; Saha, Suman; Parc, Léna; Nigioni, Arianna; Apergis, Ioannis; Ramsay, Gavin (2024-11-13)."NGTS-33b: A Young Super-Jupiter Hosted by a Fast Rotating Massive Hot Star".Monthly Notices of the Royal Astronomical Society.536 (2):1538–1554.arXiv:2411.08960.Bibcode:2025MNRAS.536.1538A.doi:10.1093/mnras/stae2582.
  235. ^abLendl, M.; Csizmadia, Sz.; Deline, A.; Fossati, L.; Kitzmann, D.; Heng, K.; Hoyer, S.; Salmon, S.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Queloz, D.; Bonfanti, A.; Brandeker, A. (2020-11-01)."The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS".Astronomy and Astrophysics.643: A94.arXiv:2009.13403.Bibcode:2020A&A...643A..94L.doi:10.1051/0004-6361/202038677.ISSN 0004-6361.
  236. ^abKang, Huiyi; Chen, Guo; Palle, Enric; Murgas, Felipe; Garcia, Nestor Abreu; Leon, Jerome de; Enoc, Gareb; Esparza-Borges, Emma; Fukuda, Izuru (2024-05-29)."Simultaneous multicolour transit photometry of hot Jupiters HAT-P-19b, HAT-P-51b, HAT-P-55b, and HAT-P-65b".Monthly Notices of the Royal Astronomical Society.528 (2):1930–1944.arXiv:2401.03715.doi:10.1093/mnras/stae072.
  237. ^abLivingston, John H.; Crossfield, Ian J. M.; Werner, Michael W.; Gorjian, Varoujan; Petigura, Erik A.; Ciardi, David R.; Dressing, Courtney D.; Fulton, Benjamin J.; Hirano, Teruyuki; Schlieder, Joshua E.; Sinukoff, Evan; Kosiarek, Molly; Akeson, Rachel; Beichman, Charles A.; Benneke, Björn (2019-03-01)."Spitzer Transit Follow-up of Planet Candidates from the K2 Mission".The Astronomical Journal.157 (3): 102.arXiv:1901.05855.Bibcode:2019AJ....157..102L.doi:10.3847/1538-3881/aaff69.ISSN 0004-6256.
  238. ^abVines, Jose I; Jenkins, James S; Anderson, David R; Alves, Douglas R; Moyano, Maximiliano; Acton, Jack S; Apergis, Ioannis; Barkaoui, Khalid; Bayliss, Daniel; Bouchy, Francois; Bryant, Edward M; Burleigh, Matthew R; Casewell, Sarah L; Christiansen, Jessie L; Collins, Karen A (2024-11-28)."NGTS-31b and NGTS-32b: Two Inflated hot Jupiters Orbiting Subgiant Stars".Monthly Notices of the Royal Astronomical Society.536 (3):2011–2024.doi:10.1093/mnras/stae2616.ISSN 0035-8711.
  239. ^abLivingston, John H.; Crossfield, Ian J. M.; Petigura, Erik A.; Gonzales, Erica J.; Ciardi, David R.; Beichman, Charles A.; Christiansen, Jessie L.; Dressing, Courtney D.; Henning, Thomas; Howard, Andrew W.; Isaacson, Howard; Fulton, Benjamin J.; Kosiarek, Molly; Schlieder, Joshua E.; Sinukoff, Evan (2018-12-01)."Sixty Validated Planets from K2 Campaigns 5-8".The Astronomical Journal.156 (6): 277.arXiv:1810.04074.Bibcode:2018AJ....156..277L.doi:10.3847/1538-3881/aae778.ISSN 0004-6256.
  240. ^abKuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R. (2011-04-01)."The Widest-Separation Substellar Companion Candidate to a Binary T Tauri Star".The Astronomical Journal.141 (4): 119.Bibcode:2011AJ....141..119K.doi:10.1088/0004-6256/141/4/119.ISSN 0004-6256.
  241. ^abBowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W. (2014-03-05)."Spectroscopic Confirmation of Young Planetary-Mass Companions on Wide Orbits".The Astrophysical Journal.784 (1): 65.arXiv:1401.7668.Bibcode:2014ApJ...784...65B.doi:10.1088/0004-637X/784/1/65.hdl:2152/34644.ISSN 0004-637X.
  242. ^abcvan Capelleveen, Richelle F.; Ginski, Christian; Kenworthy, Matthew A.; Byrne, Jake; Lawlor, Chloe; McLachlan, Dan; Mamajek, Eric E.; Stolker, Tomas; Benisty, Myriam; Bohn, Alexander J.; Close, Laird M.; Dominik, Carsten; Haffert, Sebastiaan; Landman, Rico; Ma, Jie (2025-08-26)."WIde Separation Planets In Time (WISPIT): A Gap-clearing Planet in a Multi-ringed Disk around the Young Solar-type Star WISPIT 2".The Astrophysical Journal Letters.990 (1): L8.arXiv:2508.19053.Bibcode:2025ApJ...990L...8V.doi:10.3847/2041-8213/adf721.ISSN 2041-8205.
  243. ^abcdClose, Laird M.; van Capelleveen, Richelle F.; Weible, Gabriel; Wagner, Kevin; Haffert, Sebastiaan Y.; Males, Jared R.; Ilyin, Ilya; Kenworthy, Matthew A.; Li, Jialin; Long, Joseph D.; Ertel, Steve; Ginski, Christian; Weinberger, Alycia J.; Follette, Kate; Liberman, Joshua (2025-08-26)."Wide Separation Planets in Time (WISPIT): Discovery of a Gap Hα Protoplanet WISPIT 2b with MagAO-X".The Astrophysical Journal Letters.990 (1): L9.arXiv:2508.19046.Bibcode:2025ApJ...990L...9C.doi:10.3847/2041-8213/adf7a5.ISSN 2041-8205.
  244. ^abBrown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B. (2016)."Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems".Monthly Notices of the Royal Astronomical Society.464 (1):810–839.arXiv:1610.00600.Bibcode:2017MNRAS.464..810B.doi:10.1093/mnras/stw2316.
  245. ^abTriaud, Amaury H. M. J.; Burgasser, Adam J.; Burdanov, Artem; Kunovac Hodžić, Vedad; Alonso, Roi; Bardalez Gagliuffi, Daniella; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Ducrot, Elsa; Hessman, Frederic V. (January 2020). "An Eclipsing Substellar Binary in a Young Triple System discovered by SPECULOOS".Nature Astronomy.4 (7):650–657.arXiv:2001.07175.Bibcode:2020NatAs...4..650T.doi:10.1038/s41550-020-1018-2.S2CID 210839528.
  246. ^abcdBaycroft, Thomas A.; Sairam, Lalitha; Triaud, Amaury H. M. J.; Correia, Alexandre C. M. (2025-04-16)."Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brown dwarfs".Science Advances.11 (16) eadu0627.arXiv:2504.12209.Bibcode:2025SciA...11..627B.doi:10.1126/sciadv.adu0627.PMC 12002110.PMID 40238865.
  247. ^abCalissendorff, Per; Janson, Markus; Asensio-Torres, Rubén; Köhler, Rainer (July 2019). "Spectral characterization of newly detected young substellar binaries with SINFONI".Astronomy & Astrophysics.627: A167.arXiv:1906.05871.Bibcode:2019A&A...627A.167C.doi:10.1051/0004-6361/201935319.ISSN 0004-6361.S2CID 189898015.
  248. ^information@eso.org.""Big surprise": astronomers find planet in perpendicular orbit around pair of stars".www.eso.org. Retrieved2025-04-16.
  249. ^"Scientists discover bizarre double-star system with exoplanet on a sideways orbit (video)".SPACE.com. 16 April 2025. Retrieved17 April 2025.
  250. ^Latham, David W.; Borucki, William J.; Koch, David G.; Brown, Timothy M.; Buchhave, Lars A.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Dunham, Edward W.; Fűrész, Gabor; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B. (2010-04-20)."Kepler-7b: A Transiting Planet With Unusually Low Density".The Astrophysical Journal.713 (2):L140 –L144.arXiv:1001.0190.Bibcode:2010ApJ...713L.140L.doi:10.1088/2041-8205/713/2/L140.ISSN 2041-8205.
  251. ^Latham, David W.; et al. (2010)."Kepler-7b: A Transiting Planet with Unusually Low Density".The Astrophysical Journal Letters.713 (2):L140 –L144.arXiv:1001.0190.Bibcode:2010ApJ...713L.140L.doi:10.1088/2041-8205/713/2/L140.
  252. ^Clavin, Whitney; Johnson, Michele; Cole, Steve (30 September 2013)."NASA Space Telescopes Find Patchy Clouds on Exotic World".NASA. Archived fromthe original on 17 October 2013. Retrieved30 September 2013.
  253. ^Chu, Jennifer (2 October 2013)."Scientists generate first map of clouds on an exoplanet".MIT. Retrieved2 January 2014.
  254. ^Demory, Brice-Olivier; et al. (2013). "Inference of Inhomogeneous Clouds in an Exoplanet Atmosphere".The Astrophysical Journal Letters.776 (2): L25.arXiv:1309.7894.Bibcode:2013ApJ...776L..25D.doi:10.1088/2041-8205/776/2/L25.S2CID 701011.
  255. ^Barros, S. C. C.; Akinsanmi, B.; Boué, G.; Smith, A. M. S.; Laskar, J.; Ulmer-Moll, S.; Lillo-Box, J.; Queloz, D.; Cameron, A. Collier; Sousa, S. G.; Ehrenreich, D.; Hooton, M. J.; Bruno, G.; Demory, B.-O.; Correia, A. C. M. (January 2022)."Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS".Astronomy & Astrophysics.657: A52.arXiv:2201.03328.Bibcode:2022A&A...657A..52B.doi:10.1051/0004-6361/202142196.ISSN 0004-6361.
  256. ^abWinterhalder, T. O.; Kammerer, J.; Lacour, S.; Mérand, A.; Nowak, M.; Stolker, T.; Balmer, W. O.; Marleau, G.-D.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Berger, J.-P.; Beust, H.; Blunt, S.; Bonnefoy, M. (2025-06-27). "Orbit and atmosphere of HIP 99770 b through the eyes of VLTI/GRAVITY".Astronomy & Astrophysics.700: A4.arXiv:2507.00117.Bibcode:2025A&A...700A...4W.doi:10.1051/0004-6361/202554766.ISSN 0004-6361.
  257. ^Andrew Jones (April 17, 2023)."Giant exoplanet found, imaged directly thanks to star-mapping data (photos)".Space.com.
  258. ^abcViswanath, Gayathri; Ringqvist, Simon C.; Demars, Dorian; Janson, Markus; Bonnefoy, Mickaël; Aoyama, Yuhiko; Marleau, Gabriel-Dominique; Dougados, Catherine; Szulágyi, Judit (2024-09-01). "ExoplaNeT accRetion mOnitoring sPectroscopic surveY (ENTROPY)".Astronomy & Astrophysics.691: A64.arXiv:2409.12187.doi:10.1051/0004-6361/202450881.
  259. ^abKervella, P.; Thévenin, F.; Lovis, C. (2017). "Proxima's orbit around α Centauri".Astronomy & Astrophysics.598: L7.arXiv:1611.03495.Bibcode:2017A&A...598L...7K.doi:10.1051/0004-6361/201629930.ISSN 0004-6361.S2CID 50867264. Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  260. ^Kervella, Pierre; Thevenin, Frederic (March 15, 2003)."A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars with its hue shifted toward red-yellow". European Southern Observatory. RetrievedMay 10, 2016.
  261. ^Anglada, Guillem; Amado, Pedro J; Ortiz, Jose L; Gómez, José F; Macías, Enrique; Alberdi, Antxon; Osorio, Mayra; Gómez, José L; de Gregorio-Monsalvo, Itziar; Pérez-Torres, Miguel A; Anglada-Escudé, Guillem; Berdiñas, Zaira M; Jenkins, James S; Jimenez-Serra, Izaskun; Lara, Luisa M; López-González, Maria J; López-Puertas, Manuel; Morales, Nicolas; Ribas, Ignasi; Richards, Anita M. S; Rodríguez-López, Cristina; Rodriguez, Eloy (2017)."ALMA Discovery of Dust Belts Around Proxima Centauri".The Astrophysical Journal.850 (1): L6.arXiv:1711.00578.Bibcode:2017ApJ...850L...6A.doi:10.3847/2041-8213/aa978b.S2CID 13431834.
  262. ^Suárez Mascareño, Alejandro; Artigau, Étienne; et al. (29 July 2025)."Diving into the planetary system of Proxima with NIRPS: Breaking the metre per second barrier in the infrared".Astronomy & Astrophysics.700: A11.arXiv:2507.21751.Bibcode:2025A&A...700A..11S.doi:10.1051/0004-6361/202553728.
  263. ^Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (June 23, 2022)."Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry".The Astronomical Journal. 164:84 (3) (published August 8, 2022): 18pp.arXiv:2207.13524.Bibcode:2022AJ....164...84A.doi:10.3847/1538-3881/ac7ce6.
  264. ^abCarter, Aarynn L.; Hinkley, Sasha; Kammerer, Jens; Skemer, Andrew; Biller, Beth A.; Leisenring, Jarron M.; Millar-Blanchaer, Maxwell A.; Petrus, Simon; Stone, Jordan M.; Ward-Duong, Kimberly; Wang, Jason J.; Girard, Julien H.; Hines, Dean C.; Perrin, Marshall D.; Pueyo, Laurent (2023-07-06)."The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High Contrast Imaging of the Exoplanet HIP 65426 b from 2-16 μm".The Astrophysical Journal Letters.951 (1): L20.arXiv:2208.14990.Bibcode:2023ApJ...951L..20C.doi:10.3847/2041-8213/acd93e.
  265. ^Alise Fisher, NASA's Webb Takes Its First-Ever Direct Image of Distant World Posted on September 1,blogs.nasa.gov
  266. ^"Astronomers Directly Image Super-Jupiter around HIP 65426 | Astronomy | Sci-News.com".Breaking Science News | Sci-News.com. Retrieved2019-08-02.
  267. ^"Holiday Special: Eight nights of Exoplanet Light".Exoplanet Exploration: Planets Beyond our Solar System. NASA. 14 December 2017. Retrieved2019-08-03.
  268. ^"Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation".phys.org. Retrieved2019-08-03.
  269. ^abcGodoy, N.; Choquet, E.; Serabyn, E.; Malin, M.; Tremblin, P.; Danielski, C.; Lagage, P. O.; Boccaletti, A.; Charnay, B.; Ressler, M. E. (2025). "A JWST/MIRI view of k Andromedae b: Refining its mass, age, and physical parameters".arXiv:2509.03624 [astro-ph.EP].
  270. ^Carson; Thalmann; Janson; Kozakis; Bonnefoy; Biller; Schlieder; Currie; McElwain (November 15, 2012). "Direct Imaging Discovery of a 'Super-Jupiter' Around the late B-Type Star Kappa And".The Astrophysical Journal.763 (2): L32.arXiv:1211.3744.Bibcode:2013ApJ...763L..32C.doi:10.1088/2041-8205/763/2/L32.S2CID 119253577.
  271. ^Montet, Ben (2013-09-20)."How Massive is Kappa Andromedae B?".Astrobites.
  272. ^Sasha Hinkley; Laurent Pueyo; Jacqueline K. Faherty; Ben R. Oppenheimer; Eric E. Mamajek; Adam L. Kraus; Emily L. Rice; Michael J. Ireland; Trevor David; et al. (September 2013). "The Kappa Andromedae System: New Constraints on the Companion Mass, System Age & Further Multiplicity".The Astrophysical Journal.763 (2): L32.arXiv:1211.3744.Bibcode:2013ApJ...763L..32C.doi:10.1088/2041-8205/763/2/L32.S2CID 119253577.
  273. ^Jones, Jeremy; White, R. J.; Quinn, S.; Ireland, M.; Boyajian, T.; Schaefer, G.; Baines, E. K. (2016)."The Age of the Directly Imaged Planet Host Star κ Andromedae Determined from Interferometric Observations".The Astrophysical Journal Letters.822 (1): 7.arXiv:1604.02176.Bibcode:2016ApJ...822L...3J.doi:10.3847/2041-8205/822/1/L3.S2CID 38367518.
  274. ^Zhang, Zhoujian; Mollière, Paul; Fortney, Jonathan J.; Marley, Mark S. (August 2025)."Elemental Abundances of Planets and Brown Dwarfs Imaged around Stars (ELPIS). II. The Jupiter-like Inhomogeneous Atmosphere of the First Directly Imaged Planetary-mass Companion 2MASS 1207 b".The Astronomical Journal.170 (2): 64.arXiv:2502.18559.Bibcode:2025AJ....170...64Z.doi:10.3847/1538-3881/addfcb.
  275. ^abcLuhman, K. L.; Tremblin, P.; Birkmann, S. M.; Manjavacas, E.; Valenti, J.; Alves de Oliveira, C.; Beck, T. L.; Giardino, G.; Lützgendorf, N.; Rauscher, B. J.; Sirianni, M. (2023-06-01)."JWST/NIRSpec Observations of the Planetary Mass Companion TWA 27B*".The Astrophysical Journal Letters.949 (2): L36.arXiv:2305.18603.Bibcode:2023ApJ...949L..36L.doi:10.3847/2041-8213/acd635.ISSN 2041-8205.
  276. ^"2M1207 b - First image of an exoplanet - NASA Science".science.nasa.gov. 26 April 2010. Retrieved2025-01-07.
  277. ^"2M1207b - first image of an exoplanet".European Southern Observatory. Retrieved2025-01-07.
  278. ^"Official Working Definition of an Exoplanet".IAU position statement. Retrieved29 November 2020.
  279. ^abBritt, Robert Roy (April 30, 2005)."Fresh Debate over First Photo of Extrasolar Planet".Space.com. RetrievedJune 16, 2008.
  280. ^"The brown dwarf 2M1207 and its planetary companion".European Southern Observatory. Retrieved2025-01-07.
  281. ^"Artist's View of a Super-Jupiter around a Brown Dwarf (2M1207)".Esa Hubble. Retrieved2025-01-07.
  282. ^"2MASS J12073346-3932539 Overview".NASA Exoplanet Archive.
  283. ^"The Extrasolar Planet Encyclopaedia — 2M1207 b".Extrasolar Planets Encyclopaedia.Paris Observatory.
  284. ^Margot, Jean-Luc; Gladman, Brett; Yang, Tony (2024-07-10)."Quantitative Criteria for Defining Planets".The Planetary Science Journal.5 (7): 159.arXiv:2407.07590.Bibcode:2024PSJ.....5..159M.doi:10.3847/PSJ/ad55f3.
  285. ^Soter, Steven (2006). "What Is a Planet?".The Astronomical Journal.132 (6):2513–2519.arXiv:astro-ph/0608359.Bibcode:2006AJ....132.2513S.doi:10.1086/508861.ISSN 0004-6256.S2CID 261212633.
  286. ^Clavin, Whitney (November 29, 2005)."A Planet With Planets? Spitzer Finds Cosmic Oddball".NASA. Archived fromthe original on October 11, 2012. RetrievedJune 16, 2008.
  287. ^"Lists of Extrasolar Planets".IAU Working Group on Extrasolar Planets. August 28, 2006. Archived fromthe original on 2008-06-19. RetrievedJune 15, 2008.
  288. ^abPatapis, P.; et al. (2025). "JWST/MIRI observations of the young TWA 27 system: Hydrocarbon disk chemistry, silicate clouds, evidence for a CPD".arXiv:2507.08961 [astro-ph.EP].
  289. ^Sun, Xilei; Huang, Pinghui; Dong, Ruobing; Liu, Shang-Fei (September 2024)."Observational Characteristics of Circumplanetary-mass-object Disks in the Era of James Webb Space Telescope".The Astrophysical Journal.972 (1): 25.arXiv:2406.09501.Bibcode:2024ApJ...972...25S.doi:10.3847/1538-4357/ad57c2.ISSN 0004-637X.
  290. ^ab"Notes for planet WASP-19b".Extrasolar Planets Encyclopaedia. Retrieved2009-12-10.
  291. ^Abe, L.; Gonçalves, I.; Agabi, A.; Alapini, A.; Guillot, T.; Mékarnia, D.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Fortney, J.; Pont, F.; Barbieri, M.; Daban, J.-B.; Fanteï-Caujolle, Y.; Gouvret, C.; Bresson, Y.; Roussel, A.; Bonhomme, S.; Robini, A.; Dugué, M.; Bondoux, E.; Péron, S.; Petit, P.-Y.; Szulágyi, J.; Fruth, T.; Erikson, A.; Rauer, H.; Fressin, F.; Valbousquet, F.; et al. (2013). "The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica".Astronomy & Astrophysics.553: A49.arXiv:1303.0973.Bibcode:2013A&A...553A..49A.doi:10.1051/0004-6361/201220351.S2CID 119227468.
  292. ^Sedaghati, Elyar; et al. (2017). "Detection of titanium oxide in the atmosphere of a hot Jupiter".Nature.549 (7671):238–241.arXiv:1709.04118.Bibcode:2017Natur.549..238S.doi:10.1038/nature23651.PMID 28905896.S2CID 205259502.
  293. ^"Inferno World with Titanium Skies" (Press release). European Southern Observatory. September 13, 2017. RetrievedDecember 24, 2017.
  294. ^abc"NASA's Spitzer First To Crack Open Light of Faraway Worlds". Archived fromthe original on July 15, 2007.
  295. ^abcRichardson, L. Jeremy; Deming, D; Horning, K; Seager, S; Harrington, J; et al. (2007). "A spectrum of an extrasolar planet".Nature.445 (7130):892–895.arXiv:astro-ph/0702507.Bibcode:2007Natur.445..892R.doi:10.1038/nature05636.PMID 17314975.S2CID 4415500.
  296. ^Rincon, Paul (23 June 2010)."'Superstorm' rages on exoplanet".BBC News London. Retrieved2010-06-24.
  297. ^Kislyakova, K. G.; Holmstrom, M.; Lammer, H.; Odert, P.; Khodachenko, M. L. (2014). "Magnetic moment and plasma environment of HD 209458b as determined from Ly observations".Science.346 (6212):981–4.arXiv:1411.6875.Bibcode:2014Sci...346..981K.doi:10.1126/science.1257829.PMID 25414310.S2CID 206560188.
  298. ^abEhrenreich, D.; Lecavelier Des Etangs, A.; Hébrard, G.; Désert, J.-M.; Vidal-Madjar, A.; McConnell, J. C.; Parkinson, C. D.; Ballester, G. E.; Ferlet, R. (2008). "New observations of the extended hydrogen exosphere of the extrasolar planet HD 209458b".Astronomy and Astrophysics.483 (3):933–937.arXiv:0803.1831.Bibcode:2008A&A...483..933E.doi:10.1051/0004-6361:200809460.S2CID 16787305.
  299. ^abcWong, Ian; Shporer, Avi; Zhou, George; Kitzmann, Daniel; Komacek, Thaddeus D.; Tan, Xianyu; Tronsgaard, René; Buchhave, Lars A.; Vissapragada, Shreyas; Greklek-McKeon, Michael; Rodriguez, Joseph E.; Ahlers, John P.; Quinn, Samuel N.; Furlan, Elise; Howell, Steve B. (2021-12-01)."TOI-2109: An Ultrahot Gas Giant on a 16 hr Orbit".The Astronomical Journal.162 (6): 256.arXiv:2111.12074.Bibcode:2021AJ....162..256W.doi:10.3847/1538-3881/ac26bd.ISSN 0004-6256.
  300. ^Jaime, A. Alvarado-Montes; Mario, Sucerquia; Jorge, I. Zuluaga; Christian, Schwab (15 July 2025)."Orbital Decay of the Ultra-hot Jupiter TOI-2109b: Tidal Constraints and Transit-timing Analysis".The Astronomical Journal.988 (1): 66.arXiv:2505.18941.Bibcode:2025ApJ...988...66A.doi:10.3847/1538-4357/ade057.
  301. ^Rebolo, Rafael (2014). "Teide 1 and the Discovery of Brown Dwarfs". In Joergens, Viki (ed.).50 Years of Brown Dwarfs – From Prediction to Discovery to Forefront of Research. Astrophysics and Space Science Library. Vol. 401. Springer. pp. 25–50.Bibcode:2014ASSL..401...25R.doi:10.1007/978-3-319-01162-2_4.ISBN 978-3-319-01162-2.
  302. ^Rebolo, R.; Osorio, M. R. Zapatero; Martín, E. L. (1995-09-14)."Discovery of a brown dwarf in the Pleiades star cluster".Nature.377 (6545):129–131.Bibcode:1995Natur.377..129R.doi:10.1038/377129a0.ISSN 0028-0836.
  303. ^Rebolo, R.; Martín, E. L.; Basri, G.; Marcy, G. W.; Zapatero-Osorio, M. R. (1996-09-20)."Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test".The Astrophysical Journal.469 (1):L53 –L56.arXiv:astro-ph/9607002.Bibcode:1996ApJ...469L..53R.doi:10.1086/310263.
  304. ^abSeidel, J. V.; et al. (2020)."Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS): VI. Non-detection of sodium with HARPS on the bloated super-Neptune WASP-127b".Astronomy & Astrophysics.643 A45.arXiv:2009.13386.Bibcode:2020A&A...643A..45S.doi:10.1051/0004-6361/202039058.
  305. ^Nortmann, L.; Lesjak, F.; Yan, F.; et al. (21 January 2025)."CRIRES + transmission spectroscopy of WASP-127 b: Detection of the resolved signatures of a supersonic equatorial jet and cool poles in a hot planet".Astronomy & Astrophysics.693 A213.arXiv:2404.12363.Bibcode:2025A&A...693A.213N.doi:10.1051/0004-6361/202450438.
  306. ^"Extreme supersonic winds measured on planet outside our Solar System" (Press release).European Southern Observatory. 2025-01-21. Retrieved2025-06-15.
  307. ^Balmer, William O.; Franson, Kyle; Chomez, Antoine; Pueyo, Laurent; Stolker, Tomas; Lacour, Sylvestre; Nowak, Mathias; Nasedkin, Evert; Bonse, Markus J.; Thorngren, Daniel; Palma-Bifani, Paulina; Mollière, Paul; Wang, Jason J.; Zhang, Zhoujian; Chavez, Amanda (2025-01-01)."VLTI/GRAVITY Observations of AF Lep b: Preference for Circular Orbits, Cloudy Atmospheres, and a Moderately Enhanced Metallicity".The Astronomical Journal.169 (1): 30.arXiv:2411.05917.Bibcode:2025AJ....169...30B.doi:10.3847/1538-3881/ad9265.ISSN 0004-6256.
  308. ^Bonse, Markus J.; Gebhard, Timothy D.; Dannert, Felix A.; Absil, Olivier; Cantalloube, Faustine; Christiaens, Valentin; Cugno, Gabriele; Garvin, Emily O.; Hayoz, Jean; Kasper, Markus; Matthews, Elisabeth; Schölkopf, Bernhard; Quanz, Sascha P. (2025-04-01)."Use the 4S (Signal-Safe Speckle Subtraction): Explainable Machine Learning Reveals the Giant Exoplanet AF Lep b in High-contrast Imaging Data from 2011".The Astronomical Journal.169 (4): 194.arXiv:2406.01809.Bibcode:2025AJ....169..194B.doi:10.3847/1538-3881/adab79.ISSN 0004-6256.
  309. ^Harvard University andSmithsonian Institution (2003-01-08)."New World of Iron Rain".Astrobiology Magazine. Archived from the original on 2010-01-10. Retrieved2010-01-25.
  310. ^abPhillips, Caprice L.; Faherty, Jacqueline K.; Burningham, Ben; Vos, Johanna M.; Gonzales, Eileen; Griffith, Emily J.; Merchan, Sherelyn Alejandro; Calamari, Emily; Visscher, Channon (2024-07-01)."Retrieving Young Cloudy L-Dwarfs: A Nearby Planetary-Mass Companion BD+60 1417B and Its Isolated Red Twin W0047".The Astrophysical Journal.972 (2): 172.arXiv:2407.01694.Bibcode:2024ApJ...972..172P.doi:10.3847/1538-4357/ad5d57.
  311. ^Faherty, Jacqueline K.; Gagné, Jonathan; Popinchalk, Mark; Vos, Johanna M.; Burgasser, Adam J.; Schümann, Jörg; Schneider, Adam C.; Kirkpatrick, J. Davy; Meisner, Aaron M.; Kuchner, Marc J.; Bardalez Gagliuffi, Daniella C.; Marocco, Federico; Caselden, Dan; Gonzales, Eileen C.; Rothermich, Austin; Casewell, Sarah L.; Debes, John H.; Aganze, Christian; Ayala, Andrew; Hsu, Chih-Chun; Cooper, William J.; Smart, R. L.; Gerasimov, Roman; Theissen, Christopher A.; The Backyard Worlds: Planet 9 Collaboration (2021)."A Wide Planetary Mass Companion Discovered through the Citizen Science Project Backyard Worlds: Planet 9".The Astrophysical Journal.923 (1): 48.arXiv:2112.04678.Bibcode:2021ApJ...923...48F.doi:10.3847/1538-4357/ac2499.S2CID 245005964.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  312. ^"BD+60 1417 | NASA Exoplanet Archive".exoplanetarchive.ipac.caltech.edu. Retrieved2022-08-10.
  313. ^abcNielsen, L. D.; Brahm, R.; Bouchy, F.; Espinoza, N.; Turner, O.; Rappaport, S.; Pearce, L.; Ricker, G.; Vanderspek, R.; Latham, D. W.; Seager, S.; Winn, J. N.; Jenkins, J. M.; Acton, J. S.; Bakos, G. (July 2020)."Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b".Astronomy & Astrophysics.639: A76.arXiv:2003.05932.Bibcode:2020A&A...639A..76N.doi:10.1051/0004-6361/202037941.ISSN 0004-6361.
  314. ^ab"Planet WASP-39 b".Extrasolar Planets Encyclopaedia. 2018. Retrieved1 March 2018.
  315. ^Adkins, Jamie (2022-08-25)."NASA's Webb Detects Carbon Dioxide in Exoplanet Atmosphere".NASA. Retrieved2022-08-28.
  316. ^Overbye, Dennis (26 August 2022)."Webb Telescope Sees a Carbon Dioxide Atmosphere Way Out There - WASP-39b, a distant world with a mass equivalent to Saturn's, is the first exoplanet known to harbor the gas".The New York Times. Retrieved27 August 2022.
  317. ^Alderson, Lili;et al. (2023)."Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H".Nature.614 (7949):664–669.arXiv:2211.10488.Bibcode:2023Natur.614..664A.doi:10.1038/s41586-022-05591-3.PMC 9946835.PMID 36623549.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  318. ^Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (May 2009)."Binarity of transit host stars: Implications for planetary parameters".Astronomy & Astrophysics.498 (2):567–574.arXiv:0902.2179.Bibcode:2009A&A...498..567D.doi:10.1051/0004-6361/200810988.ISSN 0004-6361.
  319. ^abcSpring, E. F.; Birkby, J. L.; Pino, L.; Alonso, R.; Hoyer, S.; Young, M. E.; Coelho, P. R. T.; Nespral, D.; López-Morales, M. (2022)."Black Mirror: The impact of rotational broadening on the search for reflected light from 51 Pegasi b with high resolution spectroscopy".Astronomy & Astrophysics.659: A121.arXiv:2201.03600.Bibcode:2022A&A...659A.121S.doi:10.1051/0004-6361/202142314.S2CID 245853836.
  320. ^abcdefgMartins, J. H. C; Santos, N. C; Figueira, P; Faria, J. P; Montalto, M; Boisse, I; Ehrenreich, D; Lovis, C; Mayor, M; Melo, C; Pepe, F; Sousa, S. G; Udry, S; Cunha, D (2015). "Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b".Astronomy & Astrophysics.576: A134.arXiv:1504.05962.Bibcode:2015A&A...576A.134M.doi:10.1051/0004-6361/201425298.S2CID 119224213.
  321. ^ab"First visible light detected directly from an exoplanet".Physicworld. 2015-04-22.
  322. ^abScandariato, G.; Borsa, F.; Sicilia, D.; Malavolta, L.; Biazzo, K.; Bonomo, A. S.; Bruno, G.; Claudi, R.; Covino, E.; Marcantonio, P. Di; Esposito, M.; Frustagli, G.; Lanza, A. F.; Maldonado, J.; Maggio, A. (2021-02-01)."The GAPS Programme at TNG - XXIX. No detection of reflected light from 51 Peg b using optical high-resolution spectroscopy".Astronomy & Astrophysics.646: A159.arXiv:2012.10435.Bibcode:2021A&A...646A.159S.doi:10.1051/0004-6361/202039271.ISSN 0004-6361.
  323. ^Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B.; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René (November 2008). "Direct Imaging of Multiple Planets Orbiting the Star HR 8799".Science.322 (5906):1348–1352.arXiv:0811.2606.Bibcode:2008Sci...322.1348M.doi:10.1126/science.1166585.PMID 19008415.S2CID 206516630.
  324. ^abcNasedkin, E.; Mollière, P.; Lacour, S.; Nowak, M.; Kreidberg, L.; Stolker, T.; Wang, J. J.; Balmer, W. O.; Kammerer, J.; Shangguan, J.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Benisty, M.; Berger, J.-P. (July 2024)."Four-of-a-kind? Comprehensive atmospheric characterisation of the HR 8799 planets with VLTI/GRAVITY".Astronomy & Astrophysics.687: A298.arXiv:2404.03776.Bibcode:2024A&A...687A.298N.doi:10.1051/0004-6361/202449328.ISSN 0004-6361.
  325. ^Lacour, S.; Nowak, M.; Wang, J.; Pfuhl, O.; Eisenhauer, F.; Abuter, R.; Amorim, A.; Anugu, N.; Benisty, M.; Berger, J. P.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P. (March 2019). "First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e".Astronomy & Astrophysics.623: L11.arXiv:1903.11903.Bibcode:2019A&A...623L..11G.doi:10.1051/0004-6361/201935253.ISSN 0004-6361.S2CID 85542913.
  326. ^Brandt, G. Mirek; Brandt, Timothy D.; Dupuy, Trent J.; Michalik, Daniel; Marleau, Gabriel-Dominique (2021-07-01)."The First Dynamical Mass Measurement in the HR 8799 System".The Astrophysical Journal Letters.915 (1): L16.arXiv:2105.12820.Bibcode:2021ApJ...915L..16B.doi:10.3847/2041-8213/ac0540.ISSN 2041-8205.
  327. ^abcdVoyer, Maël; Changeat, Quentin; Lagage, Pierre-Olivier; Tremblin, Pascal; Waters, Rens; Güdel, Manuel; Henning, Thomas; Absil, Olivier; Barrado, David; Boccaletti, Anthony; Bouwman, Jeroen; Coulais, Alain; Decin, Leen; Glauser, Adrian; Pye, John; Glasse, Alistair; Gastaud, René; Kendrew, Sarah; Patapis, Polychronis; Rouan, Daniel; Ewine van Dishoeck; Östlin, Göran; Ray, Tom; Wright, Gillian (2025)."MIRI-LRS Spectrum of a Cold Exoplanet around a White Dwarf: Water, Ammonia, and Methane Measurements".The Astrophysical Journal Letters.982 (2): L38.arXiv:2503.04531.Bibcode:2025ApJ...982L..38V.doi:10.3847/2041-8213/adbd46.
  328. ^Dupuy, Trent J.; Kraus, Adam L. (2013-09-27). "Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects".Science.341 (6153):1492–1495.arXiv:1309.1422.Bibcode:2013Sci...341.1492D.doi:10.1126/science.1241917.ISSN 0036-8075.PMID 24009359.
  329. ^Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V. (2017-06-20)."The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy".The Astrophysical Journal.842 (2): 118.arXiv:1704.03573.Bibcode:2017ApJ...842..118L.doi:10.3847/1538-4357/aa6fb5.ISSN 0004-637X.
  330. ^Rodriguez, David R.; Zuckerman, B.; Melis, Carl; Song, Inseok (May 2011). "The Ultra Cool Brown Dwarf Companion of WD 0806-661B: Age, Mass, and Formation Mechanism".The Astrophysical Journal Letters.732 (2): L29.arXiv:1103.3544.Bibcode:2011ApJ...732L..29R.doi:10.1088/2041-8205/732/2/L29.
  331. ^Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V. (June 2017)."The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy".The Astrophysical Journal.842 (2): 118.arXiv:1704.03573.Bibcode:2017ApJ...842..118L.doi:10.3847/1538-4357/aa6fb5.ISSN 0004-637X.S2CID 119249195.
  332. ^Lecavelier des Etangs, A.; Lissauer, Jack J. (June 2022). "The IAU working definition of an exoplanet".New Astronomy Reviews.94 101641.arXiv:2203.09520.Bibcode:2022NewAR..9401641L.doi:10.1016/j.newar.2022.101641.IAU website link
  333. ^abAgol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michaël; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien (2021-02-01)."Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides".The Planetary Science Journal.2 (1): 1.arXiv:2010.01074.Bibcode:2021PSJ.....2....1A.doi:10.3847/PSJ/abd022.ISSN 2632-3338.
  334. ^Delrez, L.; Murray, C. A.; Pozuelos, F. J.; Narita, N.; Ducrot, E.; Timmermans, M.; Watanabe, N.; Burgasser, A. J.; Hirano, T.; Rackham, B. V.; Stassun, K. G.; Van Grootel, V.; Aganze, C.; Cointepas, M.; Howell, S. (November 2022)."Two temperate super-Earths transiting a nearby late-type M dwarf".Astronomy & Astrophysics.667: A59.arXiv:2209.02831.Bibcode:2022A&A...667A..59D.doi:10.1051/0004-6361/202244041.ISSN 0004-6361.
  335. ^Agol et al. 2021, p. 14.
  336. ^Heising, Matthew Z.; Sasselov, Dimitar D.; Hernquist, Lars; Luisa Tió Humphrey, Ana (1 June 2021)."How Flat Can a Planetary System Get? I. The Case of TRAPPIST-1".The Astrophysical Journal.913 (2): 126.Bibcode:2021ApJ...913..126H.doi:10.3847/1538-4357/abf8a8.S2CID 219262616.
  337. ^Burgasser, Adam J.; Mamajek, Eric E. (2017-08-20)."On the Age of the TRAPPIST-1 System".The Astrophysical Journal.845 (2): 110.arXiv:1706.02018.Bibcode:2017ApJ...845..110B.doi:10.3847/1538-4357/aa7fea.ISSN 0004-637X.
  338. ^Knutson, Heather A.; Charbonneau, David; et al. (May 2007). "A map of the day-night contrast of the extrasolar planet HD 189733b".Nature.447 (7141):183–186.arXiv:0705.0993.Bibcode:2007Natur.447..183K.doi:10.1038/nature05782.PMID 17495920.
  339. ^Berdyugina, S.V.; Berdyugin, A.V.; Fluri, D.M.; Piirola, V. (2011). "Polarized reflected light from the exoplanet HD189733b: First multicolor observations and confirmation of detection".Astrophysical Journal Letters.726 (1):L6 –L9.arXiv:1101.0059.Bibcode:2011ApJ...728L...6B.doi:10.1088/2041-8205/728/1/L6.S2CID 59160192.
  340. ^Evans, Thomas M.; Pont, Frédéric; et al. (August 2013). "The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths".The Astrophysical Journal Letters.772 (2): L16.arXiv:1307.3239.Bibcode:2013ApJ...772L..16E.doi:10.1088/2041-8205/772/2/L16.S2CID 38344760.
  341. ^Kramer, Miriam (30 November 2001)."For First Time, Alien Planet's True Color Revealed: 'Deep Cobalt Blue'".SpaceNews. Retrieved2024-01-28.
  342. ^"Exoplanet Catalog - HD 189733 b".Exoplanet Exploration: Planets Beyond our Solar System. 22 April 2019. Retrieved2024-01-28.
  343. ^Klotz, Irene (November 16, 2015)."Exoplanet's Global Winds Let Rip at 5,400 MPH".Space. Retrieved2015-11-17.
  344. ^abSahu, Kailash C.; et al. (2006). "Transiting extrasolar planetary candidates in the Galactic bulge".Nature.443 (7111):534–540.arXiv:astro-ph/0610098.Bibcode:2006Natur.443..534S.doi:10.1038/nature05158.ISSN 0028-0836.PMID 17024085.S2CID 4403395. (web Preprint)
  345. ^"HEC: Top 10 Exoplanets".Planetary Habitability Laboratory @ UPR Arecibo. Archived fromthe original on 17 December 2013. Retrieved16 July 2018.
  346. ^Nascimbeni, V.; et al. (2023)."A new dynamical modeling of the WASP-47 system with CHEOPS observations".Astronomy and Astrophysics.673 A42.arXiv:2302.01352.Bibcode:2023A&A...673A..42N.doi:10.1051/0004-6361/202245486.
  347. ^Vanderburg, Andrew; et al. (2017-11-16)."Precise Masses in the WASP-47 System".The Astronomical Journal.154 (6) 237.arXiv:1710.00026.Bibcode:2017AJ....154..237V.doi:10.3847/1538-3881/aa918b.S2CID 54750116.
  348. ^"WASP-47".exoplanetarchive.ipac.caltech.edu.
  349. ^Cifuentes, C.; Caballero, J. A.; Cortés-Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J. (October 2020)."CARMENES input catalogue of M dwarfs: V. Luminosities, colours, and spectral energy distributions".Astronomy & Astrophysics.642: A115.arXiv:2007.15077.Bibcode:2020A&A...642A.115C.doi:10.1051/0004-6361/202038295.ISSN 0004-6361.
  350. ^Sebastian, D.; Gillon, M.; Ducrot, E.; Pozuelos, F. J.; Garcia, L. J.; Günther, M. N.; Delrez, L.; Queloz, D.; Demory, B. O.; Triaud, A. H. M. J.; Burgasser, A.; de Wit, J.; Burdanov, A.; Dransfield, G.; Jehin, E. (January 2021)."SPECULOOS: Ultracool dwarf transit survey: Target list and strategy".Astronomy & Astrophysics.645: A100.arXiv:2011.02069.Bibcode:2021A&A...645A.100S.doi:10.1051/0004-6361/202038827.ISSN 0004-6361.
  351. ^Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (2015). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime".The Astrophysical Journal.810 (2): 158.arXiv:1508.01767.Bibcode:2015ApJ...810..158F.doi:10.1088/0004-637X/810/2/158.S2CID 89611607.
  352. ^Dieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P. (May 2014). "The Solar Neighborhood XXXII. The Hydrogen Burning Limit".The Astronomical Journal.147 (5). article id 94.arXiv:1312.1736.Bibcode:2014AJ....147...94D.doi:10.1088/0004-6256/147/5/94.S2CID 21036959.
  353. ^Carmichael, Theron W (2023-01-17)."Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS".Monthly Notices of the Royal Astronomical Society.519 (4):5177–5190.arXiv:2212.02502.Bibcode:2023MNRAS.519.5177C.doi:10.1093/mnras/stac3720.ISSN 0035-8711.
  354. ^abDeleuil, M.; et al. (2008)."Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert".Astronomy and Astrophysics.491 (3):889–897.arXiv:0810.0919.Bibcode:2008A&A...491..889D.doi:10.1051/0004-6361:200810625.S2CID 8944836.
  355. ^"Definition of a "Planet"". Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union. Archived fromthe original on 2012-07-02. Retrieved2009-03-27.
  356. ^Mordasini, C.; et al. (2007). "Giant Planet Formation by Core Accretion".arXiv:0710.5667v1 [astro-ph].
  357. ^Baraffe, I.; et al. (2003). "Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458".Astronomy and Astrophysics.402 (2):701–712.arXiv:astro-ph/0302293.Bibcode:2003A&A...402..701B.doi:10.1051/0004-6361:20030252.S2CID 15838318.
  358. ^abcdMâlin, Mathilde; Boccaletti, Anthony; Perrot, Clément; Baudoz, Pierre; Rouan, Daniel; Lagage, Pierre-Olivier; Waters, Rens; G"udel, Manuel; Henning, Thomas; Vandenbussche, Bart; Absil, Olivier; Barrado, David; Charnay, Benjamin; Choquet, Elodie; Cossou, Christophe (2025-01-01). "First unambiguous detection of ammonia in the atmosphere of a planetary mass companion with JWST/MIRI coronagraphs".Astronomy & Astrophysics.693: A315.arXiv:2501.00104.Bibcode:2025A&A...693A.315M.doi:10.1051/0004-6361/202452695.ISSN 0004-6361.
  359. ^Janson, M.; Brandt, T. D.; Kuzuhara, M.; et al. (2013). "Direct Imaging Detection of Methane in the Atmosphere of GJ 504 b".The Astrophysical Journal Letters.778 (1): L4.arXiv:1310.4183.Bibcode:2013ApJ...778L...4J.doi:10.1088/2041-8205/778/1/L4.S2CID 53394946.
  360. ^Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M.; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; et al. (2013). "Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504".The Astrophysical Journal.774 (11): 11.arXiv:1307.2886.Bibcode:2013ApJ...774...11K.doi:10.1088/0004-637X/774/1/11.S2CID 53343537.
  361. ^Fuhrmann, K.; Chini, R. (2015). "On the age of Gliese 504".The Astrophysical Journal.806 (2): 163.Bibcode:2015ApJ...806..163F.doi:10.1088/0004-637X/806/2/163.S2CID 5694316.
  362. ^Pezzotti, C.; Buldgen, G.; Magaudda, E.; Farnir, M.; Grootel, V. Van; Bellotti, S.; Poppenhaeger, K. (2025-01-13). "Planetary inward migration as the potential cause of GJ 504's fast rotation and bright X-ray luminosity".Astronomy & Astrophysics.694: A179.arXiv:2501.07402.doi:10.1051/0004-6361/202452580.
  363. ^abMatthews, E. C.; Carter, A. L.; et al. (July 2024)."A temperate super-Jupiter imaged with JWST in the mid-infrared".Nature.633 (8031):789–792.arXiv:2503.01599.Bibcode:2024Natur.633..789M.doi:10.1038/s41586-024-07837-8.PMC 11424479.PMID 39048015.
  364. ^"NASA's Webb Images Cold Exoplanet 12 Light-Years Away".nasa.gov. NASA Webb Mission Team. 24 July 2024. RetrievedJul 24, 2024.
  365. ^ab"Kepler-1647b – NASA Exoplanet Archive". RetrievedJune 14, 2016.
  366. ^"New Planet Is Largest Discovered That Orbits Two Suns".NASA. June 13, 2016. RetrievedJune 14, 2016.
  367. ^Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; et al. (2015)."Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet".The Astrophysical Journal.827 (1): 86.arXiv:1512.00189.Bibcode:2016ApJ...827...86K.doi:10.3847/0004-637X/827/1/86.S2CID 55162101.
  368. ^Barbosa, G O; Winter, O C; Amarante, A; Macau, E E N (2021-05-25)."Formation of Earth-sized planets within the Kepler-1647 system habitable zone".Monthly Notices of the Royal Astronomical Society.504 (4):6144–6156.arXiv:2104.11628.doi:10.1093/mnras/stab1165.
  369. ^abcBardalez Gagliuffi, Daniella; Balmer, William O.; et al. (June 2025)."JWST Coronagraphic Images of 14 Her c: a Cold Giant Planet in a Dynamically Hot, Multi-planet System".The Astrophysical Journal Letters.988 (1): L18.arXiv:2506.09201.Bibcode:2025ApJ...988L..18B.doi:10.3847/2041-8213/ade30f.
  370. ^"Kepler-90 h".NASA Exoplanet Archive. Retrieved15 July 2016.
  371. ^Liang, Yan; Robnik, Jakob; Seljak, Uroš (2021)."Kepler-90: Giant Transit-timing Variations Reveal a Super-puff".The Astronomical Journal.161 (4): 202.arXiv:2011.08515.Bibcode:2021AJ....161..202L.doi:10.3847/1538-3881/abe6a7.S2CID 226975548.
  372. ^ab"Planets and Pluto: Physical Characteristics".ssd.jpl.nasa.gov. Jet Propulsion Laboratory. Retrieved7 September 2024.
  373. ^abJerry Coffey (8 July 2008)."What is the Biggest Planet in the Solar System?". Universe Today.Archived from the original on 16 November 2014. Retrieved7 November 2014.
  374. ^Lodieu, N.; Zapatero Osorio, M. R.; Rebolo, R.; Béjar, V. J. S.; Pavlenko, Y.; Pérez-Garrido, A. (September 2015)."VLT X-Shooter spectroscopy of the nearest brown dwarf binary".Astronomy & Astrophysics.581: A73.arXiv:1506.08848.Bibcode:2015A&A...581A..73L.doi:10.1051/0004-6361/201424933.ISSN 0004-6361.
  375. ^Bedin, L. R.; Dietrich, J.; Burgasser, A. J.; Apai, D.; Libralato, M.; Griggio, M.; Fontanive, C.; Pourbaix, D. (8 Mar 2024). "HST astrometry of the closest Brown Dwarfs -- II. Improved parameters and constraints on a third body".Astronomische Nachrichten.345 (1) e230158.arXiv:2403.08865.Bibcode:2024AN....34530158B.doi:10.1002/asna.20230158.
  376. ^Kennedy, Barbara K. (11 March 2013)."The Closest Star System Found in a Century". Pennsylvania State University Eberly College of Science. Archived fromthe original on 17 April 2013. Retrieved11 March 2013.
  377. ^Plait, Phil (11 March 2013)."Howdy, Neighbor! New Twin Stars Are Third Closest to the Sun".Slate. Bad Astronomy. Retrieved11 March 2013.
  378. ^abcBarber, Madyson G.; Mann, Andrew W.; Vanderburg, Andrew; Krolikowski, Daniel; Kraus, Adam; Ansdell, Megan; Pearce, Logan; Mace, Gregory N.; Andrews, Sean M.; Boyle, Andrew W.; Collins, Karen A.; De Furio, Matthew; Dragomir, Diana; Espaillat, Catherine; Feinstein, Adina D. (November 2024)."A giant planet transiting a 3-Myr protostar with a misaligned disk".Nature.635 (8039):574–577.arXiv:2411.18683.Bibcode:2024Natur.635..574B.doi:10.1038/s41586-024-08123-3.ISSN 1476-4687.PMID 39567788.
  379. ^Wenz, John (2024-11-20)."Young, shrouded super-Neptune could help teach us how such worlds form".Astronomy Magazine. Retrieved2024-11-20.
  380. ^abcdeVanderburg, Andrew; Rappaport, Saul A.; Xu, Siyi; Crossfield, Ian J. M.; Becker, Juliette C.; Gary, Bruce; et al. (September 2020). "A giant planet candidate transiting a white dwarf".Nature.585 (7825):363–367.arXiv:2009.07282.Bibcode:2020Natur.585..363V.doi:10.1038/s41586-020-2713-y.PMID 32939071.S2CID 221738865.
  381. ^Xu, Siyi; Diamond-Lowe, Hannah; MacDonald, Ryan J.; Vanderburg, Andrew; Blouin, Simon; Dufour, P.; Gao, Peter; Kreidberg, Laura; Leggett, S. K.; Mann, Andrew W.; Morley, Caroline V.; Stephens, Andrew W.; O'Connor, Christopher E.; Thao, Pa Chia; Lewis, Nikole K. (2021-12-01)."Gemini/GMOS Transmission Spectroscopy of the Grazing Planet Candidate WD 1856+534 b".The Astronomical Journal.162 (6): 296.arXiv:2110.14106.Bibcode:2021AJ....162..296X.doi:10.3847/1538-3881/ac2d26.ISSN 0004-6256.
  382. ^Limbach, Mary Anne; Vanderburg, Andrew; et al. (April 2025)."Thermal Emission and Confirmation of the Frigid White Dwarf Exoplanet WD 1856+534b".The Astrophysical Journal Letters.984 (1): L28.arXiv:2504.16982.Bibcode:2025ApJ...984L..28L.doi:10.3847/2041-8213/adc9ad.
  383. ^Muñoz, Diego J.; Petrovich, Cristobal (2020-11-19)."Kozai Migration Naturally Explains the White Dwarf Planet WD1856b".The Astrophysical Journal.904 (1): L3.arXiv:2010.04724.Bibcode:2020ApJ...904L...3M.doi:10.3847/2041-8213/abc564.ISSN 2041-8213.S2CID 222290559.
  384. ^O'Connor, Christopher E.; Liu, Bin; Lai, Dong (2020-11-30)."Enhanced Lidov-Kozai migration and the formation of the transiting giant planet WD1856+534b".Monthly Notices of the Royal Astronomical Society.501:507–514.arXiv:2010.04163.doi:10.1093/mnras/staa3723.ISSN 0035-8711.S2CID 222272242.
  385. ^Stephan, Alexander P.; Naoz, Smadar; Gaudi, B. Scott (2021)."Giant Planets, Tiny Stars: Producing Short-period Planets around White Dwarfs with the Eccentric Kozai–Lidov Mechanism".The Astrophysical Journal.922 (1): 4.arXiv:2010.10534.Bibcode:2021ApJ...922....4S.doi:10.3847/1538-4357/ac22a9.S2CID 224819085.
  386. ^Lagos, F.; Schreiber, M. R.; Zorotovic, M.; Gänsicke, B. T.; Ronco, M. P.; Hamers, Adrian S. (2021)."WD 1856 b: a close giant planet around a white dwarf that could have survived a common-envelope phase".Monthly Notices of the Royal Astronomical Society.501 (1):676–682.arXiv:2010.09747.Bibcode:2021MNRAS.501..676L.doi:10.1093/mnras/staa3703.S2CID 224802868.
  387. ^Chamandy, Luke; Blackman, Eric G.; Nordhaus, Jason; Wilson, Emily (2021)."Successive common envelope events from multiple planets".Monthly Notices of the Royal Astronomical Society: Letters.502:L110 –L114.arXiv:2011.11106.doi:10.1093/mnrasl/slab017.
  388. ^O'Connor, Christopher; Lai, Dong; MacDonald, Ryan; The JWST WD1856b Team (2024-08-01)."The thermal evolution of WD1856b reveals its migration history".AAS Division on Dynamical Astronomy Meeting #55, Id. 401.01.56 (6): 401.01.Bibcode:2024DDA....5540101O.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  389. ^abcdefLuhman, K. L.; Tremblin, P.; Alves de Oliveira, C.; Birkmann, S. M.; Baraffe, I.; Chabrier, G.; et al. (January 2024)."JWST/NIRSpec Observations of the Coldest Known Brown Dwarf".The Astronomical Journal.167 (1): 5.arXiv:2311.17316.Bibcode:2024AJ....167....5L.doi:10.3847/1538-3881/ad0b72.S2CID 265498620.
  390. ^Luhman, K. L. (2014-04-21)."DISCOVERY OF A ∼250 K BROWN DWARF AT 2 pc FROM THE SUN".The Astrophysical Journal.786 (2): L18.arXiv:1404.6501.Bibcode:2014ApJ...786L..18L.doi:10.1088/2041-8205/786/2/L18.ISSN 2041-8205.
  391. ^Rowland, Melanie J.; Morley, Caroline V.; Miles, Brittany E.; Suárez, Genaro; Faherty, Jacqueline K.; Skemer, Andrew J.; Beiler, Samuel A.; Line, Michael R.; Bjoraker, Gordon L. (2024-11-21)."Protosolar D-to-H abundance and one part-per-billion PH3 in the coldest brown dwarf".The Astrophysical Journal.977 (2): L49.arXiv:2411.14541.Bibcode:2024ApJ...977L..49R.doi:10.3847/2041-8213/ad9744.
  392. ^abWilliams, David R. (23 December 2016)."Saturn Fact Sheet". NASA. Archived fromthe original on 17 July 2017. Retrieved12 October 2017.
  393. ^"Saturn – The Most Beautiful Planet of our solar system".Preserve Articles. 23 January 2011.Archived from the original on 20 January 2012. Retrieved24 July 2011.
  394. ^abcdKorth, Judith; Chaturvedi, Priyanka; Parviainen, Hannu; Carleo, Ilaria; Endl, Michael; Guenther, Eike W.; Nowak, Grzegorz; Persson, Carina M.; MacQueen, Phillip J.; Mustill, Alexander J.; Cabrera, Juan; Cochran, William D.; Lillo-Box, Jorge; Hobbs, David; Murgas, Felipe (August 2024)."TOI-1408: Discovery and Photodynamical Modeling of a Small Inner Companion to a Hot Jupiter Revealed by Transit Timing Variations".The Astrophysical Journal Letters.971 (2): L28.arXiv:2407.17798.Bibcode:2024ApJ...971L..28K.doi:10.3847/2041-8213/ad65fd.ISSN 2041-8205.
  395. ^abGalazutdinov, G A; Baluev, R V; Valyavin, G; Aitov, V; Gadelshin, D; Valeev, A; Sendzikas, E; Sokov, E; Mitiani, G; Burlakova, T; Yakunin, I; Antonyuk, K A; Vlasyuk, V; Romanyuk, I; Rzaev, A (2023-11-21)."Doppler confirmation of TESS planet candidate TOI−1408.01: grazing transit and likely eccentric orbit".Monthly Notices of the Royal Astronomical Society: Letters.526 (1):L111 –L115.arXiv:2309.03009.doi:10.1093/mnrasl/slad127.ISSN 1745-3925.
  396. ^Eriksson, Simon C.; Asensio Torres, Rubén; Janson, Markus; Aoyama, Yuhiko; Marleau, Gabriel-Dominique; Bonnefoy, Mickael; Petrus, Simon (June 2020)."Strong H α emission and signs of accretion in a circumbinary planetary mass companion from MUSE".Astronomy & Astrophysics.638: L6.arXiv:2005.11725.Bibcode:2020A&A...638L...6E.doi:10.1051/0004-6361/202038131.ISSN 0004-6361.
  397. ^Delorme, P.; Gagné, J.; Girard, J. H.; Lagrange, A. M.; Chauvin, G.; Naud, M. -E.; Lafrenière, D.; Doyon, R.; Riedel, A.; Bonnefoy, M.; Malo, L. (2013-05-01)."Direct-imaging discovery of a 12-14 Jupiter-mass object orbiting a young binary system of very low-mass stars".Astronomy and Astrophysics.553: L5.arXiv:1303.4525.Bibcode:2013A&A...553L...5D.doi:10.1051/0004-6361/201321169.ISSN 0004-6361.
  398. ^Betti, S. K.; Follette, K. B.; Ward-Duong, K.; Aoyama, Y.; Marleau, G. -D.; Bary, J.; Robinson, C.; Janson, M.; Balmer, W.; Chauvin, G.; Palma-Bifani, P. (2022-08-01)."Near-infrared Accretion Signatures from the Circumbinary Planetary-mass Companion Delorme 1 (AB)b".The Astrophysical Journal.935 (1): L18.arXiv:2208.05016.Bibcode:2022ApJ...935L..18B.doi:10.3847/2041-8213/ac85ef.ISSN 0004-637X.
  399. ^Rice, Ken; Lopez, Eric; Forgan, Duncan; Biller, Beth (2015-12-01)."Disc fragmentation rarely forms planetary-mass objects".Monthly Notices of the Royal Astronomical Society.454 (2):1940–1947.arXiv:1508.06528.Bibcode:2015MNRAS.454.1940R.doi:10.1093/mnras/stv1997.ISSN 0035-8711.
  400. ^Teasdale, Matthew; Stamatellos, Dimitris (2024-08-01)."On the potential origin of the circumbinary planet Delorme 1 (AB)b".Monthly Notices of the Royal Astronomical Society.533 (2):2294–2302.arXiv:2408.06231.Bibcode:2024MNRAS.533.2294T.doi:10.1093/mnras/stae1964.ISSN 0035-8711.
  401. ^abPalma-Bifani, P.; Chauvin, G.; Bonnefoy, M.; Rojo, P. M.; Petrus, S.; Rodet, L.; Langlois, M.; Allard, F.; Charnay, B.; Desgrange, C.; Homeier, D.; Lagrange, A.-M.; Beuzit, J.-L.; Baudoz, P.; Boccaletti, A. (February 2023)."Peering into the young planetary system AB Pic: Atmosphere, orbit, obliquity, and second planetary candidate".Astronomy & Astrophysics.670: A90.arXiv:2211.01474.Bibcode:2023A&A...670A..90P.doi:10.1051/0004-6361/202244294.ISSN 0004-6361.
  402. ^Chauvin, G.; Lagrange, A.-M.; Zuckerman, B.; Dumas, C.; Mouillet, D.; Song, I.; Beuzit, J.-L.; Lowrance, P.; Bessel, M. S. (2005-07-18)."A Companion to AB Pic at the Planet/brown Dwarf Boundary". Letter to the Editor.Astronomy & Astrophysics.438 (3). EDP Sciences:L29 –L32.arXiv:astro-ph/0504658.Bibcode:2005A&A...438L..29C.doi:10.1051/0004-6361:200500111.Archived from the original on 2024-11-17.
  403. ^Neuhaeuser, Ralph (30 Sep 2005). "Homogeneous Comparison of Directly Detected Planet Candidates: GQ Lup, 2M1207, AB Pic".arXiv:astro-ph/0509906.
  404. ^Palma-Bifani, P.; et al. (2023). "Peering into the young planetary system AB Pic".Astronomy & Astrophysics.670: A90.arXiv:2211.01474.Bibcode:2023A&A...670A..90P.doi:10.1051/0004-6361/202244294.S2CID 253265148.
  405. ^abcdYee, Samuel W.; Winn, Joshua N.; Hartman, Joel D.; Rodriguez, Joseph E.; Zhou, George; Quinn, Samuel N.; Latham, David W.; Bieryla, Allyson; Collins, Karen A.; Addison, Brett C.; Angelo, Isabel; Barkaoui, Khalid; Benni, Paul; Boyle, Andrew W.; Brahm, Rafael (2022-08-01)."The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets".The Astronomical Journal.164 (2): 70.arXiv:2205.09728.Bibcode:2022AJ....164...70Y.doi:10.3847/1538-3881/ac73ff.ISSN 0004-6256.
  406. ^abGaia Collaboration; Creevey, O. L.; Sarro, L. M.; Lobel, A.; Pancino, E.; Andrae, R.; Smart, R. L.; Clementini, G.; Heiter, U.; Korn, A. J.; Fouesneau, M.; Frémat, Y.; De Angeli, F.; Vallenari, A.; Harrison, D. L. (June 2023)."Gaia Data Release 3: A golden sample of astrophysical parameters".Astronomy & Astrophysics.674: A39.arXiv:2206.05870.Bibcode:2023A&A...674A..39G.doi:10.1051/0004-6361/202243800.hdl:1887/3717260.ISSN 0004-6361.
  407. ^abGaia Collaboration; Vallenari, A.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C. (June 2023)."Gaia Data Release 3: Summary of the content and survey properties".Astronomy & Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.hdl:1887/3717276.ISSN 0004-6361.
  408. ^abDemars, D.; Bonnefoy, M.; Dougados, C.; Aoyama, Y.; Thanathibodee, T.; Marleau, G.-D.; Tremblin, P.; Delorme, P.; Palma-Bifani, P.; Petrus, S.; Bowler, B. P.; Chauvin, G.; Lagrange, A.-M. (August 2023)."Emission line variability of young 10–30 M Jup companions: I. The case of GQ Lup b and GSC 06214-00210 b".Astronomy & Astrophysics.676: A123.arXiv:2305.09460.Bibcode:2023A&A...676A.123D.doi:10.1051/0004-6361/202346221.ISSN 0004-6361.
  409. ^Chilcote, Jeffrey; Pueyo, Laurent; De Rosa, Robert J.; Vargas, Jeffrey; Macintosh, Bruce; Bailey, Vanessa P.; Barman, Travis; Bauman, Brian; Bruzzone, Sebastian; Bulger, Joanna; Burrows, Adam S.; Cardwell, Andrew; Chen, Christine H.; Cotten, Tara; Dillon, Daren (2017-04-01)."1 to 2.4 micron Near-IR spectrum of the Giant Planet $\beta$ Pictoris b obtained with the Gemini Planet Imager".The Astronomical Journal.153 (4): 182.arXiv:1703.00011.Bibcode:2017AJ....153..182C.doi:10.3847/1538-3881/aa63e9.ISSN 0004-6256.
  410. ^Currie, Thayne; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc; Matsumura, Soko; Jayawardhana, Ray; Chambers, John; Bromley, Ben (2013-09-20)."A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b".The Astrophysical Journal.776 (1): 15.arXiv:1306.0610.Bibcode:2013ApJ...776...15C.doi:10.1088/0004-637X/776/1/15.ISSN 0004-637X.
  411. ^Feng, Fabo; Butler, R. Paul; Vogt, Steven S.; Clement, Matthew S.; Tinney, C. G.; Cui, Kaiming; Aizawa, Masataka; Jones, Hugh R. A.; Bailey, J.; Burt, Jennifer; Carter, B. D.; Crane, Jeffrey D.; Dotti, Francesco Flammini; Holden, Bradford; Ma, Bo (2022-09-01)."3D Selection of 167 Substellar Companions to Nearby Stars".The Astrophysical Journal Supplement Series.262 (1): 21.arXiv:2208.12720.Bibcode:2022ApJS..262...21F.doi:10.3847/1538-4365/ac7e57.ISSN 0067-0049.
  412. ^"Length of Exoplanet Day Measured for First Time / VLT measures the spin of Beta Pictoris b". April 30, 2014.
  413. ^Cowen, R. (April 30, 2014). "First exoplanet seen spinning".Nature.doi:10.1038/nature.2014.15132.S2CID 123849861.
  414. ^Landman, R.; Stolker, T.; et al. (February 2024). "β Pictoris b through the eyes of the upgraded CRIRES+. Atmospheric composition, spin rotation, and radial velocity".Astronomy & Astrophysics.682: A48.arXiv:2311.13527.Bibcode:2024A&A...682A..48L.doi:10.1051/0004-6361/202347846.
  415. ^Poon, Michael; Rein, Hanno; Pham, Dang (2024-12-08). "A potential exomoon from the predicted planet obliquity of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"> <a:mi>β</a:mi> </a:math> Pictoris b".The Open Journal of Astrophysics.7.arXiv:2412.05988.doi:10.33232/001c.127130.
  416. ^abcStolker, T.; Samland, M.; Waters, L.B.F.M.; van den Ancker, M.E.; Balmer, W.O.; Lacour, S.; Sitko, M.L.; Wang, J.; Nowak, M.; Maire, A.-L.; Kammerer, J.; Otten, G.P.L.; Abuter, R.; Amorim, A.; Benisty, M. (2025-07-09)."Direct imaging discovery of a young giant planet orbiting on Solar System scales".Astronomy & Astrophysics.700: A21.arXiv:2507.06206.Bibcode:2025A&A...700A..21S.doi:10.1051/0004-6361/202555064.ISSN 0004-6361.
  417. ^Adams, Arthur D.; Meyer, Michael R.; Howe, Alex R.; Burningham, Ben; Daemgen, Sebastian; Fortney, Jonathan; Line, Mike; Marley, Mark; Quanz, Sascha P.; Todorov, Kamen (2023-11-01)."Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared".The Astronomical Journal.166 (5): 192.arXiv:2309.10188.Bibcode:2023AJ....166..192A.doi:10.3847/1538-3881/acfb87.ISSN 0004-6256.
  418. ^Bailey, Vanessa; et al. (January 2014). "HD 106906 b: A planetary-mass companion outside a massive debris disk".The Astrophysical Journal Letters.780 (1): L4.arXiv:1312.1265.Bibcode:2014ApJ...780L...4B.doi:10.1088/2041-8205/780/1/L4.S2CID 119113709.
  419. ^Osborne, Hannah (December 6, 2013)."Mystery Planet 'That Shouldn't Exist' Baffles Astronomers".International Business Times. Archived fromthe original on December 13, 2013. RetrievedDecember 8, 2013.
  420. ^Jenner, Lynn (December 9, 2020)."Hubble Pins Down Weird Exoplanet with Far-Flung Orbit".NASA.
  421. ^"Hubble Discovers a Strange Exoplanet That Resembles the Long-Sought "Planet Nine"". December 11, 2020.
  422. ^Adams, Arthur D.; Meyer, Michael R.; Howe, Alex R.; Burningham, Ben; Daemgen, Sebastian; Fortney, Jonathan; Line, Mike; Marley, Mark; Quanz, Sascha P.; Todorov, Kamen (2023-11-01)."Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared".The Astronomical Journal.166 (5): 192.arXiv:2309.10188.Bibcode:2023AJ....166..192A.doi:10.3847/1538-3881/acfb87.ISSN 0004-6256.
  423. ^abChauvin, G.; Lagrange, A.-M.; Lacombe, F.; Dumas, C.; Mouillet, D.; Zuckerman, B.; Gendron, E.; Song, I.; Beuzit, J.-L.; Lowrance, P.; Fusco, T. (February 2005)."Astrometric and spectroscopic confirmation of a brown dwarf companion to GSC 08047-00232: VLT/NACO deep imaging and spectroscopic observations".Astronomy & Astrophysics.430 (3):1027–1033.arXiv:astro-ph/0412548.Bibcode:2005A&A...430.1027C.doi:10.1051/0004-6361:20041353.ISSN 0004-6361.
  424. ^abcdeZhang, Elina Y. (2025-06-10)."Puffy but Cool: Investigating the Inflated Radii of TOI-7018.01 and TOI-7081.01".Research Notes of the AAS.9 (6): 138.Bibcode:2025RNAAS...9..138Z.doi:10.3847/2515-5172/ade1ce.ISSN 2515-5172.
  425. ^abcdeNayakshin, Sergei; Elbakyan, Vardan (2024-01-23)."On the origin of accretion bursts in FU Ori".Monthly Notices of the Royal Astronomical Society.528 (2):2182–2198.arXiv:2309.12072.Bibcode:2024MNRAS.528.2182N.doi:10.1093/mnras/stae049.ISSN 0035-8711.
  426. ^abcdNayakshin, Sergei; Owen, James E; Elbakyan, Vardan (2023-05-23)."Extreme evaporation of planets in hot thermally unstable protoplanetary discs: the case of FU Ori".Monthly Notices of the Royal Astronomical Society.523 (1):385–403.arXiv:2305.03392.Bibcode:2023MNRAS.523..385N.doi:10.1093/mnras/stad1392.ISSN 0035-8711.
  427. ^"Planet FU Ori b".Encyclopaedia of exoplanetary systems / exoplanet.eu. Retrieved2024-10-11.
  428. ^abcdefghijklmMékarnia, D.; Guillot, T.; Rivet, J.-P.; Schmider, F.-X.; Abe, L.; Gonçalves, I.; Agabi, A.; Crouzet, N.; Fruth, T.; Barbieri, M.; Bayliss, D. D. R.; Zhou, G.; Aristidi, E.; Szulagyi, J.; Daban, J.-B. (2016-11-21)."Transiting planet candidates with ASTEP 400 at Dome C, Antarctica".Monthly Notices of the Royal Astronomical Society.463 (1):45–62.Bibcode:2016MNRAS.463...45M.doi:10.1093/mnras/stw1934.ISSN 0035-8711.
  429. ^"The Extrasolar Planet Encyclopaedia — KOI-7073 b".Extrasolar Planets Encyclopaedia.Paris Observatory. 2019.
  430. ^"The Extrasolar Planet Encyclopaedia — 19g-2-01326 b".Extrasolar Planets Encyclopaedia.Paris Observatory. 2013.
  431. ^abYakovlev, O. Ya.; Valeev, A. F.; Valyavin, G. G.; Tavrov, A. V.; Aitov, V. N.; Mitiani, G. Sh.; Beskin, G. M.; Korablev, O. I.; Galazutdinov, G. A.; Vlasyuk, V. V.; Emelyanov, E. V.; Fatkhullin, T. A.; Sasyuk, V. V.; Perkov, A. V.; Bondar', S. F. (March 2023)."Eight Exoplanet Candidates in SAO Survey".Astrophysical Bulletin.78 (1):79–93.arXiv:2304.01076.Bibcode:2023AstBu..78...79Y.doi:10.1134/S1990341323010108.ISSN 1990-3413.
  432. ^abcdefNguyen, Kendra T.; Caldwell, Douglas A.; Twicken, Joseph D.; Striegel, Stephanie L.; Ting, Eric B.; Williams, Rosemary H.; Jenkins, Jon M. (October 2022)."Release of TESS Objects of Interest from TESS-SPOC Sectors 48 to 50 Full Frame Images".Research Notes of the AAS.6 (10): 207.Bibcode:2022RNAAS...6..207N.doi:10.3847/2515-5172/ac983a.ISSN 2515-5172.
  433. ^Nardiello, D; Piotto, G; Deleuil, M; Malavolta, L; Montalto, M; Bedin, L R; Borsato, L; Granata, V; Libralato, M; Manthopoulou, E E (2020-07-11)."A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) – II. Search for exoplanets in open clusters of the Southern ecliptic hemisphere and their frequency".Monthly Notices of the Royal Astronomical Society.495 (4):4924–4942.arXiv:2005.12281.Bibcode:2020MNRAS.495.4924N.doi:10.1093/mnras/staa1465.ISSN 0035-8711.
  434. ^abcMaio, F.; Fedele, D.; Roccatagliata, V.; Facchini, S.; Lodato, G.; Desidera, S.; Garufi, A.; Mesa, D.; Ruzza, A.; Toci, C.; Testi, L.; Zurlo, A.; Rosotti, G. (2025-06-27)."Unveiling a protoplanet candidate embedded in the HD 135344B disk with VLT/ERIS".Astronomy & Astrophysics.699: L10.Bibcode:2025A&A...699L..10M.doi:10.1051/0004-6361/202554472.ISSN 0004-6361.
  435. ^abLea, Robert (21 July 2025)."What are these strange swirls around an infant star? 'We may be watching a planet come into existence in real time'".space.com. Retrieved21 July 2025.
  436. ^Grady, C. A.; Schneider, G.; Sitko, M. L.; Williger, G. M.; Hamaguchi, K.; Brittain, S. D.; Ablordeppey, K.; Apai, D.; Beerman, L.; Carpenter, W. J.; Collins, K. A.; Fukagawa, M.; Hammel, H. B.; Henning, Th.; Hines, D.; Kimes, R.; Lynch, D. K.; Ménard, F.; Pearson, R.; Russell, R. W.; Silverstone, M.; Smith, P. S.; Troutman, M.; Wilner, D.; Woodgate, B.; Clampin, M. (2009)."Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B)".The Astrophysical Journal.699 (2): 1822.Bibcode:2009ApJ...699.1822G.doi:10.1088/0004-637X/699/2/1822.S2CID 9298646.
  437. ^Wallace, Joshua J.; Hartman, Joel D.; Bakos, Gáspár Á. (2020-03-01)."A Search for Transiting Planets in the Globular Cluster M4 with K2: Candidates and Occurrence Limits".The Astronomical Journal.159 (3): 106.arXiv:2001.08362.Bibcode:2020AJ....159..106W.doi:10.3847/1538-3881/ab66b4.ISSN 0004-6256.
  438. ^Lester, Kathryn V.; Howell, Steve B.; Ciardi, David R.; Matson, Rachel A. (2022-08-01)."Determining Which Binary Component Hosts the TESS Transiting Planet".The Astronomical Journal.164 (2): 56.arXiv:2206.02825.Bibcode:2022AJ....164...56L.doi:10.3847/1538-3881/ac75ee.ISSN 0004-6256.
  439. ^Bass, Dillon; Fabrycky, Daniel (2025)."Validating the Orbital Periods of the Coolest TESS Planet Candidates".The Astronomical Journal.169 (6): 299.arXiv:2411.17640.Bibcode:2025AJ....169..299B.doi:10.3847/1538-3881/adcac6.
  440. ^abSchmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.; Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam, C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M. (September 2016)."Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30".Astronomy & Astrophysics.593: A75.arXiv:1605.05315.Bibcode:2016A&A...593A..75S.doi:10.1051/0004-6361/201526326.ISSN 0004-6361.
  441. ^"Amazing Photo Shows Likely Alien Planet 1,200 Light-Years Away".MSN. 21 June 2016. Archived fromthe original on 11 August 2016. Retrieved22 June 2016.
  442. ^Lee, Chien-Hsiu; Chiang, Po-Shih (2018)."Evidence that the Planetary Candidate CVSO30c is a Background Star from Optical, Seeing-limited Data".The Astrophysical Journal.852 (2): L24.arXiv:1712.08727.Bibcode:2018ApJ...852L..24L.doi:10.3847/2041-8213/aaa40b.S2CID 119270170.
  443. ^Koen, C.; et al. (2020)."Properties of CVSO 30 from TESS measurements: Probably a binary T Tauri star with complex light curves and no obvious planets".Monthly Notices of the Royal Astronomical Society.494 (3):4349–4356.arXiv:2005.10253.Bibcode:2020AJ....160...86B.doi:10.1093/mnras/staa1038.
  444. ^abcdLuhman, K. L.; Wilson, J. C.; Brandner, W.; Skrutskie, M. F.; Nelson, M. J.; Smith, J. D.; Peterson, D. E.; Cushing, M. C.; Young, E. (October 2006)."Discovery of a Young Substellar Companion in Chamaeleon".The Astrophysical Journal.649 (2):894–899.arXiv:astro-ph/0609187.Bibcode:2006ApJ...649..894L.doi:10.1086/506517.ISSN 0004-637X.
  445. ^abcdKenworthy, M. A.; Klaasen, P. D.; Min, M.; van der Marel, N.; Bohn, A. J.; Kama, M.; et al. (January 2020)."ALMA and NACO observations towards the young exoring transit system J1407 (V1400 Cen)".Astronomy & Astrophysics.633: 6.arXiv:1912.03314.Bibcode:2020A&A...633A.115K.doi:10.1051/0004-6361/201936141. A115.
  446. ^abWinder, Jenny (27 February 2024)."The story of J1407b, the first exoplanet discovered with a ring system like Saturn".BBC Sky at Night Magazine. BBC.Archived from the original on 11 June 2024. Retrieved23 July 2024.
  447. ^Hall, Shannon (3 February 2015)."This Super-Saturn Alien Planet Might Be the New 'Lord of the Rings'".Space.com.Archived from the original on 4 June 2023. Retrieved24 July 2024.
  448. ^abMamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L.; Kenworthy, Matthew A.; et al. (March 2012)."Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks".The Astronomical Journal.143 (3): 15.arXiv:1108.4070.Bibcode:2012AJ....143...72M.doi:10.1088/0004-6256/143/3/72.S2CID 55818711. 72.
  449. ^Mentel, R. T.; Kenworthy, M. A.; Cameron, D. A.; Scott, E. L.; Mellon, S. N.; Hudec, R.; et al. (November 2018)."Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates".Astronomy & Astrophysics.619: 7.arXiv:1810.05171.Bibcode:2018A&A...619A.157M.doi:10.1051/0004-6361/201834004.S2CID 55015149. A157.
  450. ^Kenworthy, M. A.; Mamajek, E. E. (February 2015)."Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons?".The Astrophysical Journal.800 (2): 10.arXiv:1501.05652.Bibcode:2015ApJ...800..126K.doi:10.1088/0004-637X/800/2/126.S2CID 56118870. 126.
  451. ^abHammond, Iain; Christiaens, Valentin; Price, Daniel J.; Blakely, Dori; Trevascus, David; Bonse, Markus J.; Cantalloube, Faustine; Marleau, Gabriel-Dominique; Pinte, Christophe; Juillard, Sandrine; Samland, Matthias; Thompson, William; Wallace, Alex (2025)."Keplerian motion of a compact source orbiting the inner disc of PDS 70: A third protoplanet in resonance with b and c?".Monthly Notices of the Royal Astronomical Society.539 (2):1613–1627.arXiv:2504.11127.doi:10.1093/mnras/staf586.
  452. ^Mesa, D.; Keppler, M.; et al. (December 2019). "VLT/SPHERE exploration of the young multiplanetary system PDS70".Astronomy & Astrophysics.632: A25.arXiv:1910.11169.Bibcode:2019A&A...632A..25M.doi:10.1051/0004-6361/201936764.S2CID 204852148.
  453. ^abcThompson, William; Marois, Christian; Do ó, Clarissa R.; Konopacky, Quinn; Ruffio, Jean-Baptiste; Wang, Jason; Skemer, Andy J.; De Rosa, Robert J.; MacIntosh, Bruce (2023)."Deep Orbital Search for Additional Planets in the HR 8799 System".The Astronomical Journal.165 (1): 29.arXiv:2210.14213.Bibcode:2023AJ....165...29T.doi:10.3847/1538-3881/aca1af.
  454. ^Marois, Christian; Zuckerman, B.; Konopacky, Quinn M.; Macintosh, Bruce; Barman, Travis (December 2010). "Images of a fourth planet orbiting HR 8799".Nature.468 (7327):1080–1083.arXiv:1011.4918.Bibcode:2010Natur.468.1080M.doi:10.1038/nature09684.PMID 21150902.S2CID 4425891.
  455. ^Fortney, Jonathan (12 September 2007)."The one that got away".Nature.449 (7159):147–148.Bibcode:2007Natur.449..147F.doi:10.1038/449147a.PMID 17851500.S2CID 38288758.
  456. ^Silvotti, R.; Schuh, S.; Kim, S.L.; Lutz, R.; Reed, M.; Benatti, S.; Janulis, R.; Lanteri, L.; Østensen, R.; Marsh, T.R.; Dhillon, V.S. (March 2018). "The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data".Astronomy & Astrophysics.611: A85.arXiv:1711.10942.Bibcode:2018A&A...611A..85S.doi:10.1051/0004-6361/201731473.S2CID 119492634.
  457. ^Martin, Pierre-Yves (October 27, 2024)."Planet Sirius Bb".exoplanet.eu.
  458. ^Lucas, Miles; Bottom, Michael; Ruane, Garreth; Ragland, Sam (2022)."An Imaging Search for Post-main-sequence Planets of Sirius B".The Astronomical Journal.163 (2): 81.arXiv:2112.05234.Bibcode:2022AJ....163...81L.doi:10.3847/1538-3881/ac4032.
  459. ^"Sirius 2". SolStation. Retrieved4 August 2006.
  460. ^Backman, D. E. (30 June – 11 July 1986). "IRAS observations of nearby main sequence stars and modeling of excess infrared emission". In Gillett, F. C.; Low, F. J. (eds.).Proceedings, 6th Topical Meetings and Workshop on Cosmic Dust and Space Debris. Vol. 6. Toulouse, France: COSPAR and IAF. pp. 43–46.Bibcode:1986AdSpR...6...43B.doi:10.1016/0273-1177(86)90209-7.ISSN 0273-1177.
  461. ^Brosch 2008, p. 126
  462. ^abPearson, Samuel G.; McCaughrean, Mark J. (2 Oct 2023). "Jupiter Mass Binary Objects in the Trapezium Cluster".arXiv:2310.01231 [astro-ph.EP].
  463. ^Diamond, Jessica L.; Parker, Richard J. (November 2024)."Formation of Jupiter-mass Binary Objects through Photoerosion of Fragmenting Cores".The Astrophysical Journal.975 (2): 204.arXiv:2410.09159.Bibcode:2024ApJ...975..204D.doi:10.3847/1538-4357/ad8644.ISSN 0004-637X.
  464. ^Portegies Zwart, Simon; Hochart, Erwan (2024-07-02)."The origin and evolution of wide Jupiter mass binary objects in young stellar clusters".SciPost.3 (1): 19.arXiv:2312.04645.Bibcode:2024ScPA....3....1P.doi:10.21468/SciPostAstro.3.1.001.
  465. ^Luhman, K. L. (2025)."JWST Spectra of Brown Dwarf Candidates in the Orion Nebula Cluster".Monthly Notices of the Royal Astronomical Society.542 (1):L126 –L131.arXiv:2507.03679.Bibcode:2025MNRAS.542L.126L.doi:10.1093/mnrasl/slaf072.
  466. ^abBoss, Alan (June 1997). "Giant Planet Formation by Gravitational Instability".Science.276 (5320):1836–1839.Bibcode:1997Sci...276.1836B.doi:10.1126/science.276.5320.1836.
  467. ^ab"Hubble Finds a Planet Forming in an Unconventional Way".HubbleSite.org. April 4, 2022. RetrievedApril 10, 2022.
  468. ^Albrecht, Simon H.; Dawson, Rebekah I.; Winn, Joshua N. (2022-08-01)."Stellar Obliquities in Exoplanetary Systems".Publications of the Astronomical Society of the Pacific.134 (1038): 082001.arXiv:2203.05460.Bibcode:2022PASP..134h2001A.doi:10.1088/1538-3873/ac6c09.ISSN 0004-6280.
  469. ^Cacciapuoti, Luca; Kostov, Veselin B; Kuchner, Marc; Quintana, Elisa V; Colón, Knicole D; Brande, Jonathan; Mullally, Susan E; Chance, Quadry; Christiansen, Jessie L; Ahlers, John P; DiFraia, Marco Z; DurantiniLuca, Hugo A; Ienco, Riccardo M; Gallo, Francesco; deLima, Lucas T (2022-04-21)."The TESS Triple-9 Catalog: 999 uniformly vetted exoplanet candidates".Monthly Notices of the Royal Astronomical Society.513 (1):102–116.arXiv:2203.15826.Bibcode:2022MNRAS.513..102C.doi:10.1093/mnras/stac652.ISSN 0035-8711.
  470. ^abManitowoc, Terrence Gollata (2018-11-27)."What's the diameter of the largest exoplanet found so far?".Astronomy Magazine. Retrieved2024-01-03.
  471. ^Gully-Santiago, Michael; Morley, Caroline V.; Luna, Jessica; MacLeod, Morgan; Oklopčić, Antonija; Ganesh, Aishwarya; Tran, Quang H.; Zhang, Zhoujian; Bowler, Brendan P.; Cochran, William D.; Krolikowski, Daniel M.; Mahadevan, Suvrath; Ninan, Joe P.; Stefánsson, Guđmundur; Vanderburg, Andrew (2024-03-01)."A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation".The Astronomical Journal.167 (4): 142.arXiv:2307.08959.Bibcode:2024AJ....167..142G.doi:10.3847/1538-3881/ad1ee8.ISSN 0004-6256.
  472. ^Wang 王劲, Jason J. 飞; Ginzburg, Sivan; Ren 任, Bin 彬; Wallack, Nicole; Gao, Peter; Mawet, Dimitri; Bond, Charlotte Z.; Cetre, Sylvain; Wizinowich, Peter; De Rosa, Robert J.; Ruane, Garreth; Liu, Michael C.; Absil, Olivier; Alvarez, Carlos; Baranec, Christoph (2020-06-01)."Keck/NIRC2 L'-band Imaging of Jovian-mass Accreting Protoplanets around PDS 70".The Astronomical Journal.159 (6): 263.arXiv:2004.09597.Bibcode:2020AJ....159..263W.doi:10.3847/1538-3881/ab8aef.ISSN 0004-6256.
  473. ^abcWinn, Joshua N. (September 2022)."Joint Constraints on Exoplanetary Orbits from Gaia DR3 and Doppler Data".The Astronomical Journal.164 (5): 196.arXiv:2209.05516.Bibcode:2022AJ....164..196W.doi:10.3847/1538-3881/ac9126.S2CID 252211643.
  474. ^abcKiefer, Flavien (17 October 2019). "Determining the mass of the planetary candidate HD 114762 b using Gaia".Astronomy & Astrophysics.632: L9.arXiv:1910.07835.Bibcode:2019A&A...632L...9K.doi:10.1051/0004-6361/201936942.S2CID 204743831.
  475. ^abcKiefer, F.; Hébrard, G.; Lecavelier des Etangs, A.; Martioli, E.; Dalal, S.; Vidal-Madjar, A. (January 2021)."Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets".Astronomy & Astrophysics.645: A7.arXiv:2009.14164.Bibcode:2021A&A...645A...7K.doi:10.1051/0004-6361/202039168.ISSN 0004-6361.
  476. ^Zhou, G.; Bakos, G. á.; Hartman, J. D.; Latham, D. W.; Torres, G.; Bhatti, W.; Penev, K.; Buchhave, L.; Kovács, G.; Bieryla, A.; Quinn, S.; Isaacson, H.; Fulton, B. J.; Falco, E.; Csubry, Z. (2017-05-01)."HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography ∗".The Astronomical Journal.153 (5): 211.arXiv:1702.00106.Bibcode:2017AJ....153..211Z.doi:10.3847/1538-3881/aa674a.ISSN 0004-6256.
  477. ^Zhou, G; Bakos, G. Á; Hartman, J. D; Latham, D. W; Torres, G; Bhatti, W; Penev, K; Buchhave, L; Kovács, G; Bieryla, A; Quinn, S; Isaacson, H; Fulton, B. J; Falco, E; Csubry, Z; Everett, M; Szklenar, T; Esquerdo, G; Berlind, P; Calkins, M. L; Béky, B; Knox, R. P; Hinz, P; Horch, E. P; Hirsch, L; Howell, S. B; Noyes, R. W; Marcy, G; De Val-Borro, M; et al. (2017)."HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography".The Astronomical Journal.153 (5): 211.arXiv:1702.00106.Bibcode:2017AJ....153..211Z.doi:10.3847/1538-3881/aa674a.S2CID 119491990.
  478. ^Crouzet, N; McCullough, P. R; Long, D; Montanes Rodriguez, P; Lecavelier Des Etangs, A; Ribas, I; Bourrier, V; Hébrard, G; Vilardell, F; Deleuil, M; Herrero, E; Garcia-Melendo, E; Akhenak, L; Foote, J; Gary, B; Benni, P; Guillot, T; Conjat, M; Mékarnia, D; Garlitz, J; Burke, C. J; Courcol, B; Demangeon, O (2017-02-03)."Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit".The Astronomical Journal.153 (3): 94.arXiv:1612.02776.Bibcode:2017AJ....153...94C.doi:10.3847/1538-3881/153/3/94.S2CID 119082666.
  479. ^Crossfield, Ian J. M.; Hansen, Brad M. S.; Harrington, Joseph; Cho, James Y.-K.; Deming, Drake; Menou, Kristen; Seager, Sara (2010-11-10)."A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b".The Astrophysical Journal.723 (2):1436–1446.arXiv:1008.0393.Bibcode:2010ApJ...723.1436C.doi:10.1088/0004-637X/723/2/1436.ISSN 0004-637X.
  480. ^Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R. (June 2017)."The GAPS Programme with HARPS-N at TNG: XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets⋆".Astronomy & Astrophysics.602: A107.arXiv:1704.00373.Bibcode:2017A&A...602A.107B.doi:10.1051/0004-6361/201629882.hdl:2434/512656.ISSN 0004-6361.
  481. ^Brown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B. (2017-01-01)."Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems".Monthly Notices of the Royal Astronomical Society.464 (1):810–839.arXiv:1610.00600.Bibcode:2017MNRAS.464..810B.doi:10.1093/mnras/stw2316.ISSN 0035-8711.
  482. ^Wu, Ya-Lin; Close, Laird M.; Males, Jared R.; Barman, Travis S.; Morzinski, Katie M.; Follette, Katherine B.; Bailey, Vanessa; Rodigas, Timothy J.; Hinz, Philip; Puglisi, Alfio; Xompero, Marco; Briguglio, Runa (2015-02-23)."New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion Ct Chamaeleontis B with the Magellan Ao System".The Astrophysical Journal.801 (1): 4.arXiv:1501.01396.Bibcode:2015ApJ...801....4W.doi:10.1088/0004-637X/801/1/4.ISSN 1538-4357.
  483. ^abcSouthworth, John (2010-11-01)."Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models: Studies of transiting extrasolar planets - III".Monthly Notices of the Royal Astronomical Society.408 (3):1689–1713.arXiv:1006.4443.Bibcode:2010MNRAS.408.1689S.doi:10.1111/j.1365-2966.2010.17231.x.
  484. ^Cameron, A. C.; Bouchy, F.; Hebrard, G.; Maxted, P.; Pollacco, D.; Pont, F.; Skillen, I.; Smalley, B.; Street, R. A.; West, R. G.; Wilson, D. M.; Aigrain, S.; Christian, D. J.; Clarkson, W. I.; Enoch, B. (2007-03-01)."WASP-1b and WASP-2b: two new transiting exoplanets detected with SuperWASP and SOPHIE".Monthly Notices of the Royal Astronomical Society.375 (3):951–957.arXiv:astro-ph/0609688.Bibcode:2007MNRAS.375..951C.doi:10.1111/j.1365-2966.2006.11350.x.ISSN 0035-8711.
  485. ^Nikolov, N.; Sing, D. K.; Pont, F.; Burrows, A. S.; Fortney, J. J.; Ballester, G. E.; Evans, T. M.; Huitson, C. M.; Wakeford, H. R.; Wilson, P. A.; Aigrain, S.; Deming, D.; Gibson, N. P.; Henry, G. W.; Knutson, H. (2014-01-01)."Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b".Monthly Notices of the Royal Astronomical Society.437 (1):46–66.arXiv:1310.0083.Bibcode:2014MNRAS.437...46N.doi:10.1093/mnras/stt1859.ISSN 0035-8711.
  486. ^Turner, Jake D.; Pearson, Kyle A.; Biddle, Lauren I.; Smart, Brianna M.; Zellem, Robert T.; Teske, Johanna K.; Hardegree-Ullman, Kevin K.; Griffith, Caitlin C.; Leiter, Robin M.; Cates, Ian T.; Nieberding, Megan N.; Smith, Carter-Thaxton W.; Thompson, Robert M.; Hofmann, Ryan; Berube, Michael P. (2016-06-11)."Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits".Monthly Notices of the Royal Astronomical Society.459 (1):789–819.arXiv:1603.02587.Bibcode:2016MNRAS.459..789T.doi:10.1093/mnras/stw574.ISSN 0035-8711.
  487. ^abBakos, G. A.; Noyes, R. W.; Kovacs, G.; Latham, D. W.; Sasselov, D. D.; Torres, G.; Fischer, D. A.; Stefanik, R. P.; Sato, B.; Johnson, J. A.; Pal, A.; Marcy, G. W.; Butler, R. P.; Esquerdo, G. A.; Stanek, K. Z. (2007-02-10)."HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary".The Astrophysical Journal.656 (1):552–559.arXiv:astro-ph/0609369.Bibcode:2007ApJ...656..552B.doi:10.1086/509874.ISSN 0004-637X.
  488. ^abItoh, Yoichi; Hayashi, Masahiko; Tamura, Motohide; Tsuji, Takashi; Oasa, Yumiko; Fukagawa, Misato; Hayashi, Saeko S.; Naoi, Takahiro; Ishii, Miki; Mayama, Satoshi; Morino, Jun-ichi; Yamashita, Takuya; Pyo, Tae-Soo; Nishikawa, Takayuki; Usuda, Tomonori (2005-02-20)."A Young Brown Dwarf Companion to DH Tauri".The Astrophysical Journal.620 (2):984–993.arXiv:astro-ph/0411177.Bibcode:2005ApJ...620..984I.doi:10.1086/427086.ISSN 0004-637X.
  489. ^Xuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-02-10)."A Rotation Rate for the Planetary-Mass Companion DH Tau b".The Astronomical Journal.159 (3): 97.arXiv:2001.01759.Bibcode:2020AJ....159...97X.doi:10.3847/1538-3881/ab67c4.ISSN 1538-3881.S2CID 210023665.
  490. ^abCharbonneau, David; Brown, Timothy M.; Latham, David W.; Mayor, Michel (2000-01-20)."Detection of Planetary Transits Across a Sun-like Star".The Astrophysical Journal.529 (1):L45 –L48.arXiv:astro-ph/9911436.Bibcode:2000ApJ...529L..45C.doi:10.1086/312457.PMID 10615033.
  491. ^abIgnas A. G. Snellen; De Kok; De Mooij; Albrecht; et al. (2010). "The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b".Nature.465 (7301):1049–1051.arXiv:1006.4364.Bibcode:2010Natur.465.1049S.doi:10.1038/nature09111.PMID 20577209.S2CID 205220901.
  492. ^abNeuhäuser, R.; Guenther, E. W.; Wuchterl, G.; Mugrauer, M.; Bedalov, A.; Hauschildt, P. H. (May 2005)."Evidence for a co-moving sub-stellar companion of GQ Lup".Astronomy & Astrophysics.435 (1):L13 –L16.arXiv:astro-ph/0503691.Bibcode:2005A&A...435L..13N.doi:10.1051/0004-6361:200500104.ISSN 0004-6361.
  493. ^ab"Is this a Brown Dwarf or an Exoplanet?
    New Young Sub-stellar Companion Imaged with the VLT"
    .European Southern Observatory. 7 April 2005. Retrieved7 May 2025.
  494. ^S.V. Berdyugina; A.V. Berdyugin; V. Piirola (14 September 2011). "Upsilon Andromedae b in polarized light: New constraints on the planet size, density and albedo".arXiv:1109.3116 [astro-ph.EP].
  495. ^abSigurdsson, S.; Richer, H.B.; Hansen, B.M.; Stairs I.H.; Thorsett, S.E. (2003). "A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation".Science.301 (5630):193–196.arXiv:astro-ph/0307339.Bibcode:2003Sci...301..193S.doi:10.1126/science.1086326.PMID 12855802.S2CID 39446560.
  496. ^Britt, Robert Roy (2003)."Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life"(PDF).Space.com. Archived fromthe original(PDF) on 2013-12-19. Retrieved2013-12-19.
  497. ^"Oldest Known Planet Identified".HubbleSite.Archived from the original on 2008-05-17. Retrieved2006-05-07.
  498. ^Konacki, Maciej; Wolszczan, Alex (2003-07-10)."Masses and Orbital Inclinations of Planets in the PSR B1257+12 System".The Astrophysical Journal.591 (2):L147 –L150.arXiv:astro-ph/0305536.Bibcode:2003ApJ...591L.147K.doi:10.1086/377093.ISSN 0004-637X.
  499. ^"Pulsar Planets". Archived fromthe original on 30 December 2005.
  500. ^Wolszczan, A.; Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12".Nature.355 (6356):145–147.Bibcode:1992Natur.355..145W.doi:10.1038/355145a0.S2CID 4260368.
  501. ^Podsiadlowski, P. (1993). "Planet Formation Scenarios".Planets Around Pulsars; Proceedings of the Conference. Vol. 36. California Institute of Technology. pp. 149–165.Bibcode:1993ASPC...36..149P.
  502. ^abBailes, M.; Lyne, A. G.; Shemar, S. L. (July 1991)."A planet orbiting the neutron star PSR1829–10".Nature.352 (6333):311–313.Bibcode:1991Natur.352..311B.doi:10.1038/352311a0.ISSN 0028-0836.
  503. ^Lyne, A. G.; Bailes, M (1992-01-16)."No planet orbiting PS R1829–10".Nature.355 (6357): 213.Bibcode:1992Natur.355..213L.doi:10.1038/355213b0.ISSN 0028-0836.
  504. ^Wang, Sharon Xuesong; et al. (2012). "The Discovery of HD 37605c and a Dispositive Null Detection of Transits of HD 37605b".The Astrophysical Journal.761 (1):46–59.arXiv:1210.6985.Bibcode:2012ApJ...761...46W.doi:10.1088/0004-637X/761/1/46.S2CID 118679173.
  505. ^abKane, Stephen R. & Gelino, Dawn M. (2012)."Distinguishing between stellar and planetary companions with phase monitoring".Monthly Notices of the Royal Astronomical Society.424 (1):779–788.arXiv:1205.5812.Bibcode:2012MNRAS.424..779K.doi:10.1111/j.1365-2966.2012.21265.x.S2CID 15537565.
  506. ^"The fight over who really found the first exoplanet".Discover Magazine. April 22, 2019. RetrievedDecember 14, 2019.
  507. ^Knudstrup, E.; Lund, M. N.; Fredslund Andersen, M.; Rørsted, J. L.; Pérez Hernández, F.; Grundahl, F.; Pallé, P. L.; Stello, D.; White, T. R.; Kjeldsen, H.; Vrard, M.; Winther, M. L.; Handberg, R.; Simón-Díaz, S. (July 2023)."Solar-like oscillations in γ Cephei A as seen through SONG and TESS: A seismic study of γ Cephei A".Astronomy & Astrophysics.675: A197.arXiv:2306.09769.Bibcode:2023A&A...675A.197K.doi:10.1051/0004-6361/202346707.ISSN 0004-6361.
  508. ^Campbell, Bruce; Walker, G. A. H.; Yang, S. (August 1988)."A search for substellar companions to solar-type stars".The Astrophysical Journal.331: 902.Bibcode:1988ApJ...331..902C.doi:10.1086/166608.ISSN 0004-637X.
  509. ^Lawton, A. T.; Wright, P. (July 1989). "A planetary system for Gamma Cephei?".Journal of the British Interplanetary Society.42 (42):335–336.Bibcode:1989JBIS...42..335L.
  510. ^Walker, Gordon A. H.; Bohlender, David A.; Walker, Andrew R.; Irwin, Alan W.; Yang, Stephenson L. S.; Larson, Ana (September 1992)."Gamma Cephei - Rotation or planetary companion?".The Astrophysical Journal.396: L91.Bibcode:1992ApJ...396L..91W.doi:10.1086/186524.ISSN 0004-637X.
  511. ^Hatzes, Artie P.; Cochran, William D.; Endl, Michael; McArthur, Barbara; Paulson, Diane B.; Walker, Gordon A. H.; Campbell, Bruce; Yang, Stephenson (2003-12-20)."A Planetary Companion to γ Cephei A".The Astrophysical Journal.599 (2):1383–1394.arXiv:astro-ph/0305110.Bibcode:2003ApJ...599.1383H.doi:10.1086/379281.ISSN 0004-637X.

Bibliography

[edit]
Exoplanets
Main topics
Sizes
and
types
Terrestrial
Gaseous
Other types
Formation
and
evolution
Systems
Host stars
Detection
Habitability
Catalogues
Lists
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_largest_exoplanets&oldid=1323906041"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp