Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of equations in quantum mechanics

From Wikipedia, the free encyclopedia

Part of a series of articles about
Quantum mechanics
iddt|Ψ=H^|Ψ{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }

This article summarizesequations in the theory ofquantum mechanics.

Wavefunctions

[edit]

A fundamentalphysical constant occurring in quantum mechanics is thePlanck constant,h. A common abbreviation isħ =h/2π, also known as thereduced Planck constant orDirac constant.

Quantity (common name/s)(Common) symbol/sDefining equationSI unitDimension
Wavefunctionψ, ΨTo solve from theSchrödinger equationvaries with situation and number of particles
Wavefunctionprobability densityρρ=|Ψ|2=ΨΨ{\displaystyle \rho =\left|\Psi \right|^{2}=\Psi ^{*}\Psi }m−3[L]−3
Wavefunctionprobability currentjNon-relativistic, no external field:

j=i2m(ΨΨΨΨ)=mIm(ΨΨ)=Re(ΨimΨ){\displaystyle {\begin{aligned}\mathbf {j} &={\frac {-i\hbar }{2m}}\left(\Psi ^{*}\nabla \Psi -\Psi \nabla \Psi ^{*}\right)\\&={\frac {\hbar }{m}}\operatorname {Im} \left(\Psi ^{*}\nabla \Psi \right)=\operatorname {Re} \left(\Psi ^{*}{\frac {\hbar }{im}}\nabla \Psi \right)\end{aligned}}}

star * iscomplex conjugate

m−2⋅s−1[T]−1 [L]−2

The general form ofwavefunction for a system of particles, each with positionri and z-component of spinsz i. Sums are over the discrete variablesz, integrals over continuous positionsr.

For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is mathematically necessary). Following are general mathematical results, used in calculations.

Property or effectNomenclatureEquation
Wavefunction forN particles in 3d
  • r = (r1,r2...rN)
  • sz = (sz 1,sz 2, ...,sz N)
In function notation:

Ψ=Ψ(r,sz,t){\displaystyle \Psi =\Psi \left(\mathbf {r} ,\mathbf {s_{z}} ,t\right)}

inbra–ket notation:|Ψ=sz1sz2szNV1V2VNdr1dr2drNΨ|r,sz{\displaystyle |\Psi \rangle =\sum _{s_{z1}}\sum _{s_{z2}}\cdots \sum _{s_{zN}}\int _{V_{1}}\int _{V_{2}}\cdots \int _{V_{N}}\mathrm {d} \mathbf {r} _{1}\mathrm {d} \mathbf {r} _{2}\cdots \mathrm {d} \mathbf {r} _{N}\Psi |\mathbf {r} ,\mathbf {s_{z}} \rangle }

for non-interacting particles:

Ψ=n=1NΨ(rn,szn,t){\displaystyle \Psi =\prod _{n=1}^{N}\Psi \left(\mathbf {r} _{n},s_{zn},t\right)}

Position-momentum Fourier transform (1 particle in 3d)
  • Φ = momentum–space wavefunction
  • Ψ = position–space wavefunction
Φ(p,sz,t)=12π3allspaceeipr/Ψ(r,sz,t)d3r↿⇂Ψ(r,sz,t)=12π3allspacee+ipr/Φ(p,sz,t)d3pn{\displaystyle {\begin{aligned}\Phi (\mathbf {p} ,s_{z},t)&={\frac {1}{{\sqrt {2\pi \hbar }}^{3}}}\int \limits _{\mathrm {all\,space} }e^{-i\mathbf {p} \cdot \mathbf {r} /\hbar }\Psi (\mathbf {r} ,s_{z},t)\mathrm {d} ^{3}\mathbf {r} \\&\upharpoonleft \downharpoonright \\\Psi (\mathbf {r} ,s_{z},t)&={\frac {1}{{\sqrt {2\pi \hbar }}^{3}}}\int \limits _{\mathrm {all\,space} }e^{+i\mathbf {p} \cdot \mathbf {r} /\hbar }\Phi (\mathbf {p} ,s_{z},t)\mathrm {d} ^{3}\mathbf {p} _{n}\\\end{aligned}}}
General probability distribution
  • Vj = volume (3d region) particle may occupy,
  • P = Probability that particle 1 has positionr1 in volumeV1 with spinsz1and particle 2 has positionr2 in volumeV2 with spinsz2, etc.
P=szNsz2sz1VNV2V1|Ψ|2d3r1d3r2d3rN{\displaystyle P=\sum _{s_{zN}}\cdots \sum _{s_{z2}}\sum _{s_{z1}}\int _{V_{N}}\cdots \int _{V_{2}}\int _{V_{1}}\left|\Psi \right|^{2}\mathrm {d} ^{3}\mathbf {r} _{1}\mathrm {d} ^{3}\mathbf {r} _{2}\cdots \mathrm {d} ^{3}\mathbf {r} _{N}\,\!}
Generalnormalization conditionP=szNsz2sz1allspaceallspaceallspace|Ψ|2d3r1d3r2d3rN=1{\displaystyle P=\sum _{s_{zN}}\cdots \sum _{s_{z2}}\sum _{s_{z1}}\int \limits _{\mathrm {all\,space} }\cdots \int \limits _{\mathrm {all\,space} }\;\int \limits _{\mathrm {all\,space} }\left|\Psi \right|^{2}\mathrm {d} ^{3}\mathbf {r} _{1}\mathrm {d} ^{3}\mathbf {r} _{2}\cdots \mathrm {d} ^{3}\mathbf {r} _{N}=1\,\!}

Equations

[edit]

Wave–particle duality and time evolution

[edit]
Property or effectNomenclatureEquation
Planck–Einstein equation andde Broglie wavelength relations
P=(E/c,p)=(ω/c,k)=K{\displaystyle \mathbf {P} =(E/c,\mathbf {p} )=\hbar (\omega /c,\mathbf {k} )=\hbar \mathbf {K} }
Schrödinger equation
General time-dependent case:

itΨ=H^Ψ{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi ={\hat {H}}\Psi }

Time-independent case:H^Ψ=EΨ{\displaystyle {\hat {H}}\Psi =E\Psi }

Heisenberg equation
ddtA^(t)=i[H^,A^(t)]+A^(t)t{\displaystyle {\frac {d}{dt}}{\hat {A}}(t)={\frac {i}{\hbar }}[{\hat {H}},{\hat {A}}(t)]+{\frac {\partial {\hat {A}}(t)}{\partial t}}}
Time evolution in Heisenberg picture (Ehrenfest theorem)

of a particle.

ddtA^=1i[A^,H^]+A^t{\displaystyle {\frac {d}{dt}}\langle {\hat {A}}\rangle ={\frac {1}{i\hbar }}\langle [{\hat {A}},{\hat {H}}]\rangle +\left\langle {\frac {\partial {\hat {A}}}{\partial t}}\right\rangle }

For momentum and position;

mddtr=p{\displaystyle m{\frac {d}{dt}}\langle \mathbf {r} \rangle =\langle \mathbf {p} \rangle }

ddtp=V{\displaystyle {\frac {d}{dt}}\langle \mathbf {p} \rangle =-\langle \nabla V\rangle }

Non-relativistic time-independent Schrödinger equation

[edit]

Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, thepartial derivative reduces to anordinary derivative.

One particleN particles
One dimensionH^=p^22m+V(x)=22md2dx2+V(x){\displaystyle {\hat {H}}={\frac {{\hat {p}}^{2}}{2m}}+V(x)=-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}+V(x)}H^=n=1Np^n22mn+V(x1,x2,xN)=22n=1N1mn2xn2+V(x1,x2,xN){\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {p}}_{n}^{2}}{2m_{n}}}+V(x_{1},x_{2},\cdots x_{N})\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}+V(x_{1},x_{2},\cdots x_{N})\end{aligned}}}

where the position of particlen isxn.

EΨ=22md2dx2Ψ+VΨ{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\Psi +V\Psi }EΨ=22n=1N1mn2xn2Ψ+VΨ.{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}\Psi +V\Psi \,.}
Ψ(x,t)=ψ(x)eiEt/.{\displaystyle \Psi (x,t)=\psi (x)e^{-iEt/\hbar }\,.}

There is a further restriction — the solution must not grow at infinity, so that it has either a finiteL2-norm (if it is abound state) or a slowly diverging norm (if it is part of acontinuum):[1]ψ2=|ψ(x)|2dx.{\displaystyle \|\psi \|^{2}=\int |\psi (x)|^{2}\,dx.\,}

Ψ=eiEt/ψ(x1,x2xN){\displaystyle \Psi =e^{-iEt/\hbar }\psi (x_{1},x_{2}\cdots x_{N})}

for non-interacting particles

Ψ=eiEt/n=1Nψ(xn),V(x1,x2,xN)=n=1NV(xn).{\displaystyle \Psi =e^{-i{Et/\hbar }}\prod _{n=1}^{N}\psi (x_{n})\,,\quad V(x_{1},x_{2},\cdots x_{N})=\sum _{n=1}^{N}V(x_{n})\,.}

Three dimensionsH^=p^p^2m+V(r)=22m2+V(r){\displaystyle {\begin{aligned}{\hat {H}}&={\frac {{\hat {\mathbf {p} }}\cdot {\hat {\mathbf {p} }}}{2m}}+V(\mathbf {r} )\\&=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} )\end{aligned}}}

where the position of the particle isr = (x, y, z).

H^=n=1Np^np^n2mn+V(r1,r2,rN)=22n=1N1mnn2+V(r1,r2,rN){\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {\mathbf {p} }}_{n}\cdot {\hat {\mathbf {p} }}_{n}}{2m_{n}}}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})\end{aligned}}}

where the position of particlen isrn = (xn,yn,zn), and the Laplacian for particlen using the corresponding position coordinates is

n2=2xn2+2yn2+2zn2{\displaystyle \nabla _{n}^{2}={\frac {\partial ^{2}}{{\partial x_{n}}^{2}}}+{\frac {\partial ^{2}}{{\partial y_{n}}^{2}}}+{\frac {\partial ^{2}}{{\partial z_{n}}^{2}}}}

EΨ=22m2Ψ+VΨ{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi +V\Psi }EΨ=22n=1N1mnn2Ψ+VΨ{\displaystyle E\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}\Psi +V\Psi }
Ψ=ψ(r)eiEt/{\displaystyle \Psi =\psi (\mathbf {r} )e^{-iEt/\hbar }}Ψ=eiEt/ψ(r1,r2rN){\displaystyle \Psi =e^{-iEt/\hbar }\psi (\mathbf {r} _{1},\mathbf {r} _{2}\cdots \mathbf {r} _{N})}

for non-interacting particles

Ψ=eiEt/n=1Nψ(rn),V(r1,r2,rN)=n=1NV(rn){\displaystyle \Psi =e^{-i{Et/\hbar }}\prod _{n=1}^{N}\psi (\mathbf {r} _{n})\,,\quad V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N})=\sum _{n=1}^{N}V(\mathbf {r} _{n})}

Non-relativistic time-dependent Schrödinger equation

[edit]

Again, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.

One particleN particles
One dimensionH^=p^22m+V(x,t)=22m2x2+V(x,t){\displaystyle {\hat {H}}={\frac {{\hat {p}}^{2}}{2m}}+V(x,t)=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}+V(x,t)}H^=n=1Np^n22mn+V(x1,x2,xN,t)=22n=1N1mn2xn2+V(x1,x2,xN,t){\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {p}}_{n}^{2}}{2m_{n}}}+V(x_{1},x_{2},\cdots x_{N},t)\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}+V(x_{1},x_{2},\cdots x_{N},t)\end{aligned}}}

where the position of particlen isxn.

itΨ=22m2x2Ψ+VΨ{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}\Psi +V\Psi }itΨ=22n=1N1mn2xn2Ψ+VΨ.{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}{\frac {\partial ^{2}}{\partial x_{n}^{2}}}\Psi +V\Psi \,.}
Ψ=Ψ(x,t){\displaystyle \Psi =\Psi (x,t)}Ψ=Ψ(x1,x2xN,t){\displaystyle \Psi =\Psi (x_{1},x_{2}\cdots x_{N},t)}
Three dimensionsH^=p^p^2m+V(r,t)=22m2+V(r,t){\displaystyle {\begin{aligned}{\hat {H}}&={\frac {{\hat {\mathbf {p} }}\cdot {\hat {\mathbf {p} }}}{2m}}+V(\mathbf {r} ,t)\\&=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} ,t)\\\end{aligned}}}H^=n=1Np^np^n2mn+V(r1,r2,rN,t)=22n=1N1mnn2+V(r1,r2,rN,t){\displaystyle {\begin{aligned}{\hat {H}}&=\sum _{n=1}^{N}{\frac {{\hat {\mathbf {p} }}_{n}\cdot {\hat {\mathbf {p} }}_{n}}{2m_{n}}}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)\\&=-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}+V(\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)\end{aligned}}}
itΨ=22m2Ψ+VΨ{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi +V\Psi }itΨ=22n=1N1mnn2Ψ+VΨ{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi =-{\frac {\hbar ^{2}}{2}}\sum _{n=1}^{N}{\frac {1}{m_{n}}}\nabla _{n}^{2}\Psi +V\Psi }

This last equation is in a very high dimension,[2] so the solutions are not easy to visualize.

Ψ=Ψ(r,t){\displaystyle \Psi =\Psi (\mathbf {r} ,t)}Ψ=Ψ(r1,r2,rN,t){\displaystyle \Psi =\Psi (\mathbf {r} _{1},\mathbf {r} _{2},\cdots \mathbf {r} _{N},t)}


Photoemission

[edit]
Property/EffectNomenclatureEquation
Photoelectric equation
  • Kmax = Maximum kinetic energy of ejected electron (J)
  • h =Planck constant
  • f = frequency of incident photons (Hz = s−1)
  • φ, Φ =Work function of the material the photons are incident on (J)
Kmax=hfΦ{\displaystyle K_{\mathrm {max} }=hf-\Phi \,\!}
Threshold frequency andWork function
  • φ, Φ = Work function of the material the photons are incident on (J)
  • f0,ν0 = Threshold frequency (Hz = s−1)
Can only be found by experiment.

The De Broglie relations give the relation between them:

ϕ=hf0{\displaystyle \phi =hf_{0}\,\!}

Photon momentum
  • p = momentum of photon (kg m s−1)
  • f = frequency of photon (Hz = s−1)
  • λ = wavelength of photon (m)

The De Broglie relations give:

p=hf/c=h/λ{\displaystyle p=hf/c=h/\lambda \,\!}

Quantum uncertainty

[edit]
Property or effectNomenclatureEquation
Heisenberg's uncertainty principles
  • n = number of photons
  • φ = wave phase
  • [, ] =commutator
Position–momentum

σ(x)σ(p)2{\displaystyle \sigma (x)\sigma (p)\geq {\frac {\hbar }{2}}\,\!}

Energy-timeσ(E)σ(t)2{\displaystyle \sigma (E)\sigma (t)\geq {\frac {\hbar }{2}}\,\!}

Number-phaseσ(n)σ(ϕ)2{\displaystyle \sigma (n)\sigma (\phi )\geq {\frac {\hbar }{2}}\,\!}

Dispersion of observableA = observables (eigenvalues of operator)

σ(A)2=(AA)2=A2A2{\displaystyle {\begin{aligned}\sigma (A)^{2}&=\langle (A-\langle A\rangle )^{2}\rangle \\&=\langle A^{2}\rangle -\langle A\rangle ^{2}\end{aligned}}}

General uncertainty relationA,B = observables (eigenvalues of operator)σ(A)σ(B)12i[A^,B^]{\displaystyle \sigma (A)\sigma (B)\geq {\frac {1}{2}}\langle i[{\hat {A}},{\hat {B}}]\rangle }
Probability Distributions
Property or effectEquation
Density of statesN(E)=82πm3/2E1/2/h3{\displaystyle N(E)=8{\sqrt {2}}\pi m^{3/2}E^{1/2}/h^{3}\,\!}
Fermi–Dirac distribution (fermions)P(Ei)=g(Ei)e(Eμ)/kT+1{\displaystyle P(E_{i})={\frac {g(E_{i})}{e^{(E-\mu )/kT}+1}}}

where

  • P(Ei) = probability of energyEi
  • g(Ei) = degeneracy of energyEi (no of states with same energy)
  • μ = chemical potential
Bose–Einstein distribution (bosons)P(Ei)=g(Ei)e(Eiμ)/kT1{\displaystyle P(E_{i})={\frac {g(E_{i})}{e^{(E_{i}-\mu )/kT}-1}}}

Angular momentum

[edit]
Main articles:angular momentum operator andquantum number
Property or effectNomenclatureEquation
Angular momentumquantum numbers
  • s =spin quantum number
  • ms = spin magnetic quantum number
  • =Azimuthal quantum number
  • m = azimuthal magnetic quantum number
  • j = total angular momentum quantum number
  • mj = total angular momentum magnetic quantum number

Spin:s=s(s+1)ms{s,s+1s1,s}{\displaystyle {\begin{aligned}&\Vert \mathbf {s} \Vert ={\sqrt {s\,(s+1)}}\,\hbar \\&m_{s}\in \{-s,-s+1\cdots s-1,s\}\\\end{aligned}}\,\!}

Orbital:{0n1}m{,+11,}{\displaystyle {\begin{aligned}&\ell \in \{0\cdots n-1\}\\&m_{\ell }\in \{-\ell ,-\ell +1\cdots \ell -1,\ell \}\\\end{aligned}}\,\!}

Total:j=+smj{|s|,|s|+1|+s|1,|+s|}{\displaystyle {\begin{aligned}&j=\ell +s\\&m_{j}\in \{|\ell -s|,|\ell -s|+1\cdots |\ell +s|-1,|\ell +s|\}\\\end{aligned}}\,\!}

Angular momentum magnitudesangular momementa:
  • S = Spin,
  • L = orbital,
  • J = total
Spin magnitude:

|S|=s(s+1){\displaystyle |\mathbf {S} |=\hbar {\sqrt {s(s+1)}}\,\!}

Orbital magnitude:|L|=(+1){\displaystyle |\mathbf {L} |=\hbar {\sqrt {\ell (\ell +1)}}\,\!}

Total magnitude:J=L+S{\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!}

|J|=j(j+1){\displaystyle |\mathbf {J} |=\hbar {\sqrt {j(j+1)}}\,\!}

Angular momentum componentsSpin:

Sz=ms{\displaystyle S_{z}=m_{s}\hbar \,\!}

Orbital:Lz=m{\displaystyle L_{z}=m_{\ell }\hbar \,\!}

Magnetic moments

In what follows,B is an applied external magnetic field and the quantum numbers above are used.

Property or effectNomenclatureEquation
orbital magnetic dipole moment
μ=eL/2me=gμBL{\displaystyle {\boldsymbol {\mu }}_{\ell }=-e\mathbf {L} /2m_{e}=g_{\ell }{\frac {\mu _{B}}{\hbar }}\mathbf {L} \,\!}

z-component:μ,z=mμB{\displaystyle \mu _{\ell ,z}=-m_{\ell }\mu _{B}\,\!}

spin magnetic dipole moment
μs=eS/me=gsμBS{\displaystyle {\boldsymbol {\mu }}_{s}=-e\mathbf {S} /m_{e}=g_{s}{\frac {\mu _{B}}{\hbar }}\mathbf {S} \,\!}

z-component:μs,z=eSz/me=gseSz/2me{\displaystyle \mu _{s,z}=-eS_{z}/m_{e}=g_{s}eS_{z}/2m_{e}\,\!}

dipole moment potentialU = potential energy of dipole in fieldU=μB=μzB{\displaystyle U=-{\boldsymbol {\mu }}\cdot \mathbf {B} =-\mu _{z}B\,\!}

Hydrogen atom

[edit]
Main article:Hydrogen atom
Property or effectNomenclatureEquation
Energy level
En=me4/8ε02h2n2=13.61eV/n2{\displaystyle E_{n}=-me^{4}/8\varepsilon _{0}^{2}h^{2}n^{2}=-13.61\,\mathrm {eV} /n^{2}}
Spectrumλ = wavelength of emitted photon, duringelectronic transition fromEi toEj1λ=R(1nj21ni2),nj<ni{\displaystyle {\frac {1}{\lambda }}=R\left({\frac {1}{n_{j}^{2}}}-{\frac {1}{n_{i}^{2}}}\right),\,n_{j}<n_{i}\,\!}

See also

[edit]

Footnotes

[edit]
  1. ^Feynman, R.P.; Leighton, R.B.; Sand, M. (1964). "Operators".The Feynman Lectures on Physics. Vol. 3.Addison-Wesley. pp. 20–7.ISBN 0-201-02115-3.{{cite book}}:ISBN / Date incompatibility (help)
  2. ^Shankar, R. (1994).Principles of Quantum Mechanics.Kluwer Academic/Plenum Publishers. p. 141.ISBN 978-0-306-44790-7.

Sources

[edit]

Further reading

[edit]
Base units
Derived units
with special names
Other accepted units
See also
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_equations_in_quantum_mechanics&oldid=1238849497"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp