Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of equations in classical mechanics

From Wikipedia, the free encyclopedia

Classical mechanics is the branch ofphysics used to describe the motion ofmacroscopic objects.[1] It is the most familiar of the theories of physics. The concepts it covers, such asmass,acceleration, andforce, are commonly used and known.[2] The subject is based upon athree-dimensionalEuclidean space with fixed axes, called a frame of reference. The point ofconcurrency of the three axes is known as the origin of the particular space.[3]

Classical mechanics utilises manyequations—as well as othermathematical concepts—which relate various physical quantities to one another. These includedifferential equations,manifolds,Lie groups, andergodic theory.[4] This article gives a summary of the most important of these.

This article lists equations fromNewtonian mechanics, seeanalytical mechanics for the more general formulation of classical mechanics (which includesLagrangian andHamiltonian mechanics).

Classical mechanics

[edit]

Mass and inertia

[edit]
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Linear, surface, volumetric mass densityλ orμ (especially inacoustics, see below) for Linear,σ for surface,ρ for volume.m=λd{\displaystyle m=\int \lambda \,\mathrm {d} \ell }

m=σdS{\displaystyle m=\iint \sigma \,\mathrm {d} S}

m=ρdV{\displaystyle m=\iiint \rho \,\mathrm {d} V}

kg mn,n = 1, 2, 3M Ln
Moment of mass[5]m (No common symbol)Point mass:

m=rm{\displaystyle \mathbf {m} =\mathbf {r} m}

Discrete masses about an axisxi{\displaystyle x_{i}}:m=i=1Nrimi{\displaystyle \mathbf {m} =\sum _{i=1}^{N}\mathbf {r} _{i}m_{i}}

Continuum of mass about an axisxi{\displaystyle x_{i}}:m=ρ(r)xidr{\displaystyle \mathbf {m} =\int \rho \left(\mathbf {r} \right)x_{i}\mathrm {d} \mathbf {r} }

kg mM L
Center of massrcom

(Symbols vary)

i-th moment of massmi=rimi{\displaystyle \mathbf {m} _{i}=\mathbf {r} _{i}m_{i}}

Discrete masses:rcom=1Mirimi=1Mimi{\displaystyle \mathbf {r} _{\mathrm {com} }={\frac {1}{M}}\sum _{i}\mathbf {r} _{i}m_{i}={\frac {1}{M}}\sum _{i}\mathbf {m} _{i}}

Mass continuum:rcom=1Mdm=1Mrdm=1MrρdV{\displaystyle \mathbf {r} _{\mathrm {com} }={\frac {1}{M}}\int \mathrm {d} \mathbf {m} ={\frac {1}{M}}\int \mathbf {r} \,\mathrm {d} m={\frac {1}{M}}\int \mathbf {r} \rho \,\mathrm {d} V}

mL
2-Body reduced massm12,μ Pair of masses =m1 andm2μ=m1m2m1+m2{\displaystyle \mu ={\frac {m_{1}m_{2}}{m_{1}+m_{2}}}}kgM
Moment of inertia (MOI)IDiscrete Masses:

I=imiri=i|ri|2m{\displaystyle I=\sum _{i}\mathbf {m} _{i}\cdot \mathbf {r} _{i}=\sum _{i}\left|\mathbf {r} _{i}\right|^{2}m}

Mass continuum:I=|r|2dm=rdm=|r|2ρdV{\displaystyle I=\int \left|\mathbf {r} \right|^{2}\mathrm {d} m=\int \mathbf {r} \cdot \mathrm {d} \mathbf {m} =\int \left|\mathbf {r} \right|^{2}\rho \,\mathrm {d} V}

kg m2M L2

Derived kinematic quantities

[edit]
Kinematic quantities of a classical particle: massm, positionr, velocityv, accelerationa.
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Velocityvv=drdt{\displaystyle \mathbf {v} ={\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}}m s−1L T−1
Accelerationaa=dvdt=d2rdt2{\displaystyle \mathbf {a} ={\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}={\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}}m s−2L T−2
Jerkjj=dadt=d3rdt3{\displaystyle \mathbf {j} ={\frac {\mathrm {d} \mathbf {a} }{\mathrm {d} t}}={\frac {\mathrm {d} ^{3}\mathbf {r} }{\mathrm {d} t^{3}}}}m s−3L T−3
Jouncess=djdt=d4rdt4{\displaystyle \mathbf {s} ={\frac {\mathrm {d} \mathbf {j} }{\mathrm {d} t}}={\frac {\mathrm {d} ^{4}\mathbf {r} }{\mathrm {d} t^{4}}}}m s−4L T−4
Angular velocityωω=n^dθdt{\displaystyle {\boldsymbol {\omega }}=\mathbf {\hat {n}} {\frac {\mathrm {d} \theta }{\mathrm {d} t}}}rad s−1T−1
Angular Accelerationαα=dωdt=n^d2θdt2{\displaystyle {\boldsymbol {\alpha }}={\frac {\mathrm {d} {\boldsymbol {\omega }}}{\mathrm {d} t}}=\mathbf {\hat {n}} {\frac {\mathrm {d} ^{2}\theta }{\mathrm {d} t^{2}}}}rad s−2T−2
Angular jerkζζ=dαdt=n^d3θdt3{\displaystyle {\boldsymbol {\zeta }}={\frac {\mathrm {d} {\boldsymbol {\alpha }}}{\mathrm {d} t}}=\mathbf {\hat {n}} {\frac {\mathrm {d} ^{3}\theta }{\mathrm {d} t^{3}}}}rad s−3T−3

Derived dynamic quantities

[edit]
Angular momenta of a classical object.

Left: intrinsic "spin" angular momentumS is really orbital angular momentum of the object at every point,

right: extrinsic orbital angular momentumL about an axis,

top: themoment of inertia tensorI and angular velocityω (L is not always parallel toω)[6]

bottom: momentump and its radial positionr from the axis.

The total angular momentum (spin + orbital) isJ.
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Momentumpp=mv{\displaystyle \mathbf {p} =m\mathbf {v} }kg m s−1M L T−1
ForceFF=dp/dt{\displaystyle \mathbf {F} =\mathrm {d} \mathbf {p} /\mathrm {d} t}N = kg m s−2M L T−2
ImpulseJ, Δp,IJ=Δp=t1t2Fdt{\displaystyle \mathbf {J} =\Delta \mathbf {p} =\int _{t_{1}}^{t_{2}}\mathbf {F} \,\mathrm {d} t}kg m s−1M L T−1
Angular momentum about a position pointr0,L,J,SL=(rr0)×p{\displaystyle \mathbf {L} =\left(\mathbf {r} -\mathbf {r} _{0}\right)\times \mathbf {p} }

Most of the time we can setr0 =0 if particles are orbiting about axes intersecting at a common point.

kg m2 s−1M L2 T−1
Moment of a force about a position pointr0,

Torque

τ,Mτ=(rr0)×F=dLdt{\displaystyle {\boldsymbol {\tau }}=\left(\mathbf {r} -\mathbf {r} _{0}\right)\times \mathbf {F} ={\frac {\mathrm {d} \mathbf {L} }{\mathrm {d} t}}}N m = kg m2 s−2M L2 T−2
Angular impulseΔL (no common symbol)ΔL=t1t2τdt{\displaystyle \Delta \mathbf {L} =\int _{t_{1}}^{t_{2}}{\boldsymbol {\tau }}\,\mathrm {d} t}kg m2 s−1M L2 T−1

General energy definitions

[edit]
Main article:Mechanical energy
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Mechanical work due to a Resultant ForceWW=CFdr{\displaystyle W=\int _{C}\mathbf {F} \cdot \mathrm {d} \mathbf {r} }J = N m = kg m2 s−2M L2 T−2
Work done ON mechanical system, Work done BYWON,WBYΔWON=ΔWBY{\displaystyle \Delta W_{\mathrm {ON} }=-\Delta W_{\mathrm {BY} }}J = N m = kg m2 s−2M L2 T−2
Potential energyφ, Φ,U,V,EpΔW=ΔV{\displaystyle \Delta W=-\Delta V}J = N m = kg m2 s−2M L2 T−2
MechanicalpowerPP=dEdt{\displaystyle P={\frac {\mathrm {d} E}{\mathrm {d} t}}}W = J s−1M L2 T−3

Everyconservative force has apotential energy. By following two principles one can consistently assign a non-relative value toU:

  • Wherever the force is zero, its potential energy is defined to be zero as well.
  • Whenever the force does work, potential energy is lost.

Generalized mechanics

[edit]
Main articles:Analytical mechanics,Lagrangian mechanics, andHamiltonian mechanics
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Generalized coordinatesq, Qvaries with choicevaries with choice
Generalized velocitiesq˙,Q˙{\displaystyle {\dot {q}},{\dot {Q}}}q˙dq/dt{\displaystyle {\dot {q}}\equiv \mathrm {d} q/\mathrm {d} t}varies with choicevaries with choice
Generalized momentap, Pp=L/q˙{\displaystyle p=\partial L/\partial {\dot {q}}}varies with choicevaries with choice
LagrangianLL(q,q˙,t)=T(q˙)V(q,q˙,t){\displaystyle L(\mathbf {q} ,\mathbf {\dot {q}} ,t)=T(\mathbf {\dot {q}} )-V(\mathbf {q} ,\mathbf {\dot {q}} ,t)}

whereq=q(t){\displaystyle \mathbf {q} =\mathbf {q} (t)} andp =p(t) are vectors of the generalized coords and momenta, as functions of time

JM L2 T−2
HamiltonianHH(p,q,t)=pq˙L(q,q˙,t){\displaystyle H(\mathbf {p} ,\mathbf {q} ,t)=\mathbf {p} \cdot \mathbf {\dot {q}} -L(\mathbf {q} ,\mathbf {\dot {q}} ,t)}JM L2 T−2
Action, Hamilton's principal functionS,S{\displaystyle \scriptstyle {\mathcal {S}}}S=t1t2L(q,q˙,t)dt{\displaystyle {\mathcal {S}}=\int _{t_{1}}^{t_{2}}L(\mathbf {q} ,\mathbf {\dot {q}} ,t)\mathrm {d} t}J sM L2 T−1

Kinematics

[edit]

In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to useθ, but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector

n^=e^r×e^θ{\displaystyle \mathbf {\hat {n}} =\mathbf {\hat {e}} _{r}\times \mathbf {\hat {e}} _{\theta }}

defines the axis of rotation,e^r{\displaystyle \scriptstyle \mathbf {\hat {e}} _{r}} = unit vector in direction ofr,e^θ{\displaystyle \scriptstyle \mathbf {\hat {e}} _{\theta }} = unit vector tangential to the angle.

TranslationRotation
VelocityAverage:

vaverage=ΔrΔt{\displaystyle \mathbf {v} _{\mathrm {average} }={\Delta \mathbf {r} \over \Delta t}}Instantaneous:

v=drdt{\displaystyle \mathbf {v} ={d\mathbf {r} \over dt}}

Angular velocityω=n^dθdt{\displaystyle {\boldsymbol {\omega }}=\mathbf {\hat {n}} {\frac {{\rm {d}}\theta }{{\rm {d}}t}}}Rotatingrigid body:v=ω×r{\displaystyle \mathbf {v} ={\boldsymbol {\omega }}\times \mathbf {r} }
AccelerationAverage:

aaverage=ΔvΔt{\displaystyle \mathbf {a} _{\mathrm {average} }={\frac {\Delta \mathbf {v} }{\Delta t}}}

Instantaneous:

a=dvdt=d2rdt2{\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d^{2}\mathbf {r} }{dt^{2}}}}

Angular acceleration

α=dωdt=n^d2θdt2{\displaystyle {\boldsymbol {\alpha }}={\frac {{\rm {d}}{\boldsymbol {\omega }}}{{\rm {d}}t}}=\mathbf {\hat {n}} {\frac {{\rm {d}}^{2}\theta }{{\rm {d}}t^{2}}}}

Rotating rigid body:

a=α×r+ω×v{\displaystyle \mathbf {a} ={\boldsymbol {\alpha }}\times \mathbf {r} +{\boldsymbol {\omega }}\times \mathbf {v} }

JerkAverage:

javerage=ΔaΔt{\displaystyle \mathbf {j} _{\mathrm {average} }={\frac {\Delta \mathbf {a} }{\Delta t}}}

Instantaneous:

j=dadt=d2vdt2=d3rdt3{\displaystyle \mathbf {j} ={\frac {d\mathbf {a} }{dt}}={\frac {d^{2}\mathbf {v} }{dt^{2}}}={\frac {d^{3}\mathbf {r} }{dt^{3}}}}

Angular jerk

ζ=dαdt=n^d2ωdt2=n^d3θdt3{\displaystyle {\boldsymbol {\zeta }}={\frac {{\rm {d}}{\boldsymbol {\alpha }}}{{\rm {d}}t}}=\mathbf {\hat {n}} {\frac {{\rm {d}}^{2}\omega }{{\rm {d}}t^{2}}}=\mathbf {\hat {n}} {\frac {{\rm {d}}^{3}\theta }{{\rm {d}}t^{3}}}}

Rotating rigid body:

j=ζ×r+α×a{\displaystyle \mathbf {j} ={\boldsymbol {\zeta }}\times \mathbf {r} +{\boldsymbol {\alpha }}\times \mathbf {a} }

Dynamics

[edit]
TranslationRotation
MomentumMomentum is the "amount of translation"

p=mv{\displaystyle \mathbf {p} =m\mathbf {v} }

For a rotating rigid body:

p=ω×m{\displaystyle \mathbf {p} ={\boldsymbol {\omega }}\times \mathbf {m} }

Angular momentum

Angular momentum is the "amount of rotation":

L=r×p=Iω{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} =\mathbf {I} \cdot {\boldsymbol {\omega }}}

and the cross-product is apseudovector i.e. ifr andp are reversed in direction (negative),L is not.

In generalI is an order-2tensor, see above for its components. The dot· indicatestensor contraction.

Force andNewton's 2nd lawResultant force acts on a system at the center of mass, equal to the rate of change of momentum:

F=dpdt=d(mv)dt=ma+vdmdt{\displaystyle {\begin{aligned}\mathbf {F} &={\frac {d\mathbf {p} }{dt}}={\frac {d(m\mathbf {v} )}{dt}}\\&=m\mathbf {a} +\mathbf {v} {\frac {{\rm {d}}m}{{\rm {d}}t}}\\\end{aligned}}}

For a number of particles, the equation of motion for one particlei is:[7]

dpidt=FE+ijFij{\displaystyle {\frac {\mathrm {d} \mathbf {p} _{i}}{\mathrm {d} t}}=\mathbf {F} _{E}+\sum _{i\neq j}\mathbf {F} _{ij}}

wherepi = momentum of particlei,Fij = forceon particleiby particlej, andFE = resultant external force (due to any agent not part of system). Particlei does not exert a force on itself.

Torque

Torqueτ is also called moment of a force, because it is the rotational analogue to force:[8]

τ=dLdt=r×F=d(Iω)dt{\displaystyle {\boldsymbol {\tau }}={\frac {{\rm {d}}\mathbf {L} }{{\rm {d}}t}}=\mathbf {r} \times \mathbf {F} ={\frac {{\rm {d}}(\mathbf {I} \cdot {\boldsymbol {\omega }})}{{\rm {d}}t}}}

For rigid bodies, Newton's 2nd law for rotation takes the same form as for translation:

τ=dLdt=d(Iω)dt=dIdtω+Iα{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&={\frac {{\rm {d}}\mathbf {L} }{{\rm {d}}t}}={\frac {{\rm {d}}(\mathbf {I} \cdot {\boldsymbol {\omega }})}{{\rm {d}}t}}\\&={\frac {{\rm {d}}\mathbf {I} }{{\rm {d}}t}}\cdot {\boldsymbol {\omega }}+\mathbf {I} \cdot {\boldsymbol {\alpha }}\\\end{aligned}}}

Likewise, for a number of particles, the equation of motion for one particlei is:[9]

dLidt=τE+ijτij{\displaystyle {\frac {\mathrm {d} \mathbf {L} _{i}}{\mathrm {d} t}}={\boldsymbol {\tau }}_{E}+\sum _{i\neq j}{\boldsymbol {\tau }}_{ij}}

YankYank is rate of change of force:

Y=dFdt=d2pdt2=d2(mv)dt2=mj+2admdt+vd2mdt2{\displaystyle {\begin{aligned}\mathbf {Y} &={\frac {d\mathbf {F} }{dt}}={\frac {d^{2}\mathbf {p} }{dt^{2}}}={\frac {d^{2}(m\mathbf {v} )}{dt^{2}}}\\[1ex]&=m\mathbf {j} +\mathbf {2a} {\frac {{\rm {d}}m}{{\rm {d}}t}}+\mathbf {v} {\frac {{\rm {d^{2}}}m}{{\rm {d}}t^{2}}}\end{aligned}}}

For constant mass, it becomes;Y=mj{\displaystyle \mathbf {Y} =m\mathbf {j} }

Rotatum

RotatumΡ is also called moment of a Yank, because it is the rotational analogue to yank:

P=dτdt=r×Y=d(Iα)dt{\displaystyle {\boldsymbol {\mathrm {P} }}={\frac {{\rm {d}}{\boldsymbol {\tau }}}{{\rm {d}}t}}=\mathbf {r} \times \mathbf {Y} ={\frac {{\rm {d}}(\mathbf {I} \cdot {\boldsymbol {\alpha }})}{{\rm {d}}t}}}

ImpulseImpulse is the change in momentum:

Δp=Fdt{\displaystyle \Delta \mathbf {p} =\int \mathbf {F} \,dt}

For constant forceF:

Δp=FΔt{\displaystyle \Delta \mathbf {p} =\mathbf {F} \Delta t}

Twirl/angular impulse is the change in angular momentum:

ΔL=τdt{\displaystyle \Delta \mathbf {L} =\int {\boldsymbol {\tau }}\,dt}

For constant torqueτ:

ΔL=τΔt{\displaystyle \Delta \mathbf {L} ={\boldsymbol {\tau }}\Delta t}

Precession

[edit]

The precession angular speed of aspinning top is given by:

Ω=wrIω{\displaystyle {\boldsymbol {\Omega }}={\frac {wr}{I{\boldsymbol {\omega }}}}}

wherew is the weight of the spinning flywheel.

Energy

[edit]

The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:

Generalwork-energy theorem (translation and rotation)

[edit]

The work doneW by an external agent which exerts a forceF (atr) and torqueτ on an object along a curved pathC is:

W=ΔT=C(Fdr+τndθ){\displaystyle W=\Delta T=\int _{C}\left(\mathbf {F} \cdot \mathrm {d} \mathbf {r} +{\boldsymbol {\tau }}\cdot \mathbf {n} \,{\mathrm {d} \theta }\right)}

where θ is the angle of rotation about an axis defined by aunit vectorn.

Kinetic energy

[edit]

The change inkinetic energy for an object initially traveling at speedv0{\displaystyle v_{0}} and later at speedv{\displaystyle v} is:ΔEk=W=12m(v2v02){\displaystyle \Delta E_{k}=W={\frac {1}{2}}m(v^{2}-{v_{0}}^{2})}

Elastic potential energy

[edit]

For a stretched spring fixed at one end obeyingHooke's law, theelastic potential energy is

ΔEp=12k(r2r1)2{\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}}

wherer2 andr1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

Euler's equations for rigid body dynamics

[edit]
Main article:Euler's equations (rigid body dynamics)

Euler also worked out analogous laws of motion to those of Newton, seeEuler's laws of motion. These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is:[10]

Iα+ω×(Iω)=τ{\displaystyle \mathbf {I} \cdot {\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(\mathbf {I} \cdot {\boldsymbol {\omega }}\right)={\boldsymbol {\tau }}}

whereI is themoment of inertiatensor.

General planar motion

[edit]
See also:Polar coordinate system (section: vector calculus)

The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,

r=r(t)=rr^{\displaystyle \mathbf {r} =\mathbf {r} (t)=r{\hat {\mathbf {r} }}}

the following general results apply to the particle.

KinematicsDynamics
Position

r=r(r,θ,t)=rr^{\displaystyle \mathbf {r} =\mathbf {r} \left(r,\theta ,t\right)=r{\hat {\mathbf {r} }}}

Velocity

v=r^drdt+rωθ^{\displaystyle \mathbf {v} ={\hat {\mathbf {r} }}{\frac {\mathrm {d} r}{\mathrm {d} t}}+r\omega {\hat {\mathbf {\theta } }}}

Momentum

p=m(r^drdt+rωθ^){\displaystyle \mathbf {p} =m\left({\hat {\mathbf {r} }}{\frac {\mathrm {d} r}{\mathrm {d} t}}+r\omega {\hat {\mathbf {\theta } }}\right)}

Angular momentaL=mr×(r^drdt+rωθ^){\displaystyle \mathbf {L} =m\mathbf {r} \times \left({\hat {\mathbf {r} }}{\frac {\mathrm {d} r}{\mathrm {d} t}}+r\omega {\hat {\mathbf {\theta } }}\right)}

Acceleration

a=(d2rdt2rω2)r^+(rα+2ωdrdt)θ^{\displaystyle \mathbf {a} =\left({\frac {\mathrm {d} ^{2}r}{\mathrm {d} t^{2}}}-r\omega ^{2}\right){\hat {\mathbf {r} }}+\left(r\alpha +2\omega {\frac {\mathrm {d} r}{{\rm {d}}t}}\right){\hat {\mathbf {\theta } }}}

Thecentripetal force is

F=mω2Rr^=ω2m{\displaystyle \mathbf {F} _{\bot }=-m\omega ^{2}R{\hat {\mathbf {r} }}=-\omega ^{2}\mathbf {m} }

where againm is the mass moment, and theCoriolis force is

Fc=2ωmdrdtθ^=2ωmvθ^{\displaystyle \mathbf {F} _{c}=2\omega m{\frac {{\rm {d}}r}{{\rm {d}}t}}{\hat {\mathbf {\theta } }}=2\omega mv{\hat {\mathbf {\theta } }}}

TheCoriolis acceleration and force can also be written:

Fc=mac=2mω×v{\displaystyle \mathbf {F} _{c}=m\mathbf {a} _{c}=-2m{\boldsymbol {\omega \times v}}}

Central force motion

[edit]

For a massive body moving in acentral potential due to another object, which depends only on the radial separation between the centers of masses of the two objects, the equation of motion is:

d2dθ2(1r)+1r=μr2l2F(r){\displaystyle {\frac {d^{2}}{d\theta ^{2}}}\left({\frac {1}{\mathbf {r} }}\right)+{\frac {1}{\mathbf {r} }}=-{\frac {\mu \mathbf {r} ^{2}}{\mathbf {l} ^{2}}}\mathbf {F} (\mathbf {r} )}

Equations of motion (constant acceleration)

[edit]

These equations can be used only when acceleration is constant. If acceleration is not constant then the generalcalculus equations above must be used, found by integrating the definitions of position, velocity and acceleration (see above).

Linear motionAngular motion
vv0=at{\displaystyle \mathbf {v-v_{0}} =\mathbf {a} t}ωω0=αt{\displaystyle {\boldsymbol {\omega -\omega _{0}}}={\boldsymbol {\alpha }}t}
xx0=12(v0+v)t{\displaystyle \mathbf {x-x_{0}} ={\tfrac {1}{2}}(\mathbf {v_{0}+v} )t}θθ0=12(ω0+ω)t{\displaystyle {\boldsymbol {\theta -\theta _{0}}}={\tfrac {1}{2}}({\boldsymbol {\omega _{0}+\omega }})t}
xx0=v0t+12at2{\displaystyle \mathbf {x-x_{0}} =\mathbf {v} _{0}t+{\tfrac {1}{2}}\mathbf {a} t^{2}}θθ0=ω0t+12αt2{\displaystyle {\boldsymbol {\theta -\theta _{0}}}={\boldsymbol {\omega }}_{0}t+{\tfrac {1}{2}}{\boldsymbol {\alpha }}t^{2}}
xx0=vt12at2{\displaystyle \mathbf {x-x_{0}} =\mathbf {v} t-{\tfrac {1}{2}}\mathbf {a} t^{2}}θθ0=ωt12αt2{\displaystyle {\boldsymbol {\theta -\theta _{0}}}={\boldsymbol {\omega }}t-{\tfrac {1}{2}}{\boldsymbol {\alpha }}t^{2}}
xnth=v0+a(n12){\displaystyle \mathbf {x} _{n^{th}}=\mathbf {v} _{0}+\mathbf {a} (n-{\tfrac {1}{2}})}θnth=ω0+α(n12){\displaystyle {\boldsymbol {\theta }}_{n^{th}}={\boldsymbol {\omega }}_{0}+{\boldsymbol {\alpha }}(n-{\tfrac {1}{2}})}
v2v02=2a(xx0){\displaystyle v^{2}-v_{0}^{2}=2\mathbf {a(x-x_{0})} }ω2ω02=2α(θθ0){\displaystyle \omega ^{2}-\omega _{0}^{2}=2{\boldsymbol {\alpha (\theta -\theta _{0})}}}
See also:Linear motion § Analogy between linear and rotational motion

Galilean frame transforms

[edit]

For classical (Galileo-Newtonian) mechanics, the transformation law from one inertial or accelerating (including rotation) frame (reference frame traveling at constant velocity - including zero) to another is the Galilean transform.

Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocityV or angular velocityΩ relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative accelerations.

Motion of entitiesInertial framesAccelerating frames
Translation

V = Constant relative velocity between two inertial frames F and F'.
A = (Variable) relative acceleration between two accelerating frames F and F'.

Relative position

r=r+Vt{\displaystyle \mathbf {r} '=\mathbf {r} +\mathbf {V} t}

Relative velocityv=v+V{\displaystyle \mathbf {v} '=\mathbf {v} +\mathbf {V} }

Equivalent accelerationsa=a{\displaystyle \mathbf {a} '=\mathbf {a} }

Relative accelerations

a=a+A{\displaystyle \mathbf {a} '=\mathbf {a} +\mathbf {A} }

Apparent/fictitious forcesF=FFapp{\displaystyle \mathbf {F} '=\mathbf {F} -\mathbf {F} _{\mathrm {app} }}

Rotation

Ω = Constant relative angular velocity between two frames F and F'.
Λ = (Variable) relative angular acceleration between two accelerating frames F and F'.

Relative angular position

θ=θ+Ωt{\displaystyle \theta '=\theta +\Omega t}Relative velocityω=ω+Ω{\displaystyle {\boldsymbol {\omega }}'={\boldsymbol {\omega }}+{\boldsymbol {\Omega }}}

Equivalent accelerationsα=α{\displaystyle {\boldsymbol {\alpha }}'={\boldsymbol {\alpha }}}

Relative accelerations

α=α+Λ{\displaystyle {\boldsymbol {\alpha }}'={\boldsymbol {\alpha }}+{\boldsymbol {\Lambda }}}

Apparent/fictitious torquesτ=ττapp{\displaystyle {\boldsymbol {\tau }}'={\boldsymbol {\tau }}-{\boldsymbol {\tau }}_{\mathrm {app} }}

Transformation of any vectorT to a rotating frame

dTdt=dTdtΩ×T{\displaystyle {\frac {{\rm {d}}\mathbf {T} '}{{\rm {d}}t}}={\frac {{\rm {d}}\mathbf {T} }{{\rm {d}}t}}-{\boldsymbol {\Omega }}\times \mathbf {T} }

Mechanical oscillators

[edit]

SHM, DHM, SHO, and DHO refer to simple harmonic motion, damped harmonic motion, simple harmonic oscillator and damped harmonic oscillator respectively.

Equations of motion
Physical situationNomenclatureTranslational equationsAngular equations
SHM
  • x = Transverse displacement
  • θ = Angular displacement
  • A = Transverse amplitude
  • Θ = Angular amplitude
d2xdt2=ω2x{\displaystyle {\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}=-\omega ^{2}x}

Solution:x=Asin(ωt+ϕ){\displaystyle x=A\sin \left(\omega t+\phi \right)}

d2θdt2=ω2θ{\displaystyle {\frac {\mathrm {d} ^{2}\theta }{\mathrm {d} t^{2}}}=-\omega ^{2}\theta }

Solution:θ=Θsin(ωt+ϕ){\displaystyle \theta =\Theta \sin \left(\omega t+\phi \right)}

Unforced DHM
  • b = damping constant
  • κ = torsion constant
d2xdt2+bdxdt+ω2x=0{\displaystyle {\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}+b{\frac {\mathrm {d} x}{\mathrm {d} t}}+\omega ^{2}x=0}

Solution (see below forω'):x=Aebt/2mcos(ω){\displaystyle x=Ae^{-bt/2m}\cos \left(\omega '\right)}

Resonant frequency:ωres=ω2(b4m)2{\displaystyle \omega _{\mathrm {res} }={\sqrt {\omega ^{2}-\left({\frac {b}{4m}}\right)^{2}}}}

Damping rate:γ=b/m{\displaystyle \gamma =b/m}

Expected lifetime of excitation:τ=1/γ{\displaystyle \tau =1/\gamma }

d2θdt2+bdθdt+ω2θ=0{\displaystyle {\frac {\mathrm {d} ^{2}\theta }{\mathrm {d} t^{2}}}+b{\frac {\mathrm {d} \theta }{\mathrm {d} t}}+\omega ^{2}\theta =0}

Solution:θ=Θeκt/2mcos(ω){\displaystyle \theta =\Theta e^{-\kappa t/2m}\cos \left(\omega \right)}

Resonant frequency:ωres=ω2(κ4m)2{\displaystyle \omega _{\mathrm {res} }={\sqrt {\omega ^{2}-\left({\frac {\kappa }{4m}}\right)^{2}}}}

Damping rate:γ=κ/m{\displaystyle \gamma =\kappa /m}

Expected lifetime of excitation:τ=1/γ{\displaystyle \tau =1/\gamma }

Angular frequencies
Physical situationNomenclatureEquations
Linear undamped unforced SHO
  • k = spring constant
  • m = mass of oscillating bob
ω=km{\displaystyle \omega ={\sqrt {\frac {k}{m}}}}
Linear unforced DHO
  • k = spring constant
  • b = Damping coefficient
ω=km(b2m)2{\displaystyle \omega '={\sqrt {{\frac {k}{m}}-\left({\frac {b}{2m}}\right)^{2}}}}
Low amplitude angular SHO
  • I = Moment of inertia about oscillating axis
  • κ = torsion constant
ω=κI{\displaystyle \omega ={\sqrt {\frac {\kappa }{I}}}}
Low amplitude simple pendulum
  • L = Length of pendulum
  • g = Gravitational acceleration
  • Θ = Angular amplitude
Approximate value

ω=gL{\displaystyle \omega ={\sqrt {\frac {g}{L}}}}

Exact value can be shown to be:ω=gL[1+k=1n=1k(2n1)n=1m(2n)sin2nΘ]{\displaystyle \omega ={\sqrt {\frac {g}{L}}}\left[1+\sum _{k=1}^{\infty }{\frac {\prod _{n=1}^{k}\left(2n-1\right)}{\prod _{n=1}^{m}\left(2n\right)}}\sin ^{2n}\Theta \right]}

Energy in mechanical oscillations
Physical situationNomenclatureEquations
SHM energy
  • T = kinetic energy
  • U = potential energy
  • E = total energy
Potential energy

U=m2(x)2=m(ωA)22cos2(ωt+ϕ){\displaystyle U={\frac {m}{2}}\left(x\right)^{2}={\frac {m\left(\omega A\right)^{2}}{2}}\cos ^{2}(\omega t+\phi )}Maximum value atx =A:Umax=m2(ωA)2{\displaystyle U_{\mathrm {max} }={\frac {m}{2}}\left(\omega A\right)^{2}}

Kinetic energyT=ω2m2(dxdt)2=m(ωA)22sin2(ωt+ϕ){\displaystyle T={\frac {\omega ^{2}m}{2}}\left({\frac {\mathrm {d} x}{\mathrm {d} t}}\right)^{2}={\frac {m\left(\omega A\right)^{2}}{2}}\sin ^{2}\left(\omega t+\phi \right)}

Total energyE=T+U{\displaystyle E=T+U}

DHM energyE=m(ωA)22ebt/m{\displaystyle E={\frac {m\left(\omega A\right)^{2}}{2}}e^{-bt/m}}

See also

[edit]

Notes

[edit]
  1. ^Mayer, Sussman & Wisdom 2001, p. xiii
  2. ^Berkshire & Kibble 2004, p. 1
  3. ^Berkshire & Kibble 2004, p. 2
  4. ^Arnold 1989, p. v
  5. ^"Section: Moments and center of mass".
  6. ^R.P. Feynman; R.B. Leighton; M. Sands (1964).Feynman's Lectures on Physics (volume 2). Addison-Wesley. pp. 31–7.ISBN 978-0-201-02117-2.{{cite book}}:ISBN / Date incompatibility (help)
  7. ^"Relativity, J.R. Forshaw 2009"
  8. ^"Mechanics, D. Kleppner 2010"
  9. ^"Relativity, J.R. Forshaw 2009"
  10. ^"Relativity, J.R. Forshaw 2009"

References

[edit]
Linear/translational quantitiesAngular/rotational quantities
Dimensions1LL2Dimensions1θθ2
Ttime:t
s
absement:A
m s
Ttime:t
s
1distance:d,position:r,s,x,displacement
m
area:A
m2
1angle:θ,angular displacement:θ
rad
solid angle:Ω
rad2, sr
T−1frequency:f
s−1,Hz
speed:v,velocity:v
m s−1
kinematic viscosity:ν,
specific angular momentumh
m2 s−1
T−1frequency:f,rotational speed:n,rotational velocity:n
s−1,Hz
angular speed:ω,angular velocity:ω
rad s−1
T−2acceleration:a
m s−2
T−2rotational acceleration
s−2
angular acceleration:α
rad s−2
T−3jerk:j
m s−3
T−3angular jerk:ζ
rad s−3
Mmass:m
kg
weighted position:Mx⟩ = ∑mxmoment of inertiaI
kg m2
ML
MT−1Mass flow rate:m˙{\displaystyle {\dot {m}}}
kg s−1
momentum:p,impulse:J
kg m s−1,N s
action:𝒮,actergy:
kg m2 s−1,J s
MLT−1angular momentum:L,angular impulse:ΔL
kg m rad s−1
MT−2force:F,weight:Fg
kg m s−2,N
energy:E,work:W,Lagrangian:L
kg m2 s−2,J
MLT−2torque:τ,moment:M
kg m rad s−2,N m
MT−3yank:Y
kg m s−3, N s−1
power:P
kg m2 s−3W
MLT−3rotatum:P
kg m rad s−3, N m s−1
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_equations_in_classical_mechanics&oldid=1320581956"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp