Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lieb–Thirring inequality

From Wikipedia, the free encyclopedia
Not to be confused with theAraki–Lieb–Thirring inequality.

Inmathematics andphysics,Lieb–Thirring inequalities provide an upper bound on the sums of powers of the negativeeigenvalues of aSchrödinger operator in terms of integrals of the potential. They are named afterE. H. Lieb andW. E. Thirring.

The inequalities are useful in studies ofquantum mechanics anddifferential equations and imply, as a corollary, a lower bound on thekinetic energy ofN{\displaystyle N} quantum mechanical particles that plays an important role in the proof ofstability of matter.[1]

Statement of the inequalities

[edit]

For the Schrödinger operatorΔ+V(x)=2+V(x){\displaystyle -\Delta +V(x)=-\nabla ^{2}+V(x)} onRn{\displaystyle \mathbb {R} ^{n}} with real-valued potentialV(x):RnR,{\displaystyle V(x):\mathbb {R} ^{n}\to \mathbb {R} ,} the numbersλ1λ20{\displaystyle \lambda _{1}\leq \lambda _{2}\leq \dots \leq 0} denote the (not necessarily finite) sequence of negative eigenvalues. Then, forγ{\displaystyle \gamma } andn{\displaystyle n} satisfying one of the conditions

γ12,n=1,γ>0,n=2,γ0,n3,{\displaystyle {\begin{aligned}\gamma \geq {\frac {1}{2}}&,\,n=1,\\\gamma >0&,\,n=2,\\\gamma \geq 0&,\,n\geq 3,\end{aligned}}}

there exists a constantLγ,n{\displaystyle L_{\gamma ,n}}, which only depends onγ{\displaystyle \gamma } andn{\displaystyle n}, such that

j1|λj|γLγ,nRnV(x)γ+n2dnx{\displaystyle \sum _{j\geq 1}|\lambda _{j}|^{\gamma }\leq L_{\gamma ,n}\int _{\mathbb {R} ^{n}}V(x)_{-}^{\gamma +{\frac {n}{2}}}\mathrm {d} ^{n}x}1

whereV(x):=max(V(x),0){\displaystyle V(x)_{-}:=\max(-V(x),0)} is the negative part of the potentialV{\displaystyle V}. The casesγ>1/2,n=1{\displaystyle \gamma >1/2,n=1} as well asγ>0,n2{\displaystyle \gamma >0,n\geq 2} were proven by E. H. Lieb and W. E. Thirring in 1976[1] and used in their proof of stability of matter. In the caseγ=0,n3{\displaystyle \gamma =0,n\geq 3} the left-hand side is simply the number of negative eigenvalues, and proofs were given independently by M. Cwikel,[2] E. H. Lieb[3] and G. V. Rozenbljum.[4] The resultingγ=0{\displaystyle \gamma =0} inequality is thus also called the Cwikel–Lieb–Rosenbljum bound. The remaining critical caseγ=1/2,n=1{\displaystyle \gamma =1/2,n=1} was proven to hold by T. Weidl[5]The conditions onγ{\displaystyle \gamma } andn{\displaystyle n} are necessary and cannot be relaxed.

Lieb–Thirring constants

[edit]

Semiclassical approximation

[edit]

The Lieb–Thirring inequalities can be compared to the semi-classical limit. The classicalphase space consists of pairs(p,x)R2n.{\displaystyle (p,x)\in \mathbb {R} ^{2n}.} Identifying themomentum operatori{\displaystyle -\mathrm {i} \nabla } withp{\displaystyle p} and assuming that everyquantum state is contained in a volume(2π)n{\displaystyle (2\pi )^{n}} in the2n{\displaystyle 2n}-dimensional phase space, the semi-classical approximation

j1|λj|γ1(2π)nRnRn(p2+V(x))γdnpdnx=Lγ,nclRnV(x)γ+n2dnx{\displaystyle \sum _{j\geq 1}|\lambda _{j}|^{\gamma }\approx {\frac {1}{(2\pi )^{n}}}\int _{\mathbb {R} ^{n}}\int _{\mathbb {R} ^{n}}{\big (}p^{2}+V(x){\big )}_{-}^{\gamma }\mathrm {d} ^{n}p\mathrm {d} ^{n}x=L_{\gamma ,n}^{\mathrm {cl} }\int _{\mathbb {R} ^{n}}V(x)_{-}^{\gamma +{\frac {n}{2}}}\mathrm {d} ^{n}x}

is derived with the constant

Lγ,ncl=(4π)n2Γ(γ+1)Γ(γ+1+n2).{\displaystyle L_{\gamma ,n}^{\mathrm {cl} }=(4\pi )^{-{\frac {n}{2}}}{\frac {\Gamma (\gamma +1)}{\Gamma (\gamma +1+{\frac {n}{2}})}}\,.}

While the semi-classical approximation does not need any assumptions onγ>0{\displaystyle \gamma >0}, the Lieb–Thirring inequalities only hold for suitableγ{\displaystyle \gamma }.

Weyl asymptotics and sharp constants

[edit]

Numerous results have been published about the best possible constantLγ,n{\displaystyle L_{\gamma ,n}} in (1) but this problem is still partly open. The semiclassical approximation becomes exact in the limit of large coupling, that is for potentialsβV{\displaystyle \beta V} theWeyl asymptotics

limβ1βγ+n2tr(Δ+βV)γ=Lγ,nclRnV(x)γ+n2dnx{\displaystyle \lim _{\beta \to \infty }{\frac {1}{\beta ^{\gamma +{\frac {n}{2}}}}}\mathrm {tr} (-\Delta +\beta V)_{-}^{\gamma }=L_{\gamma ,n}^{\mathrm {cl} }\int _{\mathbb {R} ^{n}}V(x)_{-}^{\gamma +{\frac {n}{2}}}\mathrm {d} ^{n}x}

hold. This implies thatLγ,nclLγ,n{\displaystyle L_{\gamma ,n}^{\mathrm {cl} }\leq L_{\gamma ,n}}. Lieb and Thirring[1] were able to show thatLγ,n=Lγ,ncl{\displaystyle L_{\gamma ,n}=L_{\gamma ,n}^{\mathrm {cl} }} forγ3/2,n=1{\displaystyle \gamma \geq 3/2,n=1}.M. Aizenman and E. H. Lieb[6] proved that for fixed dimensionn{\displaystyle n} the ratioLγ,n/Lγ,ncl{\displaystyle L_{\gamma ,n}/L_{\gamma ,n}^{\mathrm {cl} }} is amonotonic, non-increasing function ofγ{\displaystyle \gamma }. SubsequentlyLγ,n=Lγ,ncl{\displaystyle L_{\gamma ,n}=L_{\gamma ,n}^{\mathrm {cl} }} was also shown to hold for alln{\displaystyle n} whenγ3/2{\displaystyle \gamma \geq 3/2} byA. Laptev and T. Weidl.[7] Forγ=1/2,n=1{\displaystyle \gamma =1/2,\,n=1} D. Hundertmark, E. H. Lieb and L. E. Thomas[8] proved that the best constant is given byL1/2,1=2L1/2,1cl=1/2{\displaystyle L_{1/2,1}=2L_{1/2,1}^{\mathrm {cl} }=1/2}.

On the other hand, it is known thatLγ,ncl<Lγ,n{\displaystyle L_{\gamma ,n}^{\mathrm {cl} }<L_{\gamma ,n}} for1/2γ<3/2,n=1{\displaystyle 1/2\leq \gamma <3/2,n=1}[1] and forγ<1,d1{\displaystyle \gamma <1,d\geq 1}.[9] In the former case Lieb and Thirring conjectured that the sharp constant is given by

Lγ,1=2Lγ,1cl(γ12γ+12)γ12.{\displaystyle L_{\gamma ,1}=2L_{\gamma ,1}^{\mathrm {cl} }\left({\frac {\gamma -{\frac {1}{2}}}{\gamma +{\frac {1}{2}}}}\right)^{\gamma -{\frac {1}{2}}}.}


The best known value for the physical relevant constantL1,3{\displaystyle L_{1,3}} is1.456L1,3cl{\displaystyle 1.456L_{1,3}^{\mathrm {cl} }}[10] and the smallest known constant in the Cwikel–Lieb–Rosenbljum inequality is6.869L0,3cl{\displaystyle 6.869L_{0,3}^{\mathrm {cl} }}.[3] A complete survey of the presently best known values forLγ,n{\displaystyle L_{\gamma ,n}} can be found in the literature.[11]


Kinetic energy inequalities

[edit]

The Lieb–Thirring inequality forγ=1{\displaystyle \gamma =1} is equivalent to a lower bound on the kinetic energy of a given normalisedN{\displaystyle N}-particlewave functionψL2(RNn){\displaystyle \psi \in L^{2}(\mathbb {R} ^{Nn})} in terms of the one-body density. For an anti-symmetric wave function such that

ψ(x1,,xi,,xj,,xN)=ψ(x1,,xj,,xi,,xN){\displaystyle \psi (x_{1},\dots ,x_{i},\dots ,x_{j},\dots ,x_{N})=-\psi (x_{1},\dots ,x_{j},\dots ,x_{i},\dots ,x_{N})}

for all1i,jN{\displaystyle 1\leq i,j\leq N}, the one-body density is defined as

ρψ(x)=NR(N1)n|ψ(x,x2,xN)|2dnx2dnxN,xRn.{\displaystyle \rho _{\psi }(x)=N\int _{\mathbb {R} ^{(N-1)n}}|\psi (x,x_{2}\dots ,x_{N})|^{2}\mathrm {d} ^{n}x_{2}\cdots \mathrm {d} ^{n}x_{N},\,x\in \mathbb {R} ^{n}.}

The Lieb–Thirring inequality (1) forγ=1{\displaystyle \gamma =1} is equivalent to the statement that

i=1NRn|iψ|2dnxiKnRnρψ(x)1+2ndnx{\displaystyle \sum _{i=1}^{N}\int _{\mathbb {R} ^{n}}|\nabla _{i}\psi |^{2}\mathrm {d} ^{n}x_{i}\geq K_{n}\int _{\mathbb {R} ^{n}}{\rho _{\psi }(x)^{1+{\frac {2}{n}}}}\mathrm {d} ^{n}x}2

where the sharp constantKn{\displaystyle K_{n}} is defined via

((1+2n)Kn)1+n2((1+n2)L1,n)1+2n=1.{\displaystyle \left(\left(1+{\frac {2}{n}}\right)K_{n}\right)^{1+{\frac {n}{2}}}\left(\left(1+{\frac {n}{2}}\right)L_{1,n}\right)^{1+{\frac {2}{n}}}=1\,.}

The inequality can be extended to particles withspin states by replacing the one-body density by the spin-summed one-body density. The constantKn{\displaystyle K_{n}} then has to be replaced byKn/q2/n{\displaystyle K_{n}/q^{2/n}} whereq{\displaystyle q} is the number of quantum spin states available to each particle (q=2{\displaystyle q=2} for electrons). If the wave function is symmetric, instead of anti-symmetric, such that

ψ(x1,,xi,,xj,,xn)=ψ(x1,,xj,,xi,,xn){\displaystyle \psi (x_{1},\dots ,x_{i},\dots ,x_{j},\dots ,x_{n})=\psi (x_{1},\dots ,x_{j},\dots ,x_{i},\dots ,x_{n})}

for all1i,jN{\displaystyle 1\leq i,j\leq N}, the constantKn{\displaystyle K_{n}} has to be replaced byKn/N2/n{\displaystyle K_{n}/N^{2/n}}. Inequality (2) describes the minimum kinetic energy necessary to achieve a given densityρψ{\displaystyle \rho _{\psi }} withN{\displaystyle N} particles inn{\displaystyle n} dimensions. IfL1,3=L1,3cl{\displaystyle L_{1,3}=L_{1,3}^{\mathrm {cl} }} was proven to hold, the right-hand side of (2) forn=3{\displaystyle n=3} would be precisely the kinetic energy term inThomas–Fermi theory.

The inequality can be compared to theSobolev inequality. M. Rumin[12] derived the kinetic energy inequality (2) (with a smaller constant) directly without the use of the Lieb–Thirring inequality.

The stability of matter

[edit]

(for more information, read theStability of matter page)

The kinetic energy inequality plays an important role in the proof ofstability of matter as presented by Lieb and Thirring.[1] TheHamiltonian under consideration describes a system ofN{\displaystyle N} particles withq{\displaystyle q} spin states andM{\displaystyle M} fixednuclei at locationsRjR3{\displaystyle R_{j}\in \mathbb {R} ^{3}} withchargesZj>0{\displaystyle Z_{j}>0}. The particles and nuclei interact with each other through the electrostaticCoulomb force and an arbitrarymagnetic field can be introduced. If the particles under consideration arefermions (i.e. the wave functionψ{\displaystyle \psi } is antisymmetric), then the kinetic energy inequality (2) holds with the constantKn/q2/n{\displaystyle K_{n}/q^{2/n}} (notKn/N2/n{\displaystyle K_{n}/N^{2/n}}). This is a crucial ingredient in the proof of stability of matter for a system of fermions. It ensures that theground state energyEN,M(Z1,,ZM){\displaystyle E_{N,M}(Z_{1},\dots ,Z_{M})} of the system can be bounded from below by a constant depending only on the maximum of the nuclei charges,Zmax{\displaystyle Z_{\max }}, times the number of particles,

EN,M(Z1,,ZM)C(Zmax)(M+N).{\displaystyle E_{N,M}(Z_{1},\dots ,Z_{M})\geq -C(Z_{\max })(M+N)\,.}

The system is then stable of the first kind since the ground-state energy is bounded from below and also stable of the second kind, i.e. the energy of decreases linearly with the number of particles and nuclei. In comparison, if the particles are assumed to bebosons (i.e. the wave functionψ{\displaystyle \psi } is symmetric), then the kinetic energy inequality (2) holds only with the constantKn/N2/n{\displaystyle K_{n}/N^{2/n}} and for the ground state energy only a bound of the formCN5/3{\displaystyle -CN^{5/3}} holds. Since the power5/3{\displaystyle 5/3} can be shown to be optimal, a system of bosons is stable of the first kind but unstable of the second kind.

Generalisations

[edit]

If the LaplacianΔ=2{\displaystyle -\Delta =-\nabla ^{2}} is replaced by(i+A(x))2{\displaystyle (\mathrm {i} \nabla +A(x))^{2}}, whereA(x){\displaystyle A(x)} is a magnetic fieldvector potential inRn,{\displaystyle \mathbb {R} ^{n},} the Lieb–Thirring inequality (1) remains true. The proof of this statement uses thediamagnetic inequality. Although all presently known constantsLγ,n{\displaystyle L_{\gamma ,n}} remain unchanged, it is not known whether this is true in general for the best possible constant.

The Laplacian can also be replaced by other powers ofΔ{\displaystyle -\Delta }. In particular for the operatorΔ{\displaystyle {\sqrt {-\Delta }}}, a Lieb–Thirring inequality similar to (1) holds with a different constantLγ,n{\displaystyle L_{\gamma ,n}} and with the power on the right-hand side replaced byγ+n{\displaystyle \gamma +n}. Analogously a kinetic inequality similar to (2) holds, with1+2/n{\displaystyle 1+2/n} replaced by1+1/n{\displaystyle 1+1/n}, which can be used to prove stability of matter for the relativistic Schrödinger operator under additional assumptions on the chargesZk{\displaystyle Z_{k}}.[13]

In essence, the Lieb–Thirring inequality (1) gives an upper bound on the distances of the eigenvaluesλj{\displaystyle \lambda _{j}} to theessential spectrum[0,){\displaystyle [0,\infty )} in terms of the perturbationV{\displaystyle V}. Similar inequalities can be proved forJacobi operators.[14]

See also

[edit]

References

[edit]
  1. ^abcdeLieb, Elliott H.; Thirring, Walter E. (1991). "Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities". In Thirring, Walter E. (ed.).The Stability of Matter: From Atoms to Stars. Princeton University Press. pp. 135–169.doi:10.1007/978-3-662-02725-7_13.ISBN 978-3-662-02727-1.
  2. ^Cwikel, Michael (1977). "Weak Type Estimates for Singular Values and the Number of Bound States of Schrödinger Operators".The Annals of Mathematics.106 (1):93–100.doi:10.2307/1971160.JSTOR 1971160.
  3. ^abLieb, Elliott (1 August 1976)."Bounds on the eigenvalues of the Laplace and Schroedinger operators".Bulletin of the American Mathematical Society.82 (5):751–754.doi:10.1090/s0002-9904-1976-14149-3.
  4. ^Rozenbljum, G. V. (1976)."Distribution of the discrete spectrum of singular differential operators".Izvestiya Vysshikh Uchebnykh Zavedenii Matematika (1):75–86.MR 0430557.Zbl 0342.35045.
  5. ^Weidl, Timo (1996). "On the Lieb-Thirring constantsLγ,1{\displaystyle L_{\gamma ,1}} for γ≧1/2".Communications in Mathematical Physics.178 (1):135–146.arXiv:quant-ph/9504013.doi:10.1007/bf02104912.S2CID 117980716.
  6. ^Aizenman, Michael; Lieb, Elliott H. (1978). "On semi-classical bounds for eigenvalues of Schrödinger operators".Physics Letters A.66 (6):427–429.Bibcode:1978PhLA...66..427A.doi:10.1016/0375-9601(78)90385-7.
  7. ^Laptev, Ari; Weidl, Timo (2000)."Sharp Lieb-Thirring inequalities in high dimensions".Acta Mathematica.184 (1):87–111.arXiv:math-ph/9903007.doi:10.1007/bf02392782.
  8. ^Hundertmark, Dirk; Lieb, Elliott H.; Thomas, Lawrence E. (1998)."A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator".Advances in Theoretical and Mathematical Physics.2 (4):719–731.doi:10.4310/atmp.1998.v2.n4.a2.
  9. ^Helffer, B.; Robert, D. (1990)."Riesz means of bounded states and semi-classical limit connected with a Lieb–Thirring conjecture. II".Annales de l'Institut Henri Poincaré A.53 (2):139–147.MR 1079775.Zbl 0728.35078.
  10. ^Frank, Rupert; Hundertmark, Dirk; Jex, Michal; Nam, Phan Thành (2021)."The Lieb-Thirring inequality revisited".Journal of the European Mathematical Society.10 (4):2583–2600.arXiv:1808.09017.doi:10.4171/JEMS/1062.
  11. ^Laptev, Ari. "Spectral inequalities for Partial Differential Equations and their applications".AMS/IP Studies in Advanced Mathematics.51:629–643.
  12. ^Rumin, Michel (2011). "Balanced distribution-energy inequalities and related entropy bounds".Duke Mathematical Journal.160 (3):567–597.arXiv:1008.1674.doi:10.1215/00127094-1444305.MR 2852369.S2CID 638691.
  13. ^Frank, Rupert L.; Lieb, Elliott H.;Seiringer, Robert (10 October 2007)."Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators"(PDF).Journal of the American Mathematical Society.21 (4):925–950.doi:10.1090/s0894-0347-07-00582-6.
  14. ^Hundertmark, Dirk;Simon, Barry (2002)."Lieb–Thirring Inequalities for Jacobi Matrices".Journal of Approximation Theory.118 (1):106–130.arXiv:math-ph/0112027.doi:10.1006/jath.2002.3704.

Literature

[edit]
  • Lieb, E.H.; Seiringer, R. (2010).The stability of matter in quantum mechanics (1st ed.). Cambridge: Cambridge University Press.ISBN 9780521191180.
  • Hundertmark, D. (2007). "Some bound state problems in quantum mechanics". In Fritz Gesztesy; Percy Deift; Cherie Galvez; Peter Perry; Wilhelm Schlag (eds.).Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday. Proceedings of Symposia in Pure Mathematics. Vol. 76. Providence, RI: American Mathematical Society. pp. 463–496.Bibcode:2007stmp.conf..463H.ISBN 978-0-8218-3783-2.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lieb–Thirring_inequality&oldid=1312999338"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp