Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lidocaine

From Wikipedia, the free encyclopedia
3D space-filling model of Lidocaine under physiological conditions (pH 7.4), net charge = +1, and in ALPB solvent model of wetoctanol
Local anesthetic

Pharmaceutical compound
Lidocaine
Clinical data
PronunciationLidocaine:/ˈldəkn/LY-də-kayn[1][2]
Lignocaine:/ˈlɪɡnəkn/LIG-nə-kayn
Trade namesXylocaine, others
Other nameslignocaine
AHFS/Drugs.comLocalMonograph

SystemicMonograph

OphthalmicProfessional Drug Facts
MedlinePlusa682701
License data
Pregnancy
category
Routes of
administration
Intravenous,subcutaneous,topical,by mouth
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability35% (by mouth)
3% (topical)
MetabolismLiver,[8] 90%CYP3A4-mediated
Onset of actionWithin 1.5 min (IV)[8]
Eliminationhalf-life1.5 h to 2 h
Duration of action10 min to 20 min (IV),[8] 0.5 h to 3 h (local)[9][10]
ExcretionKidney[8]
Identifiers
  • 2-(diethylamino)-
    N-(2,6-dimethylphenyl)acetamide
CAS Number
PubChemCID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
CompTox Dashboard(EPA)
ECHA InfoCard100.004.821Edit this at Wikidata
Chemical and physical data
FormulaC14H22N2O
Molar mass234.343 g·mol−1
3D model (JSmol)
Melting point68 °C (154 °F)
  • Cc1cccc(C)c1NC(=O)CN(CC)CC
  • InChI=1S/C14H22N2O/c1-5-16(6-2)10-13(17)15-14-11(3)8-7-9-12(14)4/h7-9H,5-6,10H2,1-4H3,(H,15,17) checkY
  • Key:NNJVILVZKWQKPM-UHFFFAOYSA-N checkY
  (verify)

Lidocaine, also known aslignocaine and sold under the brand nameXylocaine among others, is alocal anesthetic of theaminoamide type.[11] It is also used to treatventricular tachycardia andventricular fibrillation.[8][9] When used for local anaesthesia or in nerve blocks, lidocaine typically begins working within several minutes and lasts for half an hour to three hours.[9][10] Lidocaine mixtures may also be applied directly to the skin ormucous membranes to numb the area.[11][9] It is often used mixed with a small amount ofadrenaline (epinephrine) to prolong its local effects and to decrease bleeding.[9]

If injected intravenously, it may cause cerebral effects such as confusion, changes in vision, numbness, tingling, and vomiting.[11][8] It can causelow blood pressure and an irregular heart rate.[8] There are concerns that injecting it into a joint can cause problems with thecartilage.[9] It appears to be generally safe for use inpregnancy.[8] A lower dose may be required in those with liver problems.[8] It is generally safe to use in those allergic totetracaine orbenzocaine.[9] Lidocaine is anantiarrhythmic medication of the class Ib type.[8] This means it works byblocking sodium channels thus decreasing the rate of contractions of the heart.[11][8] When injected near nerves, the nerves cannot conduct signals to or fromthe brain.[9]

Lidocaine was discovered in 1946 and went on sale in 1948.[12] It is on theWorld Health Organization's List of Essential Medicines.[13] It is available as ageneric medication.[9][14] In 2023, it was the 277th most commonly prescribed medication in the United States, with more than 800,000 prescriptions.[15][16]

Medical uses

[edit]

Local numbing agent

[edit]

The efficacy profile of lidocaine as a local anaesthetic is characterized by a rapid onset of action and intermediate duration of efficacy.[11] Therefore, lidocaine is suitable for infiltration, block, and surface anaesthesia. Longer-acting substances such asbupivacaine are sometimes given preference for spinal andepidural anaesthesias; lidocaine, though, has the advantage of a rapid onset of action.[11]

Lidocaine is one of the most commonly used local anaesthetics in dentistry. It can be administered in multiple ways, most often as anerve block orinfiltration, depending on the type of treatment carried out and the area of the mouth worked on.[11]

For surface anaesthesia, several formulations can be used forendoscopies, beforeintubations. Lidocaine drops can be used on the eyes for short ophthalmic procedures. There is tentative evidence fortopical lidocaine forneuropathic pain andskin graft donor site pain.[11][17][18] As a local numbing agent, it is used for the treatment ofpremature ejaculation.[19]

An adhesivetransdermal patch containing a 5% concentration of lidocaine in ahydrogel bandage, is approved by the US FDA for reducingnerve pain caused by shingles.[20] The transdermal patch is also used for pain from other causes, such as compressed nerves and persistent nerve pain after some surgeries.

Heart arrhythmia

[edit]

Lidocaine is a commonclass-1b antiarrhythmic drug; it is used intravenously for the treatment ofventricular arrhythmias (for acutemyocardial infarction,digoxin poisoning,cardioversion, orcardiac catheterization) ifamiodarone is not available or contraindicated.[11] Lidocaine should be given for this indication afterdefibrillation, CPR, andvasopressors have been initiated. A routine preventive dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing.[21]

Epilepsy

[edit]

A 2013 review on treatment forneonatal seizures recommended intravenous lidocaine as a second-line treatment, ifphenobarbital fails to stop seizures.[22]

Other

[edit]

Intravenous lidocaine infusions are also used to treatchronic pain andacute surgical pain as anopiate sparing technique. The quality of evidence for this use is poor so it is difficult to compare it toplacebo or anepidural.[23]

Inhaled lidocaine can be used as acough suppressor acting peripherally to reduce thecough reflex. This application can be implemented as a safety and comfort measure for people needingintubation, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anaesthesia.[24]

A 2019 systematic review of the literature found that intraurethral lidocaine reduces pain in men who undergocystoscopic procedures.[25]

Lidocaine, along withethanol,ammonia, andacetic acid, may also help in treatingjellyfish stings, both numbing the affected area and preventing furthernematocyst discharge.[26][27]

Forgastritis, drinking a viscous lidocaine formulation may help with the pain.[28]

A 2021 study found that lidocaine 5% spray on glans penis 10-20 minutes prior to sexual intercourse significantly improves premature ejaculation.[29] Another study found that lidocaine-prilocaine cream 5% is effective in premature ejaculation and 20 minutes of application time before sexual intercourse.[30]

Adverse effects

[edit]

Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, andallergic reactions only rarely occur.[31] Systemic exposure to excessive quantities of lidocaine mainly results incentral nervous system (CNS) andcardiovascular effects – CNS effects usually occur at lowerblood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations. ADRs by individual organ systems are:

  • CNS excitation: nervousness, agitation, anxiety, apprehension, tingling around the mouth (circumoral paraesthesia), headache,hyperesthesia, tremor, dizziness, pupillary changes, psychosis, euphoria, hallucinations, and seizures
  • CNS depression with heavier exposure: drowsiness, lethargy, slurred speech,hypoesthesia, confusion, disorientation, loss of consciousness,respiratory depression, andapnoea.
  • Cardiovascular:hypotension,bradycardia,arrhythmias, flushing, venous insufficiency, increased defibrillator threshold,edema, and/orcardiac arrest – some of which may be due tohypoxemia secondary to respiratory depression.[32]
  • Respiratory: bronchospasm, dyspnea, respiratory depression or arrest
  • Gastrointestinal: metallic taste, nausea, vomiting, agita, and diarrhea
  • Ears:tinnitus
  • Eyes: local burning, conjunctival hyperemia, corneal epithelial changes/ulceration, diplopia, visual changes (opacification)
  • Skin: itching, depigmentation, rash,urticaria, edema, angioedema, bruising,inflammation of the vein at the injection site, irritation of the skin when applied topically
  • Blood:methemoglobinemia
  • Allergy

ADRs associated with the use of intravenous lidocaine are similar to the toxic effects of systemic exposure above. These are dose-related and more frequent at high infusion rates (≥3 mg/min). Common ADRs include headache, dizziness, drowsiness, confusion, visual disturbances, tinnitus, tremor, and/orparaesthesia. Infrequent ADRs associated with the use of lidocaine include:hypotension,bradycardia,arrhythmias,cardiac arrest, muscle twitching,seizures,coma, and/or respiratory depression.[32]

It is generally safe to use lidocaine with vasoconstrictors such as adrenaline, including in regions such as thenose, ears,fingers, andtoes.[33] While concerns of tissue death, if used in these areas, have been raised, the evidence does not support these concerns.[33]

The use of lidocaine for spinal anesthesia may lead to an increased risk of transient neurological symptoms, a painful condition that is sometimes experienced immediately after surgery.[34] There is some weak evidence to suggest that the use of alternative anesthetic medications such asprilocaine,procaine,bupivacaine,ropivacaine, orlevobupivacaine may decrease the risk of a person developing transient neurological symptoms.[34] Low-quality evidence suggests that 2‐chloroprocaine andmepivacaine when used for spinal anesthetic have a similar risk of the person developing transient neurological symptoms as lidocaine.[34]

Interactions

[edit]

Any drugs that are alsoligands ofCYP3A4 andCYP1A2 can potentially increase serum levels and potential for toxicity or decrease serum levels and the efficacy, depending on whether they induce or inhibit the enzymes, respectively. Drugs that may increase the chance ofmethemoglobinemia should also be considered carefully.Dronedarone andliposomalmorphine are both absolutely acontraindication, as they may increase the serum levels, but hundreds of other drugs require monitoring for interaction.[35]

Contraindications

[edit]

Absolute contraindications for the use of lidocaine include:

Exercise caution in people with any of these:

Overdosage

[edit]

Overdoses of lidocaine may result from excessive administration by topical orparenteral routes, accidental oral ingestion of topical preparations by children (who are more susceptible to overdose), accidental intravenous (rather than subcutaneous,intrathecal, or paracervical) injection, or from prolonged use of subcutaneous infiltration anesthesia during cosmetic surgery.[citation needed] The maximum safe dose is 3 mg per kg.[11]

Such overdoses have often led to severe toxicity or death in both children and adults (local anesthetic systemic toxicity).[42] Symptoms include central nervous system manifestations such as numbness of the tongue, dizziness, tinnitus, visual disturbances, convulsions, reduced consciousness progressing to coma, as well as respiratory arrest and cardiovascular disturbances.[43] Lidocaine and its two major metabolites may be quantified in blood, plasma, or serum to confirm the diagnosis in potential poisoning victims or to assist forensic investigation in a case of fatal overdose.[citation needed]

Lidocaine is often given intravenously as an antiarrhythmic agent in critical cardiac-care situations.[44] Treatment with intravenous lipid emulsions (used forparenteral feeding) to reverse the effects of local anaesthetic toxicity is becoming more common.[45][46]

Lidocaine has been used by veterinarians foreuthanasia ofhorses,livestock, and more recently ofdogs andcats.[47] Due to its side effects,intravenous lidocaine can be given only to anesthetized patients, making it less attractive perhaps thanpentobarbital, that can be given intravenously to awake patients. In 2025Russian Army nurses have reported the use of 1-2 %intravenous lidocaine in 60 mL dosage formercy killing of mortally wounded servicemen.[48]

Postarthroscopic glenohumeral chondrolysis

[edit]

Lidocaine in large amounts may be toxic tocartilage and intra-articular infusions can lead topostarthroscopic glenohumeral chondrolysis.[49]

Pharmacology

[edit]

Mechanism of action

[edit]

Lidocaine alters signal conduction inneurons by prolonging the inactivation of the fastvoltage-gated Na+ channels in the neuronal cell membrane responsible foraction potential propagation.[11][50] With sufficient blockage, the voltage-gated sodium channels will not open and an action potential will not be generated. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other types of neurons.[citation needed]

The same principle applies to this drug's actions in the heart. Blocking sodium channels in the conduction system, as well as the muscle cells of the heart, raises the depolarization threshold, making the heart less likely to initiate or conduct early action potentials that may cause an arrhythmia.[51]

Pharmacokinetics

[edit]

When used as an injectable it typically begins working within four minutes and lasts for half an hour to three hours.[9][10] Lidocaine is about 95% metabolized (dealkylated) in theliver mainly by CYP3A4 to the pharmacologically activemetabolites monoethylglycinexylidide (MEGX) and then subsequently to the inactive glycine xylidide. MEGX has a longerhalf-life than lidocaine, but also is a less potent sodium channel blocker.[52] Thevolume of distribution is 1.1 L/kg to 2.1 L/kg, but congestive heart failure can decrease it. About 60% to 80% circulates bound to the proteinalpha1 acid glycoprotein. The oralbioavailability is 35% and the topical bioavailability is 3%. Lidocaine efficacy may be reduced in tissues that areinflamed, due to competing inflammatory mediators.[11]

The elimination half-life of lidocaine is biphasic and around 90 min to 120 min in most people. This may be prolonged in people withhepatic impairment (average 343 min) orcongestive heart failure (average 136 min).[53] Lidocaine is excreted in the urine (90% as metabolites and 10% as unchanged drug).[54]

Chemistry

[edit]

Molecular structure and conformational flexibility

[edit]

Lidocaine's 1,5-dimethylbenzene group gives ithydrophobic properties. In addition to this aromatic unit, lidocaine has an aliphatic section comprising amide, carbonyl, and enyl groups.

Lidocaine exhibits a remarkable degree of conformational flexibility, resulting in more than 60 probable conformers.[55] This adaptability arises from the high lability of the amide and ethyl groups within the molecule. These groups can undergo shifts in their positions, leading to significant variations in the overall molecular configuration.

Influence of temperature and pressure on conformational preference

[edit]

The dynamic transformation of lidocaine conformers in supercritical carbon dioxide (scCO2) highly depends on external factors such as pressure[55] and temperature.[56] Alterations in these conditions can lead to distinct conformations, impacting the molecule's physicochemical properties. One notable consequence of these variations is the particle size of lidocaine when produced through micronization using scCO2. Changes in the position of the amide group within the molecule can trigger a redistribution of intra- and intermolecular hydrogen bonds, affecting the outcome of the micronization process and the resultant particle size.[57]

Veterinary use

[edit]

Lidocaine is commonly used in veterinary medicine in both companion and production animals around the world and is listed as an essential veterinary medicine by the World Veterinary Association and also the World Small Animal Veterinary Association.[1][58]

In veterinary medicine, it is commonly used as a local anaesthetic both as an injectable or topical product. It provides excellent local anaesthesia when given by local infiltration into a tissue or via specific nerve blocks. These are commonly applied to nerves of the head, limbs, thorax, and spine. It can also be used to treat ventricular arrhythmias when given intravenously. In most veterinary species, when given via injection, it has a rapid onset of action (2-10 minutes) with a duration of action of 30-60 minutes.[59]

In veterinary species, its metabolism is much the same as humans with rapid metabolism in the liver to the major metabolites MEGX (monoethylglycine xylidide) and GX (glycine xylidide) that retain partial activity against sodium channels. These compounds are further metabolized to monoethylglycine and xylidide, respectively.[59]

Toxicity in animals is similar to that seen in humans with both toxicity to the central nervous system (CNS) and cardiovascular system observed. General the CNS signs are seen first with agitation and muscle twitching seen before the cardiovascular signs of hypotension, myocardial depression, and arrhythmias. Further CNS depression will result from higher doses with seizures and convulsions and eventually apnea and death.[59]

It is a component of theveterinary drugTributame along withembutramide andchloroquine used to carry outeuthanasia on horses and dogs.[60][61]

History

[edit]

Lidocaine, the firstaminoamide–type local anesthetic (previous were amino esters), was first synthesized under the name 'xylocaine' by Swedish chemistNils Löfgren in 1943.[62][63][64] His colleague Bengt Lundqvist performed the first injection anesthesia experiments on himself.[62] It was first marketed in 1949.

Society and culture

[edit]

Dosage forms

[edit]

Lidocaine, usually in the form of itshydrochloride salt, is available in various forms including manytopical formulations and solutions for injection or infusion.[65] It is also available as atransdermal patch, which is applied directly to the skin.[citation needed]

  • Lidocaine hydrochloride 2% epinephrine 1:80,000 solution for injection in a cartridge
    Lidocaine hydrochloride 2% epinephrine 1:80,000 solution for injection in a cartridge
  • Lidocaine hydrochloride 1% solution for injection
    Lidocaine hydrochloride 1% solution for injection
  • Topical lidocaine spray
    Topical lidocaine spray
  • 2% viscous lidocaine
    2% viscous lidocaine

Names

[edit]

Lidocaine is theInternational Nonproprietary Name (INN),British Approved Name (BAN), andAustralian Approved Name (AAN),[66] while lignocaine is the former BAN[citation needed] and AAN. Both the old and new names will be displayed on the product label in Australia until at least 2023.[67]

Xylocaine is a brand name, referring to the major synthetic building block2,6-xylidine. The "ligno" prefix is chosen because "xylo" meanswood in Greek while "ligno" means the same in Latin. The "lido" prefix instead refers to the fact that the drug is chemically related toacetanilide.[64]

Recreational use

[edit]

As of 2021,[update] lidocaine is not listed by theWorld Anti-Doping Agency as a substance whose use is banned in sport.[68] It is used as anadjuvant, adulterant, and diluent to street drugs such ascocaine andheroin.[69] It is one of the three common ingredients insite enhancement oil used bybodybuilders.[70]

Adulterant in cocaine

[edit]

Lidocaine is often added tococaine as adiluent.[71][72] Cocaine and lidocaine both numb thegums when applied. This gives the user the impression of high-quality cocaine when in actuality the user is receiving a diluted product.[73]

Compendial status

[edit]

References

[edit]
  1. ^"Lidocaine".Merriam-Webster.com Dictionary. Merriam-Webster.
  2. ^"Lidocaine".Dictionary.com Unabridged (Online). n.d.
  3. ^"Poisons Standard February 2021".Federal Register of Legislation. 1 January 2021. Retrieved11 April 2021.
  4. ^"Xylocard Product information".Health Canada. 9 October 2018. Retrieved17 February 2025.
  5. ^"Lidocaine Hydrochloride Injection BP 1% w/v - Summary of Product Characteristics (SmPC)".(emc). 29 June 2020. Retrieved11 April 2021.
  6. ^"Xylocaine MPF- lidocaine hydrochloride injection, solution Xylocaine- lidocaine hydrochloride injection, solution Xylocaine- lidocaine hydrochloride,epinephrine bitartrate injection, solution".DailyMed. Retrieved11 April 2021.
  7. ^"Ztlido- lidocaine patch".DailyMed. Retrieved11 April 2021.
  8. ^abcdefghijk"Lidocaine Hydrochloride (Antiarrhythmic)". Drugs.com, The American Society of Health-System Pharmacists. 10 June 2024. Retrieved23 July 2024.
  9. ^abcdefghij"Lidocaine Hydrochloride (Local)". Drugs.com, The American Society of Health-System Pharmacists. 22 January 2024. Retrieved23 July 2024.
  10. ^abcNolan JP, Baskett PJ (1997)."Analgesia and anaesthesia". In David Skinner, Andrew Swain, Rodney Peyton, Colin Robertson (eds.).Cambridge Textbook of Accident and Emergency Medicine. Project co-ordinator, Fiona Whinster. Cambridge, UK: Cambridge University Press. p. 194.ISBN 978-0-521-43379-2.Archived from the original on 8 September 2017.
  11. ^abcdefghijklBeecham GB, Nessel TA, Goyal A (11 December 2022)."Lidocaine". StatPearls, US National Library of Medicine. Retrieved23 July 2024.
  12. ^Scriabine A (1999)."Discovery and development of major drugs currently in use". In Ralph Landau, Basil Achilladelis, Alexander Scriabine (eds.).Pharmaceutical Innovation: Revolutionizing Human Health. Philadelphia: Chemical Heritage Press. p. 211.ISBN 978-0-941901-21-5.Archived from the original on 8 September 2017.
  13. ^World Health Organization (2023).The selection and use of essential medicines 2023: web annex A: World Health Organization model list of essential medicines: 23rd list (2023). Geneva: World Health Organization.hdl:10665/371090. WHO/MHP/HPS/EML/2023.02.
  14. ^Hamilton R (2015).Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 22.ISBN 978-1-284-05756-0.
  15. ^"The Top 300 of 2023".ClinCalc.Archived from the original on 17 August 2025. Retrieved17 August 2025.
  16. ^"Lidocaine Drug Usage Statistics, United States, 2014 - 2023".ClinCalc. Retrieved17 August 2025.
  17. ^Derry S, Wiffen PJ, Moore RA, Quinlan J (July 2014). Derry S (ed.)."Topical lidocaine for neuropathic pain in adults".The Cochrane Database of Systematic Reviews.7 (7) CD010958.doi:10.1002/14651858.CD010958.pub2.PMC 6540846.PMID 25058164.
  18. ^Sinha S, Schreiner AJ, Biernaskie J, Nickerson D, Gabriel VA (November 2017). "Treating pain on skin graft donor sites: Review and clinical recommendations".The Journal of Trauma and Acute Care Surgery.83 (5):954–964.doi:10.1097/TA.0000000000001615.PMID 28598907.S2CID 44520644.
  19. ^"Lidocaine/prilocaine spray for premature ejaculation".Drug and Therapeutics Bulletin.55 (4):45–48. April 2017.doi:10.1136/dtb.2017.4.0469.PMID 28408390.S2CID 19110955.
  20. ^Kumar M, Chawla R, Goyal M (2015)."Topical anesthesia".Journal of Anaesthesiology Clinical Pharmacology.31 (4):450–6.doi:10.4103/0970-9185.169049.PMC 4676230.PMID 26702198.
  21. ^Martí-Carvajal AJ, Simancas-Racines D, Anand V, Bangdiwala S (August 2015)."Prophylactic lidocaine for myocardial infarction".The Cochrane Database of Systematic Reviews.8 (8) CD008553.doi:10.1002/14651858.CD008553.pub2.PMC 8454263.PMID 26295202.
  22. ^Slaughter LA, Patel AD, Slaughter JL (March 2013)."Pharmacological treatment of neonatal seizures: a systematic review".Journal of Child Neurology.28 (3):351–64.doi:10.1177/0883073812470734.PMC 3805825.PMID 23318696.
  23. ^Weibel S, Jelting Y, Pace NL, Helf A, Eberhart LH, Hahnenkamp K, et al. (June 2018)."Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults".The Cochrane Database of Systematic Reviews.2018 (6): 2.doi:10.1002/14651858.cd009642.pub3.PMC 6513586.PMID 29864216.
  24. ^Biller JA (2007)."Airway obstruction, bronchospasm, and cough". In Berger AM, Shuster JL, Von Roenn JH (eds.).Principles and practice of palliative care and supportive oncology. Hagerstwon, MD: Lippincott Williams & Wilkins. pp. 297–307.ISBN 978-0-7817-9595-1.Inhaled lidocaine is used to suppress cough during bronchoscopy. Animal studies and a few human studies suggest that lidocaine has an antitussive effect…
  25. ^Raskolnikov D, Brown B, Holt SK, Ball AL, Lotan Y, Strope S, et al. (December 2019). "Reduction of Pain during Flexible Cystoscopy: A Systematic Review and Meta-Analysis".The Journal of Urology.202 (6):1136–1142.doi:10.1097/JU.0000000000000399.PMID 31219763.S2CID 195192577.
  26. ^Birsa LM, Verity PG, Lee RF (May 2010). "Evaluation of the effects of various chemicals on discharge of and pain caused by jellyfish nematocysts".Comp. Biochem. Physiol. C.151 (4):426–30.doi:10.1016/j.cbpc.2010.01.007.PMID 20116454.
  27. ^Morabito R, Marino A, Dossena S, La Spada G (June 2014). "Nematocyst discharge in Pelagia noctiluca (Cnidaria, Scyphozoa) oral arms can be affected by lidocaine, ethanol, ammonia and acetic acid".Toxicon.83:52–8.Bibcode:2014Txcn...83...52M.doi:10.1016/j.toxicon.2014.03.002.PMID 24637105.
  28. ^Adams JG (2012)."32".Emergency Medicine: Clinical Essentials. Elsevier Health Sciences.ISBN 978-1-4557-3394-1.Archived from the original on 8 September 2017.
  29. ^Abu El-Hamd M (January 2021). "Effectiveness and tolerability of lidocaine 5% spray in the treatment of lifelong premature ejaculation patients: a randomized single-blind placebo-controlled clinical trial".International Journal of Impotence Research.33 (1):96–101.doi:10.1038/s41443-019-0225-9.PMID 31896832.
  30. ^Atikeler MK, Gecit I, Senol FA (December 2002)."Optimum usage of prilocaine-lidocaine cream in premature ejaculation".Andrologia.34 (6):356–359.doi:10.1046/j.1439-0272.2002.00511.x.PMID 12472618.
  31. ^Jackson D, Chen AH, Bennett CR (October 1994). "Identifying true lidocaine allergy".J Am Dent Assoc.125 (10):1362–6.doi:10.14219/jada.archive.1994.0180.PMID 7844301.
  32. ^abAustralian Medicines Handbook. Adelaide, S. Aust: Australian Medicines Handbook Pty Ltd. 2006.ISBN 978-0-9757919-2-9.[page needed]
  33. ^abNielsen LJ, Lumholt P, Hölmich LR (October 2014). "[Local anaesthesia with vasoconstrictor is safe to use in areas with end-arteries in fingers, toes, noses, and ears]".Ugeskrift for Laeger.176 (44).PMID 25354008.
  34. ^abcForget P, Borovac JA, Thackeray EM, Pace NL (December 2019)."Transient neurological symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics in adult surgical patients: a network meta-analysis".The Cochrane Database of Systematic Reviews.2019 (12) CD003006.doi:10.1002/14651858.CD003006.pub4.PMC 6885375.PMID 31786810.
  35. ^"Lidocaine". Epocrates.Archived from the original on 22 April 2014.
  36. ^ab"Lidocaine Hydrochloride and 5% Dextrose Injection".Safety Labeling Changes. FDA Center for Drug Evaluation and Research (CDER). January 2014. Archived fromthe original on 3 April 2013.
  37. ^"FDA Drug Safety Communication: FDA recommends not using lidocaine to treat teething pain and requires new Boxed Warning". FDA Center for Drug Evaluation and Research (CDER). June 2014. Archived fromthe original on 14 July 2014.
  38. ^Schubart JR, Schaefer E, Janicki P, Adhikary SD, Schilling A, Hakim AJ, et al. (October 2019)."Resistance to local anesthesia in people with the Ehlers-Danlos Syndromes presenting for dental surgery".Journal of Dental Anesthesia and Pain Medicine.19 (5):261–270.doi:10.17245/jdapm.2019.19.5.261.PMC 6834718.PMID 31723666.
  39. ^"Table 96–4. Drugs and Porphyria"(PDF).Merck Manual. Merck & Company, Inc. 2011.Archived from the original on 20 April 2014.
  40. ^"Lidocaine - N01BB02".Drug porphyrinogenicity monograph. The Norwegian Porphyria Centre and the Swedish Porphyria Centre.Archived from the original on 20 April 2014.strong clinical evidence points to lidocaine as probably not porphyrinogenic
  41. ^Khan MG (2007).Cardiac Drug Therapy (7th ed.). Totowa, NJ: Humana Press.ISBN 978-1-59745-238-0.
  42. ^El-Boghdadly K, Pawa A, Chin KJ (8 August 2018)."Local anesthetic systemic toxicity: current perspectives".Local and Regional Anesthesia.11:35–44.doi:10.2147/LRA.S154512.PMC 6087022.PMID 30122981.
  43. ^van Donselaar-van der Pant KA, Buwalda M, van Leeuwen HJ (January 2008)."[Lidocaine: local anaesthetic with systemic toxicity]" [Lidocaine: local anaesthetic with systemic toxicity].Nederlands Tijdschrift voor Geneeskunde (in Dutch).152 (2):61–65.PMID 18265791.
  44. ^Baselt R (2008).Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, CA: Biomedical Publications. pp. 840–4.ISBN 978-0-9626523-7-0.
  45. ^Picard J, Ward SC, Zumpe R, Meek T, Barlow J, Harrop-Griffiths W (February 2009)."Guidelines and the adoption of 'lipid rescue' therapy for local anaesthetic toxicity".Anaesthesia.64 (2):122–125.doi:10.1111/j.1365-2044.2008.05816.x.PMID 19143686.S2CID 25581037.
  46. ^El-Boghdadly K, Pawa A, Chin KJ (2018)."Local anesthetic systemic toxicity: current perspectives".Local and Regional Anesthesia.11:35–44.doi:10.2147/LRA.S154512.PMC 6087022.PMID 30122981.
  47. ^https://caetainternational.com/new-study-shows-lidocaine-as-euthanasia-agent-in-dogs-and-cats/#:~:text=Lidocaine%20is%20now%20proven%20to,that%20it%20causes%20permanent%20death.
  48. ^https://www.youtube.com/watch?v=cwaq-826Iu4
  49. ^Gulihar A, Robati S, Twaij H, Salih A, Taylor GJ (December 2015)."Articular cartilage and local anaesthetic: A systematic review of the current literature".Journal of Orthopaedics.12 (Suppl 2): S200-10.doi:10.1016/j.jor.2015.10.005.PMC 4796530.PMID 27047224.
  50. ^Carterall WA (2001). "Molecular mechanisms of gating and drug block of sodium channels".Sodium Channels and Neuronal Hyperexcitability. Novartis Foundation Symposia. Vol. 241. pp. 206–225.doi:10.1002/0470846682.ch14.ISBN 978-0-470-84668-1.
  51. ^Sheu SS, Lederer WJ (October 1985)."Lidocaine's negative inotropic and antiarrhythmic actions. Dependence on shortening of action potential duration and reduction of intracellular sodium activity".Circulation Research.57 (4):578–90.doi:10.1161/01.res.57.4.578.PMID 2412723.
  52. ^Lewin NA, Nelson LH (2006). "Chapter 61: Antidysrhythmics". In Flomenbaum N, Goldfrank LR, Hoffman RL, Howland MD, Lewin NA, Nelson LH (eds.).Goldfrank's Toxicologic Emergencies (8th ed.). New York: McGraw-Hill. pp. 963–4.ISBN 978-0-07-143763-9.
  53. ^Thomson PD, Melmon KL, Richardson JA, Cohn K, Steinbrunn W, Cudihee R, et al. (April 1973). "Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans".Ann. Intern. Med.78 (4):499–508.doi:10.7326/0003-4819-78-4-499.PMID 4694036.
  54. ^Collinsworth KA, Kalman SM, Harrison DC (1974)."The clinical pharmacology of lidocaine as an antiarrhythymic drug".Circulation.50 (6):1217–30.doi:10.1161/01.CIR.50.6.1217.PMID 4609637.
  55. ^abKhodov IA, Belov KV, Dyshin AA, Krestyaninov MA, Kiselev MG (December 2022). "Pressure effect on lidocaine conformational equilibria in scCO2: A study by 2D NOESY".Journal of Molecular Liquids.367 120525.doi:10.1016/j.molliq.2022.120525.S2CID 252799787.
  56. ^Khodov IA, Belov KV, Sobornova VV, Dyshin AA, Kiselev MG (October 2023). "Exploring the temperature-dependent proportions of lidocaine conformers equilibria in supercritical carbon dioxide via NOESY".Journal of Molecular Liquids.387 122620.doi:10.1016/j.molliq.2023.122620.S2CID 260069284.
  57. ^Kuznetsova IV, Gilmutdinov II, Gilmutdinov IM, Sabirzyanov AN (September 2019). "Production of Lidocaine Nanoforms via the Rapid Extension of a Supercritical Solution into Water Medium".High Temperature.57 (5):726–730.Bibcode:2019HTemp..57..726K.doi:10.1134/S0018151X19040138.ISSN 0018-151X.S2CID 213017906.
  58. ^"The 2023 World Small Animal Veterinary Association (WSAVA) list of essential medicines for cats and dogs"(PDF).Journal of Small Animal Practice.
  59. ^abcVeterinary Pharmacology and Therapeutics (10th ed.). 2018.
  60. ^Peterson ME, Talcott PA (7 August 2013).Small Animal Toxicology. Elsevier Health Sciences.ISBN 978-0-323-24198-4.Archived from the original on 8 September 2017.
  61. ^"FDA Freedom of Information Summary - Tributame"(PDF).Food and Drug Administration. Archived fromthe original(PDF) on 18 May 2015.
  62. ^abLöfgren N (1948).Studies on local anesthetics: Xylocaine: a new synthetic drug (Inaugural dissertation). Stockholm, Sweden: Ivar Heggstroms.OCLC 646046738.[page needed]
  63. ^Löfgren N, Lundqvist B (1946). "Studies on local anaesthetics II".Svensk Kemisk Tidskrift.58:206–17.
  64. ^abWildsmith JA (2011)."Lidocaine: A more complex story than 'simple' chemistry suggests"(PDF).The Proceedings of the History of Anaesthesia Society.43:9–16.Archived(PDF) from the original on 22 April 2014.
  65. ^"Lidocaine international forms and names". Drugs.com. Retrieved29 October 2017.
  66. ^"Lidocaine Ingredient Summary".Therapeutic Goods Administration. Retrieved20 September 2018.
  67. ^"Updating medicine ingredient names - list of affected ingredients".Therapeutic Goods Administration. 24 June 2019. Archived fromthe original on 28 August 2021. Retrieved16 February 2020.
  68. ^"The 2021 Prohibited List International Standard"(PDF).The World Anti-Doping Code. World Anti-Doping Agency (WADA). 1 January 2021. Archived fromthe original(PDF) on 13 May 2021. Retrieved18 May 2021.
  69. ^"New York Drug Threat Assessment". National Drug Intelligence Center. November 2002.Archived from the original on 12 August 2012.
  70. ^Pupka A, Sikora J, Mauricz J, Cios D, Płonek T (2009). "[The usage of synthol in the body building]".Polimery W Medycynie.39 (1):63–5.PMID 19580174.
  71. ^Bernardo NP, Siqueira ME, De Paiva MJ, Maia PP (2003). "Caffeine and other adulterants in seizures of street cocaine in Brazil".International Journal of Drug Policy.14 (4):331–4.doi:10.1016/S0955-3959(03)00083-5.
  72. ^"UNITED STATES of America, Plaintiff-Appellee, v. Luis A. CUELLO, Alvaro Bastides-Benitez, John Doe, a/k/a Hugo Hurtado, and Alvaro Carvajal, Defendants-Appellants".Docket No. 78-5314. United States Court of Appeals, Fifth Circuit. 25 July 1979. Archived fromthe original on 24 May 2012.
  73. ^Winterman D (7 September 2010)."How cutting drugs became big business".BBC News Online. BBC News Magazine.Archived from the original on 2 February 2017. Retrieved20 January 2017.
  74. ^"Revision Bulletin: Lidocaine and Prilocaine Cream–Revision to Related Compounds Test". The United States Pharmacopeial Convention. 30 November 2007.Archived from the original on 1 May 2013.

External links

[edit]
Channel blockers
class I
(Na+ channel blockers)
class Ia (Phase 0→ andPhase 3→)
class Ib (Phase 3←)
class Ic (Phase 0→)
class III
(Phase 3→,K+ channel blockers)
class IV
(Phase 4→,Ca2+ channel blockers)
Receptoragonists
andantagonists
class II
(Phase 4→,β blockers)
A1 agonist
M2
α receptors
Ion transporters
Na+/ K+-ATPase
Antihemorrhoidals for topical use
corticosteroids
local anesthetics
other
Antivaricose therapy
heparins orheparinoids for topical use
sclerosing agents for local injection
other
Capillary stabilising agents
bioflavonoids
other
Antihistamines fortopical use
Anesthetics for topical use
Others
Esters by acid
Aminobenzoic
Benzoic
ArCO2- (not para-amino or Ph)
Amides
Combinations
Monoaminergics
Ion channel blockers
Others
Throat preparations (R02)
Antiseptics
Antibiotics
Local anesthetics
Other
Drugs used for diseases of theear (S02)
Infection
Corticosteroids
Analgesics andanesthetics
Calcium
VDCCsTooltip Voltage-dependent calcium channels
Blockers
Activators
Potassium
VGKCsTooltip Voltage-gated potassium channels
Blockers
Activators
IRKsTooltip Inwardly rectifying potassium channel
Blockers
Activators
KCaTooltip Calcium-activated potassium channel
Blockers
Activators
K2PsTooltip Tandem pore domain potassium channel
Blockers
Activators
Sodium
VGSCsTooltip Voltage-gated sodium channels
Blockers
Activators
ENaCTooltip Epithelial sodium channel
Blockers
Activators
ASICsTooltip Acid-sensing ion channel
Blockers
Chloride
CaCCsTooltip Calcium-activated chloride channel
Blockers
Activators
CFTRTooltip Cystic fibrosis transmembrane conductance regulator
Blockers
Activators
Unsorted
Blockers
Others
TRPsTooltip Transient receptor potential channels
LGICsTooltip Ligand gated ion channels
Portal:
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lidocaine&oldid=1322909999"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp