Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lithium cobalt oxide

From Wikipedia, the free encyclopedia
(Redirected fromLiCoO2)
Lithium cobalt oxide[1]
__Li+     __Co3+     __O2−
Names
IUPAC name
lithium cobalt(III) oxide
Other names
lithium cobaltite
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.032.135Edit this at Wikidata
EC Number
  • 235-362-0
  • InChI=1S/Co.Li.2O/q+3;+1;2*-2
    Key: LSZLYXRYFZOJRA-UHFFFAOYSA-N
  • [Li+].[O-2].[Co+3].[O-2]
Properties
LiCoO
2
Molar mass97.87 g mol−1
Appearancedark blue or bluish-gray crystalline solid
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
harmful
GHS labelling:
GHS07: Exclamation markGHS08: Health hazard
Danger
H317,H350,H360
P201,P202,P261,P272,P280,P281,P302+P352,P308+P313,P321,P333+P313,P363,P405,P501
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Lithium cobalt oxide, sometimes calledlithium cobaltate[2] orlithium cobaltite,[3] is achemical compound with formulaLiCoO
2
. Thecobalt atoms are formally in the +3 oxidation state, hence theIUPAC namelithium cobalt(III) oxide.

Lithium cobalt oxide is a dark blue or bluish-gray crystalline solid,[4] and is commonly used in the positiveelectrodes oflithium-ion batteries especially inhandheld electronics.

Structure

[edit]

The structure ofLiCoO
2
has been studied with numerous techniques includingx-ray diffraction,electron microscopy, neutronpowder diffraction, andEXAFS.[5]

The solid consists of layers of monovalentlithium cations (Li+
) that lie between extended anionic sheets of cobalt and oxygen atoms, arranged as edge-sharingoctahedra, with two faces parallel to the sheet plane.[6] The cobalt atoms are formally in the trivalent oxidation state (Co3+
) and are sandwiched between two layers of oxygen atoms (O2−
).

In each layer (cobalt, oxygen, or lithium), the atoms are arranged in a regular triangular lattice. The lattices are offset so that the lithium atoms are farthest from the cobalt atoms, and the structure repeats in the direction perpendicular to the planes every three cobalt (or lithium) layers. The point group symmetry isR3¯m{\displaystyle R{\bar {3}}m} inHermann-Mauguin notation, signifying a unit cell with threefoldimproper rotational symmetry and a mirror plane. The threefold rotational axis (which is normal to the layers) is termed improper because the triangles of oxygen (being on opposite sides of each octahedron) are anti-aligned.[7]

Preparation

[edit]

Fully reduced lithium cobalt oxide can be prepared by heating a stoichiometric mixture oflithium carbonateLi
2
CO
3
andcobalt(II,III) oxideCo
3
O
4
or metallic cobalt at 600–800 °C, thenannealing the product at 900 °C for many hours, all under an oxygen atmosphere.[6][3][7]

LCO Synthesis
Nanometer-sized and sub-micrometer sized LCO synthesis route[8]

Nanometer-size particles more suitable for cathode use can also be obtained by calcination ofhydratedcobalt oxalate β-CoC
2
O
4
·2H
2
O
, in the form of rod-like crystals about 8 μm long and 0.4 μm wide, withlithium hydroxideLiOH, up to 750–900 °C.[9]

A third method useslithium acetate,cobalt acetate, andcitric acid in equal molar amounts, in water solution. Heating at 80 °C turns the mixture into a viscous transparent gel. The dried gel is then ground and heated gradually to 550 °C.[10]

Use in rechargeable batteries

[edit]

The usefulness of lithium cobalt oxide as an intercalation electrode was discovered in 1980 by anOxford University research group led byJohn B. Goodenough andTokyo University'sKoichi Mizushima.[11]

The compound is now used as the cathode in some rechargeablelithium-ion batteries, with particle sizes ranging fromnanometers tomicrometers.[10][9] During charging, the cobalt is partially oxidized to the +4 state, with somelithium ions moving to the electrolyte, resulting in a range of compoundsLi
x
CoO
2
with 0 <x < 1.[3]

Batteries produced withLiCoO
2
cathodes have very stable capacities, but have lower capacities and power than those with cathodes based on (especially nickel-rich)nickel-cobalt-aluminum (NCA) ornickel-cobalt-manganese (NCM) oxides.[12] Issues withthermostability are better forLiCoO
2
cathodes than other nickel-rich chemistries although not significantly. This makesLiCoO
2
batteries susceptible tothermal runaway in cases of abuse such as high temperature operation (>130 °C) orovercharging. At elevated temperatures,LiCoO
2
decomposition generatesoxygen, which then reacts with the organic electrolyte of the cell, this reaction is often seen inLithium-Ion batteries where the battery becomes highly volatile and must be recycled in a safe manner. The decomposition of LiCoO2 is a safety concern due to the magnitude of this highlyexothermic reaction, which can spread to adjacent cells or ignite nearby combustible material.[13] In general, this is seen for many lithium-ion battery cathodes.

The delithiation process is usually by chemical means,[14] although a novel physical process has been developed based on ion sputtering and annealing cycles,[15] leaving the material properties intact.

See also

[edit]

References

[edit]
  1. ^442704 - Lithium cobalt(III) oxide (2012-09-14)."Sigma-Aldrich product page". Sigmaaldrich.com. Retrieved2013-01-21.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. ^A. L. Emelina, M. A. Bykov, M. L. Kovba, B. M. Senyavin, E. V. Golubina (2011), "Thermochemical properties of lithium cobaltate".Russian Journal of Physical Chemistry, volume 85, issue 3, pages 357–363;doi:10.1134/S0036024411030071
  3. ^abcOndřej Jankovský, Jan Kovařík, Jindřich Leitner, Květoslav Růžička, David Sedmidubský (2016) "Thermodynamic properties of stoichiometric lithium cobaltiteLiCoO2".Thermochimica Acta, volume 634, pages 26-30.doi:10.1016/j.tca.2016.04.018
  4. ^LinYi Gelon New Battery Materials Co., Ltd,"Lithium Cobalt Oxide (LiCoO2) for lithium ion battery ". Catalog entry, accessed on 2018-04-10,
  5. ^I. Nakai; K. Takahashi; Y. Shiraishi; T. Nakagome; F. Izumi; Y. Ishii; F. Nishikawa; T. Konishi (1997). "X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems".Journal of Power Sources.68 (2):536–539.Bibcode:1997JPS....68..536N.doi:10.1016/S0378-7753(97)02598-6.
  6. ^abShao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, E. Chris; O'Keefe, Michael A. (July 2003)."Atomic resolution of lithium ions inLiCoO
    2
    "
    .Nature Materials.2 (7):464–467.doi:10.1038/nmat922.PMID 12806387.S2CID 34357573.
  7. ^abH. J. Orman & P. J. Wiseman (January 1984). "Cobalt(III) lithium oxide,CoLiO
    2
    : structure refinement by powder neutron diffraction".Acta Crystallographica Section C.40 (1):12–14.doi:10.1107/S0108270184002833.
  8. ^Qi, Zhaoxiang; Koenig, Gary M. (2016-08-16). "High-Performance LiCoO2Sub-Micrometer Materials from Scalable Microparticle Template Processing".ChemistrySelect.1 (13):3992–3999.doi:10.1002/slct.201600872.ISSN 2365-6549.
  9. ^abQi, Zhaoxiang (August 2016). "High-Performance LiCoO2 Sub-Micrometer Materials from Scalable Microparticle Template Processing".ChemistrySelect.1 (13):3992–3999.doi:10.1002/slct.201600872.
  10. ^abTang, W.; Liu, L. L.; Tian, S.; Li, L.; Yue, Y. B.; Wu, Y. P.; Guan, S. Y.; Zhu, K. (2010-11-01). "Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries".Electrochemistry Communications.12 (11):1524–1526.doi:10.1016/j.elecom.2010.08.024.
  11. ^K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough (1980), "Li
    x
    CoO
    2
    (0<x<1): A New Cathode Material for Batteries of High Energy Density".Materials Research Bulletin, volume 15, pages 783–789.doi:10.1016/0025-5408(80)90012-4
  12. ^Oswald, Stefan; Gasteiger, Hubert A. (2023-03-01)."The Structural Stability Limit of Layered Lithium Transition Metal Oxides Due to Oxygen Release at High State of Charge and Its Dependence on the Nickel Content".Journal of the Electrochemical Society.170 (3): 030506.doi:10.1149/1945-7111/acbf80.ISSN 0013-4651.S2CID 258406065.
  13. ^Doughty, Daniel; Pesaran, Ahmad."Vehicle Battery Safety Roadmap Guidance"(PDF). National Renewable Energy Laboratory. Retrieved19 January 2013.
  14. ^Aurbach, D (2002-06-02)."A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions".Solid State Ionics.148 (3–4):405–416.doi:10.1016/S0167-2738(02)00080-2.
  15. ^Salagre, Elena; Segovia, Pilar; González-Barrio, Miguel Ángel; Jugovac, Matteo; Moras, Paolo; Pis, Igor; Bondino, Federica; Pearson, Justin; Wang, Richmond Shiwei; Takeuchi, Ichiro; Fuller, Elliot J.; Talin, Alec A.; Mascaraque, Arantzazu; Michel, Enrique G. (2023-08-02)."Physical Delithiation of Epitaxial LiCoO 2 Battery Cathodes as a Platform for Surface Electronic Structure Investigation".ACS Applied Materials & Interfaces.15 (30):36224–36232.doi:10.1021/acsami.3c06147.hdl:10486/708446.ISSN 1944-8244.PMC 10401565.

External links

[edit]
Compounds withnoble gases
Compounds withhalogens
Oxides andhydroxides
Compounds withchalcogens
Compounds withpnictogens
Compounds withgroup 14 elements
Compounds withgroup 13 elements
Compounds withtransition metals
Organic (soaps)
Other compounds
Minerals
Other Li-related
Cobalt(I)
Cobalt(II)
Cobalt(0,III)
Cobalt(II,III)
Cobalt(III)
Cobalt(III,IV)
Cobalt(IV)
Cobalt(V)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lithium_cobalt_oxide&oldid=1301790993"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp