Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lemaître–Tolman metric

From Wikipedia, the free encyclopedia
Lorentzian metric describing an isotropic, expanding, nonhomogenous universe
Part of a series on
Physical cosmology
Full-sky image derived from nine years' WMAP data

In physics, theLemaître–Tolman metric, also known as theLemaître–Tolman–Bondi metric or theTolman metric, is aLorentzian metric based on an exact solution ofEinstein's field equations; it describes anisotropic andexpanding (or contracting)universe which is nothomogeneous,[1][2] and is thus used incosmology as an alternative to the standardFriedmann–Lemaître–Robertson–Walker metric to model theexpansion of the universe.[3][4][5] It has also been used to model a universe which has afractal distribution of matter to explain theaccelerating expansion of the universe.[6] It was first found byGeorges Lemaître in 1933[7] andRichard Tolman in 1934[1] and later investigated byHermann Bondi in 1947.[8]

Details

[edit]
General relativity
Spacetime curvature schematic

In asynchronous reference system whereg00=1{\displaystyle g_{00}=1} andg0α=0{\displaystyle g_{0\alpha }=0}, the time coordinatex0=t{\displaystyle x^{0}=t} (we setG=c=1{\displaystyle G=c=1}) is also theproper timeτ=g00x0{\displaystyle \tau ={\sqrt {g_{00}}}x^{0}} and clocks at all points can be synchronized. For a dust-like medium where the pressure is zero, dust particles move freely i.e., along the geodesics and thus the synchronous frame is also a comoving frame wherein the components of four velocityui=dxi/ds{\displaystyle u^{i}=dx^{i}/ds} areu0=1,uα=0{\displaystyle u^{0}=1,\,u^{\alpha }=0}. The solution of the field equations yield[9]

ds2=dτ2eλ(τ,R)dR2r2(τ,R)(dθ2+sin2θdϕ2){\displaystyle ds^{2}=d\tau ^{2}-e^{\lambda (\tau ,R)}dR^{2}-r^{2}(\tau ,R)(d\theta ^{2}+\sin ^{2}\theta d\phi ^{2})}

wherer{\displaystyle r} is theradius orluminosity distance in the sense that the surface area of a sphere with radiusr{\displaystyle r} is4πr2{\displaystyle 4\pi r^{2}} andR{\displaystyle R} is just interpreted as theLagrangian coordinate and

eλ=r21+f(R),(rτ)2=f(R)+F(R)r,4πr2ρ=F(R)2r{\displaystyle e^{\lambda }={\frac {r'^{2}}{1+f(R)}},\quad \left({\frac {\partial r}{\partial \tau }}\right)^{2}=f(R)+{\frac {F(R)}{r}},\quad 4\pi r^{2}\rho ={\frac {F'(R)}{2r'}}}

subjected to the conditions1+f>0{\displaystyle 1+f>0} andF>0{\displaystyle F>0}, wheref(R){\displaystyle f(R)} andF(R){\displaystyle F(R)} are arbitrary functions,ρ{\displaystyle \rho } is the matter density and finally primes denote differentiation with respect toR{\displaystyle R}. We can also assumeF>0{\displaystyle F'>0} andr>0{\displaystyle r'>0} that excludes cases resulting in crossing of material particles during its motion. To each particle there corresponds a value ofR{\displaystyle R}, the functionr(τ,R){\displaystyle r(\tau ,R)} and its time derivative respectively provides its law of motion and radial velocity. An interesting property of the solution described above is that whenf(R){\displaystyle f(R)} andF(R){\displaystyle F(R)} are plotted as functions ofR{\displaystyle R}, the form of these functions plotted for the rangeR[0,R0]{\displaystyle R\in [0,R_{0}]} is independent of how these functions will be plotted forR>R0{\displaystyle R>R_{0}}. This prediction is evidently similar to the Newtonian theory. The total mass within the sphereR=R0{\displaystyle R=R_{0}} is given by

m=4π0r(τ,R0)ρr2dr=4π0R0ρrr2dR=F(R0)2{\displaystyle m=4\pi \int _{0}^{r(\tau ,R_{0})}\rho r^{2}dr=4\pi \int _{0}^{R_{0}}\rho r'r^{2}dR={\frac {F(R_{0})}{2}}}

which implies thatSchwarzschild radius is given byrs=2m=F(R0){\displaystyle r_{s}=2m=F(R_{0})}.

The functionr(τ,R){\displaystyle r(\tau ,R)} can be obtained upon integration and is given in a parametric form with a parameterη{\displaystyle \eta } with three possibilities,

f>0:        r=F2f(coshη1),τ0τ=F2f3/2(sinhηη),{\displaystyle f>0:~~~~~~~~r={\frac {F}{2f}}(\cosh \eta -1),\quad \tau _{0}-\tau ={\frac {F}{2f^{3/2}}}(\sinh \eta -\eta ),}
f<0:        r=F2f(1coshη),τ0τ=F2(f)3/2(ηsinhη){\displaystyle f<0:~~~~~~~~r={\frac {F}{-2f}}(1-\cosh \eta ),\quad \tau _{0}-\tau ={\frac {F}{2(-f)^{3/2}}}(\eta -\sinh \eta )}
f=0:        r=(9F4)1/3(τ0τ)2/3.{\displaystyle f=0:~~~~~~~~r=\left({\frac {9F}{4}}\right)^{1/3}(\tau _{0}-\tau )^{2/3}.}

whereτ0(R){\displaystyle \tau _{0}(R)} emerges as another arbitrary function. However, we know that centrally symmetric matter distribution can be described by at most two functions, namely their density distribution and the radial velocity of the matter. This means that of the three functionsf,F,τ0{\displaystyle f,F,\tau _{0}}, only two are independent. In fact, since no particular selection has been made for the Lagrangian coordinateR{\displaystyle R} yet that can be subjected to arbitrary transformation, we can see that only two functions are arbitrary.[10] For the dust-like medium, there exists another solution wherer=r(τ){\displaystyle r=r(\tau )} and independent ofR{\displaystyle R}, although such solution does not correspond to collapse of a finite body of matter.[11]

Schwarzschild solution

[edit]

WhenF=rs={\displaystyle F=r_{s}=}const.,ρ=0{\displaystyle \rho =0} and therefore the solution corresponds to empty space with a point mass located at the center. Further by settingf=0{\displaystyle f=0} andτ0=R{\displaystyle \tau _{0}=R}, the solution reduces toSchwarzschild solution expressed inLemaître coordinates.

Gravitational collapse

[edit]

The gravitational collapse occurs whenτ{\displaystyle \tau } reachesτ0(R){\displaystyle \tau _{0}(R)} withτ0>0{\displaystyle \tau _{0}'>0}. The momentτ=τ0(R){\displaystyle \tau =\tau _{0}(R)} corresponds to the arrival of matter denoted by its Lagrangian coordinateR{\displaystyle R} to the center. In all three cases, asττ0(R){\displaystyle \tau \rightarrow \tau _{0}(R)}, the asymptotic behaviors are given by

r(9F4)1/3(τ0τ)2/3,eλ/2(2F3)1/3τ01+f(τ0τ)1/3,4πρF3Fτ0(τ0τ){\displaystyle r\approx \left({\frac {9F}{4}}\right)^{1/3}(\tau _{0}-\tau )^{2/3},\quad e^{\lambda /2}\approx \left({\frac {2F}{3}}\right)^{1/3}{\frac {\tau _{0}'}{\sqrt {1+f}}}(\tau _{0}-\tau )^{-1/3},\quad 4\pi \rho \approx {\frac {F'}{3F\tau _{0}'(\tau _{0}-\tau )}}}

in which the first two relations indicate that in the comoving frame, all radial distances tend to infinity and tangential distances approaches zero likeττ0{\displaystyle \tau -\tau _{0}}, whereas the third relation shows that the matter density increases like1/(τ0τ).{\displaystyle 1/(\tau _{0}-\tau ).} In the special caseτ0(R)={\displaystyle \tau _{0}(R)=}constant where the time of collapse of all the material particle is the same, the asymptotic behaviors are different,

r(9F3)1/3(τ0τ)2/3,eλ/2(23)1/3F2F2/31+f(τ0τ)2/3,4πρ23(τ0τ)2.{\displaystyle r\approx \left({\frac {9F}{3}}\right)^{1/3}(\tau _{0}-\tau )^{2/3},\quad e^{\lambda /2}\approx \left({\frac {2}{3}}\right)^{1/3}{\frac {F'}{2F^{2/3}{\sqrt {1+f}}}}(\tau _{0}-\tau )^{2/3},\quad 4\pi \rho \approx {\frac {2}{3(\tau _{0}-\tau )^{2}}}.}

Here both the tangential and radial distances goes to zero like(τ0τ)2/3{\displaystyle (\tau _{0}-\tau )^{2/3}}, whereas the matter density increases like1/(τ0τ)2.{\displaystyle 1/(\tau _{0}-\tau )^{2}.}

See also

[edit]

References

[edit]
  1. ^abTolman, Richard C. (1934)."Effect of Inhomogeneity on Cosmological Models".Proc. Natl. Acad. Sci.20 (3). National Academy of Sciences of the USA:169–76.Bibcode:1934PNAS...20..169T.doi:10.1073/pnas.20.3.169.PMC 1076370.PMID 16587869.
  2. ^Krasiński, Andrzej (1997).Inhomogeneous cosmological models (Digitally printed first paperback version (with corrections) ed.). Cambridge; New York: Cambridge University Press.ISBN 978-0-521-03017-5.
  3. ^Kenworthy, W. D'Arcy; Scolnic, Dan; Riess, Adam (20 April 2019)."The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant".The Astrophysical Journal.875 (2): 145.arXiv:1901.08681.Bibcode:2019ApJ...875..145K.doi:10.3847/1538-4357/ab0ebf.ISSN 0004-637X.
  4. ^Cai, Rong-Gen; Ding, Jia-Feng; Guo, Zong-Kuan; Wang, Shao-Jiang; Yu, Wang-Wei (2021-06-22). "Do the observational data favor a local void?".Physical Review D.103 (12) 123539.arXiv:2012.08292.Bibcode:2021PhRvD.103l3539C.doi:10.1103/PhysRevD.103.123539.ISSN 2470-0010.S2CID 229180790.
  5. ^Luković, Vladimir V; Haridasu, Balakrishna S; Vittorio, Nicola (4 November 2019)."Exploring the evidence for a large local void with supernovae Ia data".Monthly Notices of the Royal Astronomical Society.491 (2).arXiv:1907.11219.doi:10.1093/mnras/stz3070.ISSN 0035-8711.
  6. ^Cosmai, L; Fanizza, G; Sylos Labini, F; Pietronero, L; Tedesco, L (2019-02-21). "Fractal universe and cosmic acceleration in a Lemaître–Tolman–Bondi scenario".Classical and Quantum Gravity.36 (4): 045007.arXiv:1810.06318.Bibcode:2019CQGra..36d5007C.doi:10.1088/1361-6382/aae8f7.ISSN 0264-9381.S2CID 119517591.
  7. ^Lemaître, G. (1933). "l'Universe en expansion".Annales de la Société Scientifique de Bruxelles.53:51–85.
  8. ^Bondi, Hermann (1947)."Spherically symmetrical models in general relativity".Monthly Notices of the Royal Astronomical Society.107 (5–6):410–425.Bibcode:1947MNRAS.107..410B.doi:10.1093/mnras/107.5-6.410.
  9. ^Landau, Lev Davidovič;Lifšic, Evgenij M. (2010).The classical theory of fields. Course of theoretical physics / L. D. Landau and E. M. Lifshitz (4. rev. Engl. ed., repr ed.). Amsterdam Heidelberg: Elsevier Butterworth Heinemann.ISBN 978-0-7506-2768-9.
  10. ^Zelʹdovich, I︠A︡ B.;Novikov, I. D. (1996).Stars and relativity. Mineola, N.Y: Dover Publications.ISBN 978-0-486-69424-5.
  11. ^Ruban, V. A. (1969)."Spherically symmetric T-models in the general theory of relativity"(PDF).Soviet Journal of Experimental and Theoretical Physics.29 (6).
Special
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Spacetime
General
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Advanced
theories
Solutions
Scientists
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lemaître–Tolman_metric&oldid=1314468261"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp