Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lava dome

From Wikipedia, the free encyclopedia
Roughly circular protrusion from slowly extruded viscous volcanic lava
Rhyolitic lava dome ofChaitén Volcano during its 2008–2010 eruption
One of theInyo Craters, an example of a rhyolite dome
Nea Kameni seen fromThera,Santorini

Involcanology, alava dome is a circular, mound-shaped protrusion resulting from the slowextrusion ofviscouslava from avolcano. Dome-building eruptions are common, particularly in convergent plate boundary settings.[1] Around 6% oferuptions on Earth form lava domes.[1] Thegeochemistry of lava domes can vary frombasalt (e.g.Semeru, 1946) torhyolite (e.g.Chaiten, 2010) although the majority are of intermediate composition (such asSantiaguito,dacite-andesite, present day).[2] The characteristic dome shape is attributed to high viscosity that prevents the lava fromflowing very far. This high viscosity can be obtained in two ways: by high levels ofsilica in the magma, or bydegassing of fluidmagma. Since viscousbasaltic andandesitic domesweather fast and easily break apart by further input of fluid lava, most of the preserved domes have high silica content and consist of rhyolite ordacite.

Existence of lava domes has been suggested for some domed structures on theMoon,Venus, andMars,[1] e.g. the Martian surface in the western part ofArcadia Planitia and withinTerra Sirenum.[3][4]

Dome dynamics

[edit]
Lava domes in the crater ofMount St. Helens

Lava domes evolve unpredictably, due tonon-linear dynamics caused bycrystallization andoutgassing of the highly viscous lava in the dome'sconduit.[5] Domes undergo various processes such as growth, collapse, solidification anderosion.[6]

Lava domes grow byendogenic dome growth orexogenic dome growth. The former implies the enlargement of a lava dome due to the influx of magma into the dome interior, and the latter refers to discrete lobes of lava emplaced upon the surface of the dome.[2] It is the high viscosity of the lava that prevents it from flowing far from the vent from which it extrudes, creating a dome-like shape of sticky lava that then cools slowly in-situ.[7]Spines andlava flows are common extrusive products of lava domes.[1] Domes may reach heights of several hundred meters, and can grow slowly and steadily for months (e.g.Unzen volcano), years (e.g.Soufrière Hills volcano), or even centuries (e.g.Mount Merapi volcano). The sides of these structures are composed of unstable rock debris. Due to the intermittent buildup of gaspressure, erupting domes can often experience episodes ofexplosive eruption over time.[8] If part of a lava dome collapses and exposes pressurized magma,pyroclastic flows can be produced.[9] Other hazards associated with lava domes are the destruction of property fromlava flows,forest fires, andlahars triggered from re-mobilization of loose ash and debris. Lava domes are one of the principal structural features of manystratovolcanoes worldwide. Lava domes are prone to unusually dangerous explosions since they can contain rhyoliticsilica-rich lava.

Characteristics of lava dome eruptions include shallow, long-period and hybridseismicity, which is attributed to excess fluid pressures in the contributing vent chamber. Other characteristics of lava domes include their hemispherical dome shape, cycles of dome growth over long periods, and sudden onsets of violent explosive activity.[10] The average rate of dome growth may be used as a rough indicator ofmagma supply, but it shows no systematic relationship to the timing or characteristics of lava dome explosions.[11]

Gravitational collapse of a lava dome can produce ablock and ash flow.[12]

Related landforms

[edit]

Cryptodomes

[edit]
The bulging cryptodome of Mt. St. Helens on April 27, 1980

Acryptodome (from theGreekκρυπτός,kryptos, "hidden, secret") is a dome-shaped structure created by accumulation ofviscousmagma at a shallow depth.[13] Two examples of cryptodomes were the ones leading to the 1956 eruption ofBezymianny and the1980 eruption of Mount St. Helens. In each case, the explosive eruption began after the cryptodome caused the side of the volcano to bulge outward and led to asector collapse, in turn leading toexplosive decompression of the subterranean cryptodome.[14][15]

Lava spine/Lava spire

[edit]
Main article:Lava spine
Soufrière Hills lava spine before the 1997 eruption
Lava dome growth during the 2004–2008 eruptive phase of Mount St Helens

A lava spine or lava spire is a growth that can form on the top of a lava dome. A lava spine can increase the instability of the underlying lava dome. A recent example of a lava spine is the spine formed in 1997 at theSoufrière Hills Volcano on Montserrat.

Lava coulées

[edit]
Chao dacite coulée flow-domes (left center), northern Chile, viewed fromLandsat 8

Coulées (or coulees) are lava domes that have experienced some flow away from their original position, thus resembling both lava domes andlava flows.[2]

The world's largest knowndacite flow is theChao dacite dome complex, a huge coulée flow-dome between two volcanoes in northernChile. This flow is over 14 kilometres (8.7 mi) long, has obvious flow features like pressure ridges, and a flow front 400 metres (1,300 ft) tall (the dark scalloped line at lower left).[16] There is another prominent coulée flow on the flank ofLlullaillaco volcano, inArgentina,[17] and other examples in theAndes.

Examples of lava domes

[edit]
Main article:List of lava domes
Lava domes
Name of lava domeCountryVolcanic areaCompositionLast eruption
or growth episode
Chaitén lava domeChileSouthern Volcanic ZoneRhyolite2009
Ciomadul lava domesRomaniaCarpathiansDacitePleistocene
Cordón Caulle lava domesChileSouthern Volcanic ZoneRhyodacite to RhyoliteHolocene
Galeras lava domeColombiaNorthern Volcanic ZoneUnknown2010
Katla lava domeIcelandIceland hotspotRhyolite1999 onwards[18][better source needed]
Lassen PeakUnited StatesCascade Volcanic ArcDacite1917
Black Butte (Siskiyou County, California)United StatesCascade Volcanic ArcDacite9500 BP[19]
Bridge River Vent lava domeCanadaCascade Volcanic ArcDaciteca. 300 BC
La Soufrière lava domeSaint Vincent and the GrenadinesLesser Antilles Volcanic Arc2021[20]
Mount Merapi lava domeIndonesiaSunda ArcUnknown2010
Nea KameniGreeceSouth Aegean Volcanic ArcDacite1950
Novarupta lava domeUnited StatesAleutian ArcRhyolite1912
Nevados de Chillán lava domesChileSouthern Volcanic ZoneDacite1986
Puy de DômeFranceChaîne des PuysTrachytec. 5760 BC
Santa María lava domeGuatemalaCentral America Volcanic ArcDacite2009
Sollipulli lava domeChileSouthern Volcanic ZoneAndesite to Dacite1240 ± 50 years
Soufrière Hills lava domeMontserratLesser AntillesAndesite2009
Mount St. Helens lava domesUnited StatesCascade Volcanic ArcDacite2008
Torfajökull lava domeIcelandIceland hotspotRhyolite1477
Tata Sabaya lava domesBoliviaAndesUnknown~ Holocene
Tate-iwaJapanJapan ArcDaciteMiocene[21]
Tatun lava domesTaiwanAndesite648[22]
Valles lava domesUnited StatesJemez MountainsRhyolite50,000-60,000BP
Wizard Island lava domeUnited StatesCascade Volcanic ArcRhyodacite[23]2850 BC

References

[edit]
  1. ^abcdCalder, Eliza S.; Lavallée, Yan; Kendrick, Jackie E.; Bernstein, Marc (2015).The Encyclopedia of Volcanoes. Elsevier. pp. 343–362.doi:10.1016/b978-0-12-385938-9.00018-3.ISBN 9780123859389.
  2. ^abcFink, Jonathan H.; Anderson, Steven W. (2001). "Lava Domes and Coulees". In Sigursson, Haraldur (ed.).Encyclopedia of Volcanoes.Academic Press. pp. 307–19.
  3. ^Rampey, Michael L.; Milam, Keith A.; McSween, Harry Y.; Moersch, Jeffrey E.; Christensen, Philip R. (28 June 2007)."Identity and emplacement of domical structures in the western Arcadia Planitia, Mars".Journal of Geophysical Research.112 (E6): E06011.Bibcode:2007JGRE..112.6011R.doi:10.1029/2006JE002750.
  4. ^Brož, Petr; Hauber, Ernst; Platz, Thomas; Balme, Matt (April 2015)."Evidence for Amazonian highly viscous lavas in the southern highlands on Mars".Earth and Planetary Science Letters.415:200–212.Bibcode:2015E&PSL.415..200B.doi:10.1016/j.epsl.2015.01.033.
  5. ^Melnik, O; Sparks, R. S. J. (4 November 1999),"Nonlinear dynamics of lava dome extrusion"(PDF),Nature,402 (6757):37–41,Bibcode:1999Natur.402...37M,doi:10.1038/46950,S2CID 4426887
  6. ^Darmawan, Herlan; Walter, Thomas R.; Troll, Valentin R.; Budi-Santoso, Agus (2018-12-12)."Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption".Natural Hazards and Earth System Sciences.18 (12):3267–3281.Bibcode:2018NHESS..18.3267D.doi:10.5194/nhess-18-3267-2018.ISSN 1561-8633.
  7. ^Darmawan, Herlan; Troll, Valentin R.; Walter, Thomas R.; Deegan, Frances M.; Geiger, Harri; Heap, Michael J.; Seraphine, Nadhirah; Harris, Chris; Humaida, Hanik; Müller, Daniel (2022-02-25)."Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones".Scientific Reports.12 (1): 3202.Bibcode:2022NatSR..12.3202D.doi:10.1038/s41598-022-06765-9.ISSN 2045-2322.PMC 8881499.PMID 35217684.
  8. ^Heap, Michael J.; Troll, Valentin R.; Kushnir, Alexandra R. L.; Gilg, H. Albert; Collinson, Amy S. D.; Deegan, Frances M.; Darmawan, Herlan; Seraphine, Nadhirah; Neuberg, Juergen; Walter, Thomas R. (2019-11-07)."Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour".Nature Communications.10 (1): 5063.Bibcode:2019NatCo..10.5063H.doi:10.1038/s41467-019-13102-8.ISSN 2041-1723.PMC 6838104.PMID 31700076.
  9. ^Parfitt, E.A.; Wilson, L (2008),Fundamentals of Physical Volcanology, Massachusetts: Blackwell Publishing, p. 256
  10. ^Sparks, R.S.J. (August 1997), "Causes and consequences of pressurisation in lava dome eruptions",Earth and Planetary Science Letters,150 (3–4):177–189,Bibcode:1997E&PSL.150..177S,doi:10.1016/S0012-821X(97)00109-X
  11. ^Newhall, C.G.; Melson., W.G. (September 1983), "Explosive activity associated with the growth of volcanic domes",Journal of Volcanology and Geothermal Research,17 (1–4):111–131,Bibcode:1983JVGR...17..111N,doi:10.1016/0377-0273(83)90064-1
  12. ^Cole, Paul D.; Neri, Augusto; Baxter, Peter J. (2015). "Chapter 54 – Hazards from Pyroclastic Density Currents". InSigurdsson, Haraldur (ed.).Encyclopedia of Volcanoes (2nd ed.). Amsterdam: Academic Press. pp. 943–956.doi:10.1016/B978-0-12-385938-9.00037-7.ISBN 978-0-12-385938-9.
  13. ^"USGS: Volcano Hazards Program Glossary - Cryptodome".volcanoes.usgs.gov. Retrieved2018-06-23.
  14. ^"USGS: Volcano Hazards Program CVO Mount St. Helens".volcanoes.usgs.gov. Archived fromthe original on 2018-05-28. Retrieved2018-06-23.
  15. ^Donnadieu, F.; Merle, O.; Besson, J-C. (2001). "Volcanic edifice stability during cryptodome intrusion".Bulletin of Volcanology.63 (1):61–72.Bibcode:2001BVol...63...61D.doi:10.1007/s004450000122.
  16. ^Chao dacite dome complex atNASA Earth Observatory
  17. ^Coulées! by Erik Klemetti, an assistant professor of Geosciences atDenison University.
  18. ^Eyjafjallajökull and Katla: restless neighbours
  19. ^"Shasta".Volcano World.Oregon State University. 2000. Retrieved30 April 2020.
  20. ^"Soufrière St. Vincent volcano (West Indies, St. Vincent): twice length and volume of new lava dome since last update".www.volcanodiscovery.com. Retrieved2021-04-08.
  21. ^Goto, Yoshihiko; Tsuchiya, Nobutaka (July 2004). "Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan".Journal of Volcanology and Geothermal Research.134 (4):255–275.Bibcode:2004JVGR..134..255G.doi:10.1016/j.jvolgeores.2004.03.015.
  22. ^"Tatun Volcanic Group".Global Volcanism Program, Smithsonian Institution. 2023-10-11. Retrieved2023-11-27.
  23. ^Map of Post-Caldera Volcanism and Crater LakeArchived 2020-08-04 at theWayback Machine USGS Cascades Volcano Observatory. Retrieved 2014-01-31.

External links

[edit]
Wikimedia Commons has media related toLava domes andLava coulées.
Mountainous
Continental plain
Fluvial
Glacial
Oceanic and
coastal landforms
Volcanic
Aeolian
Artificial
Types
Volcanic rocks
Lists and groups
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lava_dome&oldid=1321364234"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp