Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lateral lemniscus

From Wikipedia, the free encyclopedia
Brain structure
Lateral lemniscus
Lateral lemniscus in red, as it connects thecochlear nucleus,superior olivary nucleus and theinferior colliculus. Seen from behind.
Details
Identifiers
Latinlemniscus lateralis
NeuroNames609
NeuroLex IDbirnlex_976
TA98A14.1.05.317
A14.1.08.670
A14.1.06.204
TA25866
FMA72502
Anatomical terms of neuroanatomy

Thelateral lemniscus is atract ofaxons in thebrainstem that carries information about sound from thecochlear nucleus to various brainstem nuclei and ultimately the contralateralinferior colliculus of themidbrain. Three distinct, primarily inhibitory, cellular groups are located interspersed within these fibers, and are thus named the nuclei of the lateral lemniscus.

Connections

[edit]

There are three small nuclei on each of the lateral lemnisci:

  • the intermediate nucleus of the lateral lemniscus (INLL)
  • the ventral nucleus of the lateral lemniscus (VNLL)
  • the dorsal nucleus of the lateral lemniscus (DNLL)

Fibers leaving these brainstem nuclei ascending to the inferior colliculus rejoin the lateral lemniscus. In that sense, this is not a 'lemniscus' in the true sense of the word (second order, decussated sensory axons), as there is third (and out of thelateral superior olive, fourth) order information coming out of some of these brainstem nuclei.

The lateral lemniscus is located where thecochlear nuclei and thepontine reticular formation (PRF) crossover. The PRF descends the reticulospinal tract where it innervates motor neurons and spinal interneurons. It is the main auditory tract in the brainstem that connects thesuperior olivary complex (SOC) with theinferior colliculus (IC). Thedorsal cochlear nucleus (DCN) has input from the LL and output to the contralateral LL via the ipsilateral and contralateral Dorsal Acoustic Stria.

The two lemnisci communicate via the commissural fibers of Probst.

Nuclei of the lateral lemniscus

[edit]

The function of the complex of Nuclei of the lateral lemniscus is not known; however it has good temporal resolution compared to other cells higher than the cochlear nuclei and is sensitive to both timing and amplitude changes in sound. It is also involved in the acoustic startle reflex; the most likely region for this being the VNLL.

DNLL

[edit]

The cells of the DNLL respond best to bilateral inputs, and have onset and complexity tuned sustained responses. The nucleus is primarily GABAergic,[1] and projects bilaterally to the inferior colliculus, and contralaterally to the DNLL, with different populations of cells projecting to each IC.[2]

In rat, the DNLL has a prominent columnar organization. Nearly all neurons are stained for GABA, especially in the central part of the nucleus, and the remaining GABA negative cells are interspersed with the positive, and often stain for glycine. Two populations of GABA+ cells are visible: larger, lightly stained cells that project to the contralateral IC, and smaller, darker stained cells that project ipsilaterally. GABAergic axon terminals form dense groups surrounded by GABA-lemniscal fibers throughout the nucleus, and synapse on both somata and in the neuropil. Glycinergic axon terminals, on the other hand, are more finely localized, with the majority of recipient neurons located laterally in the nucleus.[3]

INLL

[edit]

INLL also has little spontaneous activity and broad tuning curves. The temporal responses are significantly different from cells of the VNLL.

This structure is greatly hypertrophied in the rat, forming a prominent bulge on the surface of the brainstem. GAD, GABA, and Glycine staining reveals several distinct regions that are not evident in standard cytoarchitectural preparations. A modest number of GABA-stained neurons are arranged in small groups, generally in the center of the nucleus, whereas glycine-stained neurons are more common and widely dispersed, with regional concentrations in the dorsolateral and ventrolateral portions of the nucleus. Most GABA+ cells are gly+ as well.[1][broken footnote]

VNLL

[edit]

Sound in the contralateral ear leads to the strongest responses in the VNLL, which deals with some temporary processing. The VNLL may also be essential to the IC’s decoding of amplitude modulated sounds.

VNLL cells have little spontaneous activity, broad and moderately complex tuning curves; they have both phasic and tonic responses and are involved in temporal processing.

In rat, the VNLL is composed of two subdivisions, the ventral (columnar) and dorsal (non columnar) regions. The columnar region contains many glycine-positive (0 GABA+) neurons, whereas the dorsal region contains clusters of GABA+ neurons intermingled with gly+ cells, with some cells containing both.[1]

Inputs and outputs to nuclei

[edit]

The table below shows that each of the nuclei have a complicated arrangement of ipsilateral and contralateral afferent inputs and outputs:[4]

NucleusInputOutput
 ContralateralIpsilateralContralateralIpsilateral
VNLLAnterior and posterior ventral cochlear nucleiMedial nucleus of the trapezoid body Inferior Colliculus
DNLL

Ventral Nucleus of the Trapezoid Body

Superior Paraolivary Nucleus

Medial Nucleus of the Trapezoid Body

INLLAnterior and posterior Ventral Cochlear NucleusMedial nucleus of the trapezoid body Medial Geniculate body
Inferior Colliculus

Ventral Nucleus of the Trapezoid Body

DNLLAnterior Ventral
Cochlear nucleus (and Bilateral)
Medial superior Olivary Nucleus
Lateral Superior Olivary Nucleus (and Bilateral)
DNLL
Inferior Colliculus
Mid brain reticular formation
Superior Olivary Complex
Inferior Colliculus
 Medial Geniculate Body
Mid brain reticular formation
Superior Olivary Complex

Additional images

[edit]
  • Dissection of brain-stem. Lateral view.
    Dissection of brain-stem. Lateral view.
  • Deep dissection of brain-stem. Lateral view.
    Deep dissection of brain-stem. Lateral view.
  • Deep dissection of brain-stem. Lateral view.
    Deep dissection of brain-stem. Lateral view.
  • Deep dissection of brain-stem. Ventral view.
    Deep dissection of brain-stem. Ventral view.
  • Dissection of brain-stem. Dorsal view.
    Dissection of brain-stem. Dorsal view.
  • Coronal section through mid-brain.
    Coronal section through mid-brain.
  • Transverse section of mid-brain at level of inferior colliculi.
    Transverse section of mid-brain at level of inferior colliculi.
  • Scheme showing the course of the fibers of the lemniscus; medial lemniscus in blue, lateral in red.
    Scheme showing the course of the fibers of the lemniscus; medial lemniscus in blue, lateral in red.

References

[edit]

Public domainThis article incorporates text in thepublic domain frompage 805 of the 20th edition ofGray's Anatomy(1918)

  1. ^abcAdams, J. C. and E. Mugnaini (1984). "Dorsal nucleus of the lateral lemniscus: a nucleus of GABAergic projection neurons." Brain Res Bull 13(4): 585-90.
  2. ^Bajo, V. M., M. A. Merchan, et al. (1993). "Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat." J Comp Neurol 334(2): 241-62.
  3. ^Winer, J. A., D. T. Larue, et al. (1995). "GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization." J Comp Neurol 355(3): 317-53.
  4. ^Gómez-Martínez, Mario; Rincón, Héctor; Gómez-Álvarez, Marcelo; Gómez-Nieto, Ricardo; Saldaña, Enrique (2023-08-09)."The nuclei of the lateral lemniscus: unexpected players in the descending auditory pathway".Frontiers in Neuroanatomy.17.doi:10.3389/fnana.2023.1242245.ISSN 1662-5129.PMC 10445163.PMID 37621862.
Anatomy of thepons
Dorsal/
(tegmentum)
Surface
White: Sensory
White: Motor
Grey:Cranial nuclei
afferent:
efferent:
Grey: Other nuclei
Ventral/
(base)
Grey
White: Motor/descending
Surface
Other grey: Raphe/
reticular
Anatomy of themidbrain
Tectum
(Dorsal)
Corpora quadrigemina
Grey matter
White matter
Sensory / ascending
Motor / descending
CSF
Peduncle
(Ventral)
Tegmentum
White matter
Sensory / ascending
Motor / descending
Grey matter
cranial nuclei
Ventral tegmental area
Midbrain reticular formation
Base
White /Cerebral crus
Grey /Substantia nigra
Surface
Physiology ofbalance andhearing
Hearing
General
Pathway
Balance
General
Pathway
Terminal (CN 0)
Olfactory (CN I)
Optic (CN II)
Oculomotor (CN III)
Trochlear (CN IV)
  • Nucleus
  • Branches
    • no significant branches
Trigeminal (CN V)
Abducens (CN VI)
  • Nucleus
  • Branches
    • no significant branches
Facial (CN VII)
Near origin
Inside
facial canal
Atstylomastoid
foramen
Nuclei
Vestibulocochlear (CN VIII)
Glossopharyngeal (CN IX)
Beforejugular fossa
Afterjugular fossa
Nuclei
Vagus (CN X)
Beforejugular fossa
Afterjugular fossa
Neck
Thorax
Abdomen
Nuclei
Accessory (CN XI)
Hypoglossal (CN XII)
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lateral_lemniscus&oldid=1276339878"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp