Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Laplace distribution

From Wikipedia, the free encyclopedia
Probability distribution
Laplace
Probability density function
Probability density plots of Laplace distributions
Cumulative distribution function
Cumulative distribution plots of Laplace distributions
Parametersμ{\displaystyle \mu }location (real)
b>0{\displaystyle b>0}scale (real)
SupportR{\displaystyle \mathbb {R} }
PDF12bexp(|xμ|b){\displaystyle {\frac {1}{2b}}\exp \left(-{\frac {|x-\mu |}{b}}\right)}
CDF{12exp(xμb)if xμ112exp(xμb)if xμ{\displaystyle {\begin{cases}{\frac {1}{2}}\exp \left({\frac {x-\mu }{b}}\right)&{\text{if }}x\leq \mu \\[8pt]1-{\frac {1}{2}}\exp \left(-{\frac {x-\mu }{b}}\right)&{\text{if }}x\geq \mu \end{cases}}}
Quantile{μ+bln(2F)if F12μbln(22F)if F12{\displaystyle {\begin{cases}\mu +b\ln \left(2F\right)&{\text{if }}F\leq {\frac {1}{2}}\\[8pt]\mu -b\ln \left(2-2F\right)&{\text{if }}F\geq {\frac {1}{2}}\end{cases}}}
Meanμ{\displaystyle \mu }
Medianμ{\displaystyle \mu }
Modeμ{\displaystyle \mu }
Variance2b2{\displaystyle 2b^{2}}
MADbln2{\displaystyle b\ln 2}
Skewness0{\displaystyle 0}
Excess kurtosis3{\displaystyle 3}
Entropylog(2be){\displaystyle \log(2be)}
MGFexp(μt)1b2t2 for |t|<1/b{\displaystyle {\frac {\exp(\mu t)}{1-b^{2}t^{2}}}{\text{ for }}|t|<1/b}
CFexp(μit)1+b2t2{\displaystyle {\frac {\exp(\mu it)}{1+b^{2}t^{2}}}}
Expected shortfall{μ+b(p1p)(1ln(2p)),p<.5μ+b(1ln(2(1p))),p.5{\displaystyle {\begin{cases}\mu +b\left({\frac {p}{1-p}}\right)(1-\ln(2p))&,p<.5\\\mu +b\left(1-\ln \left(2(1-p)\right)\right)&,p\geq .5\end{cases}}}[1]

Inprobability theory andstatistics, theLaplace distribution is a continuousprobability distribution named afterPierre-Simon Laplace. It is also sometimes called thedouble exponential distribution, because it can be thought of as twoexponential distributions (with an additional location parameter) spliced together along the x-axis,[2] although the term is also sometimes used to refer to theGumbel distribution. The difference between twoindependent identically distributed exponential random variables is governed by a Laplace distribution, as is aBrownian motion evaluated at an exponentially distributed random time[citation needed]. Increments ofLaplace motion or avariance gamma process evaluated over the time scale also have a Laplace distribution.

Definitions

[edit]

Probability density function

[edit]

Arandom variable has aLaplace(μ,b){\displaystyle \operatorname {Laplace} (\mu ,b)} distribution if itsprobability density function is

f(xμ,b)=12bexp(|xμ|b),{\displaystyle f(x\mid \mu ,b)={\frac {1}{2b}}\exp \left(-{\frac {|x-\mu |}{b}}\right),}

whereμ{\displaystyle \mu } is alocation parameter, andb>0{\displaystyle b>0}, which is sometimes referred to as the "diversity", is ascale parameter. Ifμ=0{\displaystyle \mu =0} andb=1{\displaystyle b=1}, the positive half-line is exactly anexponential distribution scaled by 1/2.[3]

The probability density function of the Laplace distribution is also reminiscent of thenormal distribution; however, whereas the normal distribution is expressed in terms of the squared difference from the meanμ{\displaystyle \mu }, the Laplace density is expressed in terms of theabsolute difference from the mean. Consequently, the Laplace distribution has fatter tails than the normal distribution. It is a special case of thegeneralized normal distribution and thehyperbolic distribution. Continuous symmetric distributions that have exponential tails, like the Laplace distribution, but which have probability density functions that are differentiable at the mode include thelogistic distribution,hyperbolic secant distribution, and theChampernowne distribution.

Cumulative distribution function

[edit]

The Laplace distribution is easy tointegrate (if one distinguishes two symmetric cases) due to the use of theabsolute value function. Itscumulative distribution function is as follows:

F(x)=xf(u)du={12exp(xμb)if x<μ112exp(xμb)if xμ=12+12sgn(xμ)(1exp(|xμ|b)).{\displaystyle {\begin{aligned}F(x)&=\int _{-\infty }^{x}\!\!f(u)\,\mathrm {d} u={\begin{cases}{\frac {1}{2}}\exp \left({\frac {x-\mu }{b}}\right)&{\mbox{if }}x<\mu \\1-{\frac {1}{2}}\exp \left(-{\frac {x-\mu }{b}}\right)&{\mbox{if }}x\geq \mu \end{cases}}\\&={\tfrac {1}{2}}+{\tfrac {1}{2}}\operatorname {sgn}(x-\mu )\left(1-\exp \left(-{\frac {|x-\mu |}{b}}\right)\right).\end{aligned}}}

The inverse cumulative distribution function is given by

F1(p)=μbsgn(p0.5)ln(12|p0.5|).{\displaystyle F^{-1}(p)=\mu -b\,\operatorname {sgn}(p-0.5)\,\ln(1-2|p-0.5|).}

Properties

[edit]

Moments

[edit]
μr=(12)k=0r[r!(rk)!bkμ(rk){1+(1)k}].{\displaystyle \mu _{r}'={\bigg (}{\frac {1}{2}}{\bigg )}\sum _{k=0}^{r}{\bigg [}{\frac {r!}{(r-k)!}}b^{k}\mu ^{(r-k)}\{1+(-1)^{k}\}{\bigg ]}.}

Related distributions

[edit]

Probability of a Laplace being greater than another

[edit]

LetX,Y{\displaystyle X,Y} be independent laplace random variables:XLaplace(μX,bX){\displaystyle X\sim {\textrm {Laplace}}(\mu _{X},b_{X})} andYLaplace(μY,bY){\displaystyle Y\sim {\textrm {Laplace}}(\mu _{Y},b_{Y})}, and we want to computeP(X>Y){\displaystyle P(X>Y)}.

The probability ofP(X>Y){\displaystyle P(X>Y)} can be reduced (using the properties below) toP(μ+bZ1>Z2){\displaystyle P(\mu +bZ_{1}>Z_{2})}, whereZ1,Z2Laplace(0,1){\displaystyle Z_{1},Z_{2}\sim {\textrm {Laplace}}(0,1)}. This probability is equal to

P(μ+bZ1>Z2)={b2eμ/beμ2(b21),when μ<01b2eμ/beμ2(b21),when μ>0{\displaystyle P(\mu +bZ_{1}>Z_{2})={\begin{cases}{\frac {b^{2}e^{\mu /b}-e^{\mu }}{2(b^{2}-1)}},&{\text{when }}\mu <0\\1-{\frac {b^{2}e^{-\mu /b}-e^{-\mu }}{2(b^{2}-1)}},&{\text{when }}\mu >0\\\end{cases}}}

Whenb=1{\displaystyle b=1}, both expressions are replaced by their limit asb1{\displaystyle b\to 1}:

P(μ+Z1>Z2)={eμ(2μ)4,when μ<01eμ(2+μ)4,when μ>0{\displaystyle P(\mu +Z_{1}>Z_{2})={\begin{cases}e^{\mu }{\frac {(2-\mu )}{4}},&{\text{when }}\mu <0\\1-e^{-\mu }{\frac {(2+\mu )}{4}},&{\text{when }}\mu >0\\\end{cases}}}

To compute the case forμ>0{\displaystyle \mu >0}, note thatP(μ+Z1>Z2)=1P(μ+Z1<Z2)=1P(μZ1>Z2)=1P(μ+Z1>Z2){\displaystyle P(\mu +Z_{1}>Z_{2})=1-P(\mu +Z_{1}<Z_{2})=1-P(-\mu -Z_{1}>-Z_{2})=1-P(-\mu +Z_{1}>Z_{2})}

sinceZZ{\displaystyle Z\sim -Z} whenZLaplace(0,1){\displaystyle Z\sim {\textrm {Laplace}}(0,1)} .

Relation to the exponential distribution

[edit]

A Laplace random variable can be represented as the difference of twoindependent and identically distributed (iid) exponential random variables.[4] One way to show this is by using thecharacteristic function approach. For any set of independent continuous random variables, for any linear combination of those variables, its characteristic function (which uniquely determines the distribution) can be acquired by multiplying the corresponding characteristic functions.

Consider two i.i.d random variablesX,YExponential(λ){\displaystyle X,Y\sim {\textrm {Exponential}}(\lambda )}. The characteristic functions forX,Y{\displaystyle X,-Y} are

λit+λ,λit+λ{\displaystyle {\frac {\lambda }{-it+\lambda }},\quad {\frac {\lambda }{it+\lambda }}}

respectively. On multiplying these characteristic functions (equivalent to the characteristic function of the sum of the random variablesX+(Y){\displaystyle X+(-Y)}), the result is

λ2(it+λ)(it+λ)=λ2t2+λ2.{\displaystyle {\frac {\lambda ^{2}}{(-it+\lambda )(it+\lambda )}}={\frac {\lambda ^{2}}{t^{2}+\lambda ^{2}}}.}

This is the same as the characteristic function forZLaplace(0,1/λ){\displaystyle Z\sim {\textrm {Laplace}}(0,1/\lambda )}, which is

11+t2λ2.{\displaystyle {\frac {1}{1+{\frac {t^{2}}{\lambda ^{2}}}}}.}

Sargan distributions

[edit]

Sargan distributions are a system of distributions of which the Laplace distribution is a core member. Ap{\displaystyle p}th order Sargan distribution has density[5][6]

fp(x)=12exp(α|x|)1+j=1pβjαj|x|j1+j=1pj!βj,{\displaystyle f_{p}(x)={\tfrac {1}{2}}\exp(-\alpha |x|){\frac {\displaystyle 1+\sum _{j=1}^{p}\beta _{j}\alpha ^{j}|x|^{j}}{\displaystyle 1+\sum _{j=1}^{p}j!\beta _{j}}},}

for parametersα0,βj0{\displaystyle \alpha \geq 0,\beta _{j}\geq 0}. The Laplace distribution results forp=0{\displaystyle p=0}.

Statistical inference

[edit]

Givenn{\displaystyle n} independent and identically distributed samplesx1,x2,...,xn{\displaystyle x_{1},x_{2},...,x_{n}}, themaximum likelihood (MLE) estimator ofμ{\displaystyle \mu } is the samplemedian,[7]

μ^=med(x).{\displaystyle {\hat {\mu }}=\mathrm {med} (x).}

The MLE estimator ofb{\displaystyle b} is themean absolute deviation from the median,[citation needed]

b^=1ni=1n|xiμ^|.{\displaystyle {\hat {b}}={\frac {1}{n}}\sum _{i=1}^{n}|x_{i}-{\hat {\mu }}|.}

revealing a link between the Laplace distribution andleast absolute deviations.A correction for small samples can be applied as follows:

b^=b^n/(n2){\displaystyle {\hat {b}}^{*}={\hat {b}}\cdot n/(n-2)}

(see:exponential distribution#Parameter estimation).

Occurrence and applications

[edit]

The Laplacian distribution has been used in speech recognition to model priors onDFT coefficients[8] and in JPEG image compression to model AC coefficients[9] generated by aDCT.

  • The addition of noise drawn from a Laplacian distribution, with scaling parameter appropriate to a function's sensitivity, to the output of astatistical database query is the most common means to providedifferential privacy in statistical databases.
Fitted Laplace distribution to maximum one-day rainfalls[10]
The Laplace distribution, being acomposite ordouble distribution, is applicable in situations where the lower values originate under different external conditions than the higher ones so that they follow a different pattern.[14]

Random variate generation

[edit]
Further information:Non-uniform random variate generation

Given a random variableU{\displaystyle U} drawn from theuniform distribution in the interval(1/2,1/2){\displaystyle \left(-1/2,1/2\right)}, the random variable

X=μbsgn(U)ln(12|U|){\displaystyle X=\mu -b\,\operatorname {sgn}(U)\,\ln(1-2|U|)}

has a Laplace distribution with parametersμ{\displaystyle \mu } andb{\displaystyle b}. This follows from the inverse cumulative distribution function given above.

ALaplace(0,b){\displaystyle {\textrm {Laplace}}(0,b)}variate can also be generated as the difference of twoi.i.d.Exponential(1/b){\displaystyle {\textrm {Exponential}}(1/b)} random variables. Equivalently,Laplace(0,1){\displaystyle {\textrm {Laplace}}(0,1)} can also be generated as thelogarithm of the ratio of twoi.i.d. uniform random variables.

History

[edit]

This distribution is often referred to as "Laplace's first law of errors". He published it in 1774, modeling the frequency of an error as an exponential function of its magnitude once its sign was disregarded. Laplace would later replace this model with his "second law of errors", based on the normal distribution, after the discovery of thecentral limit theorem.[15][16]

Keynes published a paper in 1911 based on his earlier thesis wherein he showed that the Laplace distribution minimised the absolute deviation from the median.[17]

See also

[edit]

References

[edit]
  1. ^abNorton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019)."Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation"(PDF).Annals of Operations Research.299 (1–2). Springer:1281–1315.arXiv:1811.11301.doi:10.1007/s10479-019-03373-1. Retrieved2023-02-27.
  2. ^Chattamvelli, Rajan; Shanmugam, Ramalingam (2021),"Laplace Distribution",Continuous Distributions in Engineering and the Applied Sciences – Part II, Cham: Springer International Publishing, pp. 189–199,doi:10.1007/978-3-031-02435-1_4,ISBN 978-3-031-01307-2, retrieved2025-04-04
  3. ^Huang, Yunfei.; et al. (2022)."Sparse inference and active learning of stochastic differential equations from data".Scientific Reports.12 (1): 21691.arXiv:2203.11010.Bibcode:2022NatSR..1221691H.doi:10.1038/s41598-022-25638-9.PMC 9755218.PMID 36522347.
  4. ^abKotz, Samuel; Kozubowski, Tomasz J.; Podgórski, Krzysztof (2001).The Laplace distribution and generalizations: a revisit with applications to Communications, Economics, Engineering and Finance. Birkhauser. pp. 23 (Proposition 2.2.2, Equation 2.2.8).ISBN 9780817641665.
  5. ^Everitt, B.S. (2002)The Cambridge Dictionary of Statistics, CUP.ISBN 0-521-81099-X
  6. ^Johnson, N.L., Kotz S., Balakrishnan, N. (1994)Continuous Univariate Distributions, Wiley.ISBN 0-471-58495-9. p. 60
  7. ^Robert M. Norton (May 1984). "The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator".The American Statistician.38 (2). American Statistical Association:135–136.doi:10.2307/2683252.JSTOR 2683252.
  8. ^Eltoft, T.; Taesu Kim; Te-Won Lee (2006)."On the multivariate Laplace distribution"(PDF).IEEE Signal Processing Letters.13 (5):300–303.Bibcode:2006ISPL...13..300E.doi:10.1109/LSP.2006.870353.S2CID 1011487. Archived fromthe original(PDF) on 2013-06-06. Retrieved2012-07-04.
  9. ^Minguillon, J.; Pujol, J. (2001)."JPEG standard uniform quantization error modeling with applications to sequential and progressive operation modes"(PDF).Journal of Electronic Imaging.10 (2):475–485.Bibcode:2001JEI....10..475M.doi:10.1117/1.1344592.hdl:10609/6263.
  10. ^CumFreq for probability distribution fitting
  11. ^Pardo, Scott (2020).Statistical Analysis of Empirical Data Methods for Applied Sciences. Springer. p. 58.ISBN 978-3-030-43327-7.
  12. ^Kou, S.G. (August 8, 2002)."A Jump-Diffusion Model for Option Pricing".Management Science.48 (8):1086–1101.doi:10.1287/mnsc.48.8.1086.166.JSTOR 822677. Retrieved2022-03-01.
  13. ^Chen, Jian (2018).General Equilibrium Option Pricing Method: Theoretical and Empirical Study. Springer. p. 70.ISBN 9789811074288.
  14. ^A collection of composite distributions
  15. ^Laplace, P-S. (1774). Mémoire sur la probabilité des causes par les évènements. Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan, 6, 621–656
  16. ^Wilson, Edwin Bidwell (1923). "First and Second Laws of Error".Journal of the American Statistical Association.18 (143). Informa UK Limited:841–851.doi:10.1080/01621459.1923.10502116.ISSN 0162-1459.Public Domain This article incorporates text from this source, which is in thepublic domain.
  17. ^Keynes, J. M. (1911)."The Principal Averages and the Laws of Error which Lead to Them".Journal of the Royal Statistical Society.74 (3). JSTOR:322–331.doi:10.2307/2340444.ISSN 0952-8385.JSTOR 2340444.

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Laplace_distribution&oldid=1284714320"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp