Sequence of differential equation solutions
Complex color plot ofL −1/9 (z 4 ) from −2−2i to 2+2i Inmathematics , theLaguerre polynomials , named afterEdmond Laguerre (1834–1886), are nontrivial solutions ofLaguerre's differential equation: x y ″ + ( 1 − x ) y ′ + n y = 0 , y = y ( x ) {\displaystyle xy''+(1-x)y'+ny=0,\ y=y(x)} which is a second-orderlinear differential equation . This equation hasnonsingular solutions only ifn is a non-negative integer.
Sometimes the nameLaguerre polynomials is used for solutions ofx y ″ + ( α + 1 − x ) y ′ + n y = 0 . {\displaystyle xy''+(\alpha +1-x)y'+ny=0~.} wheren is still a non-negative integer.Then they are also namedgeneralized Laguerre polynomials , as will be done here (alternativelyassociated Laguerre polynomials or, rarely,Sonine polynomials , after their inventor[ 1] Nikolay Yakovlevich Sonin ).
More generally, aLaguerre function is a solution whenn is not necessarily a non-negative integer.
The Laguerre polynomials are also used forGauss–Laguerre quadrature to numerically compute integrals of the form∫ 0 ∞ f ( x ) e − x d x . {\displaystyle \int _{0}^{\infty }f(x)e^{-x}\,dx.}
These polynomials, usually denotedL 0 , L 1 , ..., are apolynomial sequence which may be defined by theRodrigues formula ,
L n ( x ) = e x n ! d n d x n ( e − x x n ) = 1 n ! ( d d x − 1 ) n x n , {\displaystyle L_{n}(x)={\frac {e^{x}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(e^{-x}x^{n}\right)={\frac {1}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n},} reducing to the closed form of a following section.
They areorthogonal polynomials with respect to aninner product ⟨ f , g ⟩ = ∫ 0 ∞ f ( x ) g ( x ) e − x d x . {\displaystyle \langle f,g\rangle =\int _{0}^{\infty }f(x)g(x)e^{-x}\,dx.}
Therook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables. Further see theTricomi–Carlitz polynomials .
The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of theSchrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator systems inquantum mechanics in phase space . They further enter in the quantum mechanics of theMorse potential and of the3D isotropic harmonic oscillator .
Physicists sometimes use a definition for the Laguerre polynomials that is larger by a factor ofn ! than the definition used here. (Likewise, some physicists may use somewhat different definitions of the so-called associated Laguerre polynomials.)
Recursive definition, closed form, and generating function[ edit ] One can also define the Laguerre polynomials recursively, defining the first two polynomials asL 0 ( x ) = 1 {\displaystyle L_{0}(x)=1} L 1 ( x ) = 1 − x {\displaystyle L_{1}(x)=1-x} and then using the followingrecurrence relation for anyk ≥ 1 :L k + 1 ( x ) = ( 2 k + 1 − x ) L k ( x ) − k L k − 1 ( x ) k + 1 . {\displaystyle L_{k+1}(x)={\frac {(2k+1-x)L_{k}(x)-kL_{k-1}(x)}{k+1}}.} Furthermore,x L n ′ ( x ) = n L n ( x ) − n L n − 1 ( x ) . {\displaystyle xL'_{n}(x)=nL_{n}(x)-nL_{n-1}(x).}
In solution of some boundary value problems, the characteristic values can be useful:L k ( 0 ) = 1 , L k ′ ( 0 ) = − k . {\displaystyle L_{k}(0)=1,L_{k}'(0)=-k.}
Theclosed form isL n ( x ) = ∑ k = 0 n ( n k ) ( − 1 ) k k ! x k . {\displaystyle L_{n}(x)=\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{k!}}x^{k}.}
Thegenerating function for them likewise follows,∑ n = 0 ∞ t n L n ( x ) = 1 1 − t e − t x / ( 1 − t ) . {\displaystyle \sum _{n=0}^{\infty }t^{n}L_{n}(x)={\frac {1}{1-t}}e^{-tx/(1-t)}.} The operator form isL n ( x ) = 1 n ! e x d n d x n ( x n e − x ) {\displaystyle L_{n}(x)={\frac {1}{n!}}e^{x}{\frac {d^{n}}{dx^{n}}}(x^{n}e^{-x})}
Polynomials of negative index can be expressed using the ones with positive index:L − n ( x ) = e x L n − 1 ( − x ) . {\displaystyle L_{-n}(x)=e^{x}L_{n-1}(-x).}
A table of the Laguerre polynomials n L n ( x ) {\displaystyle L_{n}(x)\,} 0 1 {\displaystyle 1\,} 1 − x + 1 {\displaystyle -x+1\,} 2 1 2 ( x 2 − 4 x + 2 ) {\displaystyle {\tfrac {1}{2}}(x^{2}-4x+2)\,} 3 1 6 ( − x 3 + 9 x 2 − 18 x + 6 ) {\displaystyle {\tfrac {1}{6}}(-x^{3}+9x^{2}-18x+6)\,} 4 1 24 ( x 4 − 16 x 3 + 72 x 2 − 96 x + 24 ) {\displaystyle {\tfrac {1}{24}}(x^{4}-16x^{3}+72x^{2}-96x+24)\,} 5 1 120 ( − x 5 + 25 x 4 − 200 x 3 + 600 x 2 − 600 x + 120 ) {\displaystyle {\tfrac {1}{120}}(-x^{5}+25x^{4}-200x^{3}+600x^{2}-600x+120)\,} 6 1 720 ( x 6 − 36 x 5 + 450 x 4 − 2400 x 3 + 5400 x 2 − 4320 x + 720 ) {\displaystyle {\tfrac {1}{720}}(x^{6}-36x^{5}+450x^{4}-2400x^{3}+5400x^{2}-4320x+720)\,} 7 1 5040 ( − x 7 + 49 x 6 − 882 x 5 + 7350 x 4 − 29400 x 3 + 52920 x 2 − 35280 x + 5040 ) {\displaystyle {\tfrac {1}{5040}}(-x^{7}+49x^{6}-882x^{5}+7350x^{4}-29400x^{3}+52920x^{2}-35280x+5040)\,} 8 1 40320 ( x 8 − 64 x 7 + 1568 x 6 − 18816 x 5 + 117600 x 4 − 376320 x 3 + 564480 x 2 − 322560 x + 40320 ) {\displaystyle {\tfrac {1}{40320}}(x^{8}-64x^{7}+1568x^{6}-18816x^{5}+117600x^{4}-376320x^{3}+564480x^{2}-322560x+40320)\,} 9 1 362880 ( − x 9 + 81 x 8 − 2592 x 7 + 42336 x 6 − 381024 x 5 + 1905120 x 4 − 5080320 x 3 + 6531840 x 2 − 3265920 x + 362880 ) {\displaystyle {\tfrac {1}{362880}}(-x^{9}+81x^{8}-2592x^{7}+42336x^{6}-381024x^{5}+1905120x^{4}-5080320x^{3}+6531840x^{2}-3265920x+362880)\,} 10 1 3628800 ( x 10 − 100 x 9 + 4050 x 8 − 86400 x 7 + 1058400 x 6 − 7620480 x 5 + 31752000 x 4 − 72576000 x 3 + 81648000 x 2 − 36288000 x + 3628800 ) {\displaystyle {\tfrac {1}{3628800}}(x^{10}-100x^{9}+4050x^{8}-86400x^{7}+1058400x^{6}-7620480x^{5}+31752000x^{4}-72576000x^{3}+81648000x^{2}-36288000x+3628800)\,} n 1 n ! ( ( − x ) n + n 2 ( − x ) n − 1 + ⋯ + ( n k ) 2 k ! ( − x ) n − k + ⋯ + n ( n ! ) ( − x ) + n ! ) {\displaystyle {\tfrac {1}{n!}}((-x)^{n}+n^{2}(-x)^{n-1}+\dots +{\binom {n}{k}}^{2}{k!}(-x)^{n-k}+\dots +n({n!})(-x)+n!)\,}
The first six Laguerre polynomials. Generalized Laguerre polynomials [ edit ] For arbitrary real α the polynomial solutions of the differential equation[ 2] x y ″ + ( α + 1 − x ) y ′ + n y = 0 {\displaystyle x\,y''+\left(\alpha +1-x\right)y'+n\,y=0} are calledgeneralized Laguerre polynomials , orassociated Laguerre polynomials .
One can also define the generalized Laguerre polynomials recursively, defining the first two polynomials asL 0 ( α ) ( x ) = 1 {\displaystyle L_{0}^{(\alpha )}(x)=1} L 1 ( α ) ( x ) = 1 + α − x {\displaystyle L_{1}^{(\alpha )}(x)=1+\alpha -x}
and then using the followingrecurrence relation for anyk ≥ 1 :L k + 1 ( α ) ( x ) = ( 2 k + 1 + α − x ) L k ( α ) ( x ) − ( k + α ) L k − 1 ( α ) ( x ) k + 1 . {\displaystyle L_{k+1}^{(\alpha )}(x)={\frac {(2k+1+\alpha -x)L_{k}^{(\alpha )}(x)-(k+\alpha )L_{k-1}^{(\alpha )}(x)}{k+1}}.}
The simple Laguerre polynomials are the special caseα = 0 of the generalized Laguerre polynomials:L n ( 0 ) ( x ) = L n ( x ) . {\displaystyle L_{n}^{(0)}(x)=L_{n}(x).}
TheRodrigues formula for them isL n ( α ) ( x ) = x − α e x n ! d n d x n ( e − x x n + α ) = x − α n ! ( d d x − 1 ) n x n + α . {\displaystyle L_{n}^{(\alpha )}(x)={x^{-\alpha }e^{x} \over n!}{d^{n} \over dx^{n}}\left(e^{-x}x^{n+\alpha }\right)={\frac {x^{-\alpha }}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n+\alpha }.}
Thegenerating function for them is∑ n = 0 ∞ t n L n ( α ) ( x ) = 1 ( 1 − t ) α + 1 e − t x / ( 1 − t ) . {\displaystyle \sum _{n=0}^{\infty }t^{n}L_{n}^{(\alpha )}(x)={\frac {1}{(1-t)^{\alpha +1}}}e^{-tx/(1-t)}.}
The first few generalized Laguerre polynomials,Ln (k ) (x ) Laguerre functions are defined byconfluent hypergeometric functions and Kummer's transformation as[ 3] L n ( α ) ( x ) := ( n + α n ) M ( − n , α + 1 , x ) . {\displaystyle L_{n}^{(\alpha )}(x):={n+\alpha \choose n}M(-n,\alpha +1,x).} where( n + α n ) {\textstyle {n+\alpha \choose n}} is a generalizedbinomial coefficient . Whenn is an integer the function reduces to a polynomial of degreen . It has the alternative expression[ 4] L n ( α ) ( x ) = ( − 1 ) n n ! U ( − n , α + 1 , x ) {\displaystyle L_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{n!}}U(-n,\alpha +1,x)} in terms ofKummer's function of the second kind . The closed form for these generalized Laguerre polynomials of degreen is[ 5] L n ( α ) ( x ) = ∑ i = 0 n ( − 1 ) i ( n + α n − i ) x i i ! {\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}{\frac {x^{i}}{i!}}} derived by applyingLeibniz's theorem for differentiation of a product to Rodrigues' formula. Laguerre polynomials have a differential operator representation, much like the closely related Hermite polynomials. Namely, letD = d d x {\displaystyle D={\frac {d}{dx}}} and consider the differential operatorM = x D 2 + ( α + 1 ) D {\displaystyle M=xD^{2}+(\alpha +1)D} . Thenexp ( − t M ) x n = ( − 1 ) n t n n ! L n ( α ) ( x t ) {\displaystyle \exp(-tM)x^{n}=(-1)^{n}t^{n}n!L_{n}^{(\alpha )}\left({\frac {x}{t}}\right)} .[citation needed ] The first few generalized Laguerre polynomials are: n L n ( α ) ( x ) {\displaystyle L_{n}^{(\alpha )}(x)\,} 0 1 {\displaystyle 1\,} 1 − x + α + 1 {\displaystyle -x+\alpha +1\,} 2 1 2 ( x 2 − 2 ( α + 2 ) x + ( α + 1 ) ( α + 2 ) ) {\displaystyle {\tfrac {1}{2}}(x^{2}-2\left(\alpha +2\right)x+\left(\alpha +1\right)\left(\alpha +2\right))\,} 3 1 6 ( − x 3 + 3 ( α + 3 ) x 2 − 3 ( α + 2 ) ( α + 3 ) x + ( α + 1 ) ( α + 2 ) ( α + 3 ) ) {\displaystyle {\tfrac {1}{6}}(-x^{3}+3\left(\alpha +3\right)x^{2}-3\left(\alpha +2\right)\left(\alpha +3\right)x+\left(\alpha +1\right)\left(\alpha +2\right)\left(\alpha +3\right))\,} 4 1 24 ( x 4 − 4 ( α + 4 ) x 3 + 6 ( α + 3 ) ( α + 4 ) x 2 − 4 ( α + 2 ) ⋯ ( α + 4 ) x + ( α + 1 ) ⋯ ( α + 4 ) ) {\displaystyle {\tfrac {1}{24}}(x^{4}-4\left(\alpha +4\right)x^{3}+6\left(\alpha +3\right)\left(\alpha +4\right)x^{2}-4\left(\alpha +2\right)\cdots \left(\alpha +4\right)x+\left(\alpha +1\right)\cdots \left(\alpha +4\right))\,} 5 1 120 ( − x 5 + 5 ( α + 5 ) x 4 − 10 ( α + 4 ) ( α + 5 ) x 3 + 10 ( α + 3 ) ⋯ ( α + 5 ) x 2 − 5 ( α + 2 ) ⋯ ( α + 5 ) x + ( α + 1 ) ⋯ ( α + 5 ) ) {\displaystyle {\tfrac {1}{120}}(-x^{5}+5\left(\alpha +5\right)x^{4}-10\left(\alpha +4\right)\left(\alpha +5\right)x^{3}+10\left(\alpha +3\right)\cdots \left(\alpha +5\right)x^{2}-5\left(\alpha +2\right)\cdots \left(\alpha +5\right)x+\left(\alpha +1\right)\cdots \left(\alpha +5\right))\,} 6 1 720 ( x 6 − 6 ( α + 6 ) x 5 + 15 ( α + 5 ) ( α + 6 ) x 4 − 20 ( α + 4 ) ⋯ ( α + 6 ) x 3 + 15 ( α + 3 ) ⋯ ( α + 6 ) x 2 − 6 ( α + 2 ) ⋯ ( α + 6 ) x + ( α + 1 ) ⋯ ( α + 6 ) ) {\displaystyle {\tfrac {1}{720}}(x^{6}-6\left(\alpha +6\right)x^{5}+15\left(\alpha +5\right)\left(\alpha +6\right)x^{4}-20\left(\alpha +4\right)\cdots \left(\alpha +6\right)x^{3}+15\left(\alpha +3\right)\cdots \left(\alpha +6\right)x^{2}-6\left(\alpha +2\right)\cdots \left(\alpha +6\right)x+\left(\alpha +1\right)\cdots \left(\alpha +6\right))\,} 7 1 5040 ( − x 7 + 7 ( α + 7 ) x 6 − 21 ( α + 6 ) ( α + 7 ) x 5 + 35 ( α + 5 ) ⋯ ( α + 7 ) x 4 − 35 ( α + 4 ) ⋯ ( α + 7 ) x 3 + 21 ( α + 3 ) ⋯ ( α + 7 ) x 2 − 7 ( α + 2 ) ⋯ ( α + 7 ) x + ( α + 1 ) ⋯ ( α + 7 ) ) {\displaystyle {\tfrac {1}{5040}}(-x^{7}+7\left(\alpha +7\right)x^{6}-21\left(\alpha +6\right)\left(\alpha +7\right)x^{5}+35\left(\alpha +5\right)\cdots \left(\alpha +7\right)x^{4}-35\left(\alpha +4\right)\cdots \left(\alpha +7\right)x^{3}+21\left(\alpha +3\right)\cdots \left(\alpha +7\right)x^{2}-7\left(\alpha +2\right)\cdots \left(\alpha +7\right)x+\left(\alpha +1\right)\cdots \left(\alpha +7\right))\,} 8 1 40320 ( x 8 − 8 ( α + 8 ) x 7 + 28 ( α + 7 ) ( α + 8 ) x 6 − 56 ( α + 6 ) ⋯ ( α + 8 ) x 5 + 70 ( α + 5 ) ⋯ ( α + 8 ) x 4 − 56 ( α + 4 ) ⋯ ( α + 8 ) x 3 + 28 ( α + 3 ) ⋯ ( α + 8 ) x 2 − 8 ( α + 2 ) ⋯ ( α + 8 ) x + ( α + 1 ) ⋯ ( α + 8 ) ) {\displaystyle {\tfrac {1}{40320}}(x^{8}-8\left(\alpha +8\right)x^{7}+28\left(\alpha +7\right)\left(\alpha +8\right)x^{6}-56\left(\alpha +6\right)\cdots \left(\alpha +8\right)x^{5}+70\left(\alpha +5\right)\cdots \left(\alpha +8\right)x^{4}-56\left(\alpha +4\right)\cdots \left(\alpha +8\right)x^{3}+28\left(\alpha +3\right)\cdots \left(\alpha +8\right)x^{2}-8\left(\alpha +2\right)\cdots \left(\alpha +8\right)x+\left(\alpha +1\right)\cdots \left(\alpha +8\right))\,} 9 1 362880 ( − x 9 + 9 ( α + 9 ) x 8 − 36 ( α + 8 ) ( α + 9 ) x 7 + 84 ( α + 7 ) ⋯ ( α + 9 ) x 6 − 126 ( α + 6 ) ⋯ ( α + 9 ) x 5 + 126 ( α + 5 ) ⋯ ( α + 9 ) x 4 − 84 ( α + 4 ) ⋯ ( α + 9 ) x 3 + 36 ( α + 3 ) ⋯ ( α + 9 ) x 2 − 9 ( α + 2 ) ⋯ ( α + 9 ) x + ( α + 1 ) ⋯ ( α + 9 ) ) {\displaystyle {\tfrac {1}{362880}}(-x^{9}+9\left(\alpha +9\right)x^{8}-36\left(\alpha +8\right)\left(\alpha +9\right)x^{7}+84\left(\alpha +7\right)\cdots \left(\alpha +9\right)x^{6}-126\left(\alpha +6\right)\cdots \left(\alpha +9\right)x^{5}+126\left(\alpha +5\right)\cdots \left(\alpha +9\right)x^{4}-84\left(\alpha +4\right)\cdots \left(\alpha +9\right)x^{3}+36\left(\alpha +3\right)\cdots \left(\alpha +9\right)x^{2}-9\left(\alpha +2\right)\cdots \left(\alpha +9\right)x+\left(\alpha +1\right)\cdots \left(\alpha +9\right))\,} 10 1 3628800 ( x 10 − 10 ( α + 10 ) x 9 + 45 ( α + 9 ) ( α + 10 ) x 8 − 120 ( α + 8 ) ⋯ ( α + 10 ) x 7 + 210 ( α + 7 ) ⋯ ( α + 10 ) x 6 − 252 ( α + 6 ) ⋯ ( α + 10 ) x 5 + 210 ( α + 5 ) ⋯ ( α + 10 ) x 4 − 120 ( α + 4 ) ⋯ ( α + 10 ) x 3 + 45 ( α + 3 ) ⋯ ( α + 10 ) x 2 − 10 ( α + 2 ) ⋯ ( α + 10 ) x + ( α + 1 ) ⋯ ( α + 10 ) ) {\displaystyle {\tfrac {1}{3628800}}(x^{10}-10\left(\alpha +10\right)x^{9}+45\left(\alpha +9\right)\left(\alpha +10\right)x^{8}-120\left(\alpha +8\right)\cdots \left(\alpha +10\right)x^{7}+210\left(\alpha +7\right)\cdots \left(\alpha +10\right)x^{6}-252\left(\alpha +6\right)\cdots \left(\alpha +10\right)x^{5}+210\left(\alpha +5\right)\cdots \left(\alpha +10\right)x^{4}-120\left(\alpha +4\right)\cdots \left(\alpha +10\right)x^{3}+45\left(\alpha +3\right)\cdots \left(\alpha +10\right)x^{2}-10\left(\alpha +2\right)\cdots \left(\alpha +10\right)x+\left(\alpha +1\right)\cdots \left(\alpha +10\right))\,}
As a contour integral [ edit ] Given the generating function specified above, the polynomials may be expressed in terms of acontour integral L n ( α ) ( x ) = 1 2 π i ∮ C e − x t / ( 1 − t ) ( 1 − t ) α + 1 t n + 1 d t , {\displaystyle L_{n}^{(\alpha )}(x)={\frac {1}{2\pi i}}\oint _{C}{\frac {e^{-xt/(1-t)}}{(1-t)^{\alpha +1}\,t^{n+1}}}\;dt,} where the contour circles the origin once in a counterclockwise direction without enclosing the essential singularity at 1
Recurrence relations [ edit ] The addition formula for Laguerre polynomials:[ 7] L n ( α 1 + ⋯ + α r + r − 1 ) ( x 1 + ⋯ + x r ) = ∑ m 1 + ⋯ + m r = n L m 1 ( α 1 ) ( x 1 ) ⋯ L m r ( α r ) ( x r ) . {\displaystyle L_{n}^{(\alpha _{1}+\dots +\alpha _{r}+r-1)}\left(x_{1}+\dots +x_{r}\right)=\sum _{m_{1}+\dots +m_{r}=n}L_{m_{1}}^{(\alpha _{1})}\left(x_{1}\right)\cdots L_{m_{r}}^{(\alpha _{r})}\left(x_{r}\right).} Laguerre's polynomials satisfy the recurrence relationsL n ( α ) ( x ) = ∑ i = 0 n L n − i ( α + i ) ( y ) ( y − x ) i i ! , {\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}L_{n-i}^{(\alpha +i)}(y){\frac {(y-x)^{i}}{i!}},} in particularL n ( α + 1 ) ( x ) = ∑ i = 0 n L i ( α ) ( x ) {\displaystyle L_{n}^{(\alpha +1)}(x)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)} andL n ( α ) ( x ) = ∑ i = 0 n ( α − β + n − i − 1 n − i ) L i ( β ) ( x ) , {\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n-i-1 \choose n-i}L_{i}^{(\beta )}(x),} orL n ( α ) ( x ) = ∑ i = 0 n ( α − β + n n − i ) L i ( β − i ) ( x ) ; {\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n \choose n-i}L_{i}^{(\beta -i)}(x);} moreoverL n ( α ) ( x ) − ∑ j = 0 Δ − 1 ( n + α n − j ) ( − 1 ) j x j j ! = ( − 1 ) Δ x Δ ( Δ − 1 ) ! ∑ i = 0 n − Δ ( n + α n − Δ − i ) ( n − i ) ( n i ) L i ( α + Δ ) ( x ) = ( − 1 ) Δ x Δ ( Δ − 1 ) ! ∑ i = 0 n − Δ ( n + α − i − 1 n − Δ − i ) ( n − i ) ( n i ) L i ( n + α + Δ − i ) ( x ) {\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)-\sum _{j=0}^{\Delta -1}{n+\alpha \choose n-j}(-1)^{j}{\frac {x^{j}}{j!}}&=(-1)^{\Delta }{\frac {x^{\Delta }}{(\Delta -1)!}}\sum _{i=0}^{n-\Delta }{\frac {n+\alpha \choose n-\Delta -i}{(n-i){n \choose i}}}L_{i}^{(\alpha +\Delta )}(x)\\[6pt]&=(-1)^{\Delta }{\frac {x^{\Delta }}{(\Delta -1)!}}\sum _{i=0}^{n-\Delta }{\frac {n+\alpha -i-1 \choose n-\Delta -i}{(n-i){n \choose i}}}L_{i}^{(n+\alpha +\Delta -i)}(x)\end{aligned}}}
They can be used to derive the four 3-point-rulesL n ( α ) ( x ) = L n ( α + 1 ) ( x ) − L n − 1 ( α + 1 ) ( x ) = ∑ j = 0 k ( k j ) ( − 1 ) j L n − j ( α + k ) ( x ) , n L n ( α ) ( x ) = ( n + α ) L n − 1 ( α ) ( x ) − x L n − 1 ( α + 1 ) ( x ) , or x k k ! L n ( α ) ( x ) = ∑ i = 0 k ( − 1 ) i ( n + i i ) ( n + α k − i ) L n + i ( α − k ) ( x ) , n L n ( α + 1 ) ( x ) = ( n − x ) L n − 1 ( α + 1 ) ( x ) + ( n + α ) L n − 1 ( α ) ( x ) x L n ( α + 1 ) ( x ) = ( n + α ) L n − 1 ( α ) ( x ) − ( n − x ) L n ( α ) ( x ) ; {\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)&=L_{n}^{(\alpha +1)}(x)-L_{n-1}^{(\alpha +1)}(x)=\sum _{j=0}^{k}{k \choose j}(-1)^{j}L_{n-j}^{(\alpha +k)}(x),\\[10pt]nL_{n}^{(\alpha )}(x)&=(n+\alpha )L_{n-1}^{(\alpha )}(x)-xL_{n-1}^{(\alpha +1)}(x),\\[10pt]&{\text{or }}\\{\frac {x^{k}}{k!}}L_{n}^{(\alpha )}(x)&=\sum _{i=0}^{k}(-1)^{i}{n+i \choose i}{n+\alpha \choose k-i}L_{n+i}^{(\alpha -k)}(x),\\[10pt]nL_{n}^{(\alpha +1)}(x)&=(n-x)L_{n-1}^{(\alpha +1)}(x)+(n+\alpha )L_{n-1}^{(\alpha )}(x)\\[10pt]xL_{n}^{(\alpha +1)}(x)&=(n+\alpha )L_{n-1}^{(\alpha )}(x)-(n-x)L_{n}^{(\alpha )}(x);\end{aligned}}}
combined they give this additional, useful recurrence relationsL n ( α ) ( x ) = ( 2 + α − 1 − x n ) L n − 1 ( α ) ( x ) − ( 1 + α − 1 n ) L n − 2 ( α ) ( x ) = α + 1 − x n L n − 1 ( α + 1 ) ( x ) − x n L n − 2 ( α + 2 ) ( x ) {\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)&=\left(2+{\frac {\alpha -1-x}{n}}\right)L_{n-1}^{(\alpha )}(x)-\left(1+{\frac {\alpha -1}{n}}\right)L_{n-2}^{(\alpha )}(x)\\[10pt]&={\frac {\alpha +1-x}{n}}L_{n-1}^{(\alpha +1)}(x)-{\frac {x}{n}}L_{n-2}^{(\alpha +2)}(x)\end{aligned}}}
SinceL n ( α ) ( x ) {\displaystyle L_{n}^{(\alpha )}(x)} is a monic polynomial of degreen {\displaystyle n} inα {\displaystyle \alpha } ,there is thepartial fraction decomposition n ! L n ( α ) ( x ) ( α + 1 ) n = 1 − ∑ j = 1 n ( − 1 ) j j α + j ( n j ) L n ( − j ) ( x ) = 1 − ∑ j = 1 n x j α + j L n − j ( j ) ( x ) ( j − 1 ) ! = 1 − x ∑ i = 1 n L n − i ( − α ) ( x ) L i − 1 ( α + 1 ) ( − x ) α + i . {\displaystyle {\begin{aligned}{\frac {n!\,L_{n}^{(\alpha )}(x)}{(\alpha +1)_{n}}}&=1-\sum _{j=1}^{n}(-1)^{j}{\frac {j}{\alpha +j}}{n \choose j}L_{n}^{(-j)}(x)\\&=1-\sum _{j=1}^{n}{\frac {x^{j}}{\alpha +j}}\,\,{\frac {L_{n-j}^{(j)}(x)}{(j-1)!}}\\&=1-x\sum _{i=1}^{n}{\frac {L_{n-i}^{(-\alpha )}(x)L_{i-1}^{(\alpha +1)}(-x)}{\alpha +i}}.\end{aligned}}} The second equality follows by the following identity, valid for integeri andn and immediate from the expression ofL n ( α ) ( x ) {\displaystyle L_{n}^{(\alpha )}(x)} in terms ofCharlier polynomials :( − x ) i i ! L n ( i − n ) ( x ) = ( − x ) n n ! L i ( n − i ) ( x ) . {\displaystyle {\frac {(-x)^{i}}{i!}}L_{n}^{(i-n)}(x)={\frac {(-x)^{n}}{n!}}L_{i}^{(n-i)}(x).} For the third equality apply the fourth and fifth identities of this section.
Differentiating thepower series representation of a generalized Laguerre polynomialk times leads tod k d x k L n ( α ) ( x ) = { ( − 1 ) k L n − k ( α + k ) ( x ) if k ≤ n , 0 otherwise. {\displaystyle {\frac {d^{k}}{dx^{k}}}L_{n}^{(\alpha )}(x)={\begin{cases}(-1)^{k}L_{n-k}^{(\alpha +k)}(x)&{\text{if }}k\leq n,\\0&{\text{otherwise.}}\end{cases}}}
This points to a special case (α = 0 ) of the formula above: for integerα =k the generalized polynomial may be writtenL n ( k ) ( x ) = ( − 1 ) k d k L n + k ( x ) d x k , {\displaystyle L_{n}^{(k)}(x)=(-1)^{k}{\frac {d^{k}L_{n+k}(x)}{dx^{k}}},} the shift byk sometimes causing confusion with the usual parenthesis notation for a derivative.
Moreover, the following equation holds:1 k ! d k d x k x α L n ( α ) ( x ) = ( n + α k ) x α − k L n ( α − k ) ( x ) , {\displaystyle {\frac {1}{k!}}{\frac {d^{k}}{dx^{k}}}x^{\alpha }L_{n}^{(\alpha )}(x)={n+\alpha \choose k}x^{\alpha -k}L_{n}^{(\alpha -k)}(x),} which generalizes withCauchy's formula toL n ( α ′ ) ( x ) = ( α ′ − α ) ( α ′ + n α ′ − α ) ∫ 0 x t α ( x − t ) α ′ − α − 1 x α ′ L n ( α ) ( t ) d t . {\displaystyle L_{n}^{(\alpha ')}(x)=(\alpha '-\alpha ){\alpha '+n \choose \alpha '-\alpha }\int _{0}^{x}{\frac {t^{\alpha }(x-t)^{\alpha '-\alpha -1}}{x^{\alpha '}}}L_{n}^{(\alpha )}(t)\,dt.}
The derivative with respect to the second variableα has the form,[ 8] d d α L n ( α ) ( x ) = ∑ i = 0 n − 1 L i ( α ) ( x ) n − i . {\displaystyle {\frac {d}{d\alpha }}L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n-1}{\frac {L_{i}^{(\alpha )}(x)}{n-i}}.} The generalized Laguerre polynomials obey the differential equationx L n ( α ) ′ ′ ( x ) + ( α + 1 − x ) L n ( α ) ′ ( x ) + n L n ( α ) ( x ) = 0 , {\displaystyle xL_{n}^{(\alpha )\prime \prime }(x)+(\alpha +1-x)L_{n}^{(\alpha )\prime }(x)+nL_{n}^{(\alpha )}(x)=0,} which may be compared with the equation obeyed by thek th derivative of the ordinary Laguerre polynomial,
x L n [ k ] ′ ′ ( x ) + ( k + 1 − x ) L n [ k ] ′ ( x ) + ( n − k ) L n [ k ] ( x ) = 0 , {\displaystyle xL_{n}^{[k]\prime \prime }(x)+(k+1-x)L_{n}^{[k]\prime }(x)+(n-k)L_{n}^{[k]}(x)=0,} whereL n [ k ] ( x ) ≡ d k L n ( x ) d x k {\displaystyle L_{n}^{[k]}(x)\equiv {\frac {d^{k}L_{n}(x)}{dx^{k}}}} for this equation only.
InSturm–Liouville form the differential equation is
− ( x α + 1 e − x ⋅ L n ( α ) ( x ) ′ ) ′ = n ⋅ x α e − x ⋅ L n ( α ) ( x ) , {\displaystyle -\left(x^{\alpha +1}e^{-x}\cdot L_{n}^{(\alpha )}(x)^{\prime }\right)'=n\cdot x^{\alpha }e^{-x}\cdot L_{n}^{(\alpha )}(x),}
which shows thatL (α) n is an eigenvector for the eigenvaluen .
The generalized Laguerre polynomials areorthogonal over[0, ∞) with respect to the measure withweighting function xα e −x :[ 9]
∫ 0 ∞ x α e − x L n ( α ) ( x ) L m ( α ) ( x ) d x = Γ ( n + α + 1 ) n ! δ n , m , {\displaystyle \int _{0}^{\infty }x^{\alpha }e^{-x}L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)dx={\frac {\Gamma (n+\alpha +1)}{n!}}\delta _{n,m},}
which follows from
∫ 0 ∞ x α ′ − 1 e − x L n ( α ) ( x ) d x = ( α − α ′ + n n ) Γ ( α ′ ) . {\displaystyle \int _{0}^{\infty }x^{\alpha '-1}e^{-x}L_{n}^{(\alpha )}(x)dx={\alpha -\alpha '+n \choose n}\Gamma (\alpha ').}
IfΓ ( x , α + 1 , 1 ) {\displaystyle \Gamma (x,\alpha +1,1)} denotes the gamma distribution then the orthogonality relation can be written as
∫ 0 ∞ L n ( α ) ( x ) L m ( α ) ( x ) Γ ( x , α + 1 , 1 ) d x = ( n + α n ) δ n , m . {\displaystyle \int _{0}^{\infty }L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)\Gamma (x,\alpha +1,1)dx={n+\alpha \choose n}\delta _{n,m}.}
The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula )[citation needed ]
K n ( α ) ( x , y ) := 1 Γ ( α + 1 ) ∑ i = 0 n L i ( α ) ( x ) L i ( α ) ( y ) ( α + i i ) = 1 Γ ( α + 1 ) L n ( α ) ( x ) L n + 1 ( α ) ( y ) − L n + 1 ( α ) ( x ) L n ( α ) ( y ) x − y n + 1 ( n + α n ) = 1 Γ ( α + 1 ) ∑ i = 0 n x i i ! L n − i ( α + i ) ( x ) L n − i ( α + i + 1 ) ( y ) ( α + n n ) ( n i ) ; {\displaystyle {\begin{aligned}K_{n}^{(\alpha )}(x,y)&:={\frac {1}{\Gamma (\alpha +1)}}\sum _{i=0}^{n}{\frac {L_{i}^{(\alpha )}(x)L_{i}^{(\alpha )}(y)}{\alpha +i \choose i}}\\[4pt]&={\frac {1}{\Gamma (\alpha +1)}}{\frac {L_{n}^{(\alpha )}(x)L_{n+1}^{(\alpha )}(y)-L_{n+1}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)}{{\frac {x-y}{n+1}}{n+\alpha \choose n}}}\\[4pt]&={\frac {1}{\Gamma (\alpha +1)}}\sum _{i=0}^{n}{\frac {x^{i}}{i!}}{\frac {L_{n-i}^{(\alpha +i)}(x)L_{n-i}^{(\alpha +i+1)}(y)}{{\alpha +n \choose n}{n \choose i}}};\end{aligned}}}
recursively
K n ( α ) ( x , y ) = y α + 1 K n − 1 ( α + 1 ) ( x , y ) + 1 Γ ( α + 1 ) L n ( α + 1 ) ( x ) L n ( α ) ( y ) ( α + n n ) . {\displaystyle K_{n}^{(\alpha )}(x,y)={\frac {y}{\alpha +1}}K_{n-1}^{(\alpha +1)}(x,y)+{\frac {1}{\Gamma (\alpha +1)}}{\frac {L_{n}^{(\alpha +1)}(x)L_{n}^{(\alpha )}(y)}{\alpha +n \choose n}}.}
Moreover,[clarification needed Limit as n goes to infinity? ]
y α e − y K n ( α ) ( ⋅ , y ) → δ ( y − ⋅ ) . {\displaystyle y^{\alpha }e^{-y}K_{n}^{(\alpha )}(\cdot ,y)\to \delta (y-\cdot ).}
Turán's inequalities can be derived here, which isL n ( α ) ( x ) 2 − L n − 1 ( α ) ( x ) L n + 1 ( α ) ( x ) = ∑ k = 0 n − 1 ( α + n − 1 n − k ) n ( n k ) L k ( α − 1 ) ( x ) 2 > 0. {\displaystyle L_{n}^{(\alpha )}(x)^{2}-L_{n-1}^{(\alpha )}(x)L_{n+1}^{(\alpha )}(x)=\sum _{k=0}^{n-1}{\frac {\alpha +n-1 \choose n-k}{n{n \choose k}}}L_{k}^{(\alpha -1)}(x)^{2}>0.}
The followingintegral is needed in thequantum mechanical treatment of thehydrogen atom ,
∫ 0 ∞ x α + 1 e − x [ L n ( α ) ( x ) ] 2 d x = ( n + α ) ! n ! ( 2 n + α + 1 ) . {\displaystyle \int _{0}^{\infty }x^{\alpha +1}e^{-x}\left[L_{n}^{(\alpha )}(x)\right]^{2}dx={\frac {(n+\alpha )!}{n!}}(2n+\alpha +1).}
Let a function have the (formal) series expansionf ( x ) = ∑ i = 0 ∞ f i ( α ) L i ( α ) ( x ) . {\displaystyle f(x)=\sum _{i=0}^{\infty }f_{i}^{(\alpha )}L_{i}^{(\alpha )}(x).}
Thenf i ( α ) = ∫ 0 ∞ L i ( α ) ( x ) ( i + α i ) ⋅ x α e − x Γ ( α + 1 ) ⋅ f ( x ) d x . {\displaystyle f_{i}^{(\alpha )}=\int _{0}^{\infty }{\frac {L_{i}^{(\alpha )}(x)}{i+\alpha \choose i}}\cdot {\frac {x^{\alpha }e^{-x}}{\Gamma (\alpha +1)}}\cdot f(x)\,dx.}
The series converges in the associatedHilbert space L 2 [0, ∞)if and only if
‖ f ‖ L 2 2 := ∫ 0 ∞ x α e − x Γ ( α + 1 ) | f ( x ) | 2 d x = ∑ i = 0 ∞ ( i + α i ) | f i ( α ) | 2 < ∞ . {\displaystyle \|f\|_{L^{2}}^{2}:=\int _{0}^{\infty }{\frac {x^{\alpha }e^{-x}}{\Gamma (\alpha +1)}}|f(x)|^{2}\,dx=\sum _{i=0}^{\infty }{i+\alpha \choose i}|f_{i}^{(\alpha )}|^{2}<\infty .}
Further examples of expansions [ edit ] Monomials are represented asx n n ! = ∑ i = 0 n ( − 1 ) i ( n + α n − i ) L i ( α ) ( x ) , {\displaystyle {\frac {x^{n}}{n!}}=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}L_{i}^{(\alpha )}(x),} whilebinomials have the parametrization( n + x n ) = ∑ i = 0 n α i i ! L n − i ( x + i ) ( α ) . {\displaystyle {n+x \choose n}=\sum _{i=0}^{n}{\frac {\alpha ^{i}}{i!}}L_{n-i}^{(x+i)}(\alpha ).}
This leads directly toe − γ x = ∑ i = 0 ∞ γ i ( 1 + γ ) i + α + 1 L i ( α ) ( x ) convergent iff ℜ ( γ ) > − 1 2 {\displaystyle e^{-\gamma x}=\sum _{i=0}^{\infty }{\frac {\gamma ^{i}}{(1+\gamma )^{i+\alpha +1}}}L_{i}^{(\alpha )}(x)\qquad {\text{convergent iff }}\Re (\gamma )>-{\tfrac {1}{2}}} for the exponential function. Theincomplete gamma function has the representationΓ ( α , x ) = x α e − x ∑ i = 0 ∞ L i ( α ) ( x ) 1 + i ( ℜ ( α ) > − 1 , x > 0 ) . {\displaystyle \Gamma (\alpha ,x)=x^{\alpha }e^{-x}\sum _{i=0}^{\infty }{\frac {L_{i}^{(\alpha )}(x)}{1+i}}\qquad \left(\Re (\alpha )>-1,x>0\right).}
In terms of elementary functions [ edit ] For any fixed positive integerM {\displaystyle M} , fixed real numberα {\displaystyle \alpha } , fixed and bounded interval[ c , d ] ⊂ ( 0 , + ∞ ) {\displaystyle [c,d]\subset (0,+\infty )} , uniformly forx ∈ [ c , d ] {\displaystyle x\in [c,d]} , atn → ∞ {\displaystyle n\to \infty } :L n ( α ) ( x ) = n 1 2 α − 1 4 e 1 2 x π 1 2 x 1 2 α + 1 4 ( cos θ n ( α ) ( x ) ( ∑ m = 0 M − 1 a m ( x ) n 1 2 m + O ( 1 n 1 2 M ) ) + sin θ n ( α ) ( x ) ( ∑ m = 1 M − 1 b m ( x ) n 1 2 m + O ( 1 n 1 2 M ) ) ) {\displaystyle L_{n}^{(\alpha )}\left(x\right)={\frac {n^{{\frac {1}{2}}\alpha -{\frac {1}{4}}}{\mathrm {e} }^{{\frac {1}{2}}x}}{{\pi }^{\frac {1}{2}}x^{{\frac {1}{2}}\alpha +{\frac {1}{4}}}}}\left(\cos \theta _{n}^{(\alpha )}(x)\left(\sum _{m=0}^{M-1}{\frac {a_{m}(x)}{n^{{\frac {1}{2}}m}}}+O\left({\frac {1}{n^{{\frac {1}{2}}M}}}\right)\right)+\sin \theta _{n}^{(\alpha )}(x)\left(\sum _{m=1}^{M-1}{\frac {b_{m}(x)}{n^{{\frac {1}{2}}m}}}+O\left({\frac {1}{n^{{\frac {1}{2}}M}}}\right)\right)\right)} whereθ n ( α ) ( x ) := 2 ( n x ) 1 2 − ( 1 2 α + 1 4 ) π . {\displaystyle \theta _{n}^{(\alpha )}(x):=2(nx)^{\frac {1}{2}}-\left({\tfrac {1}{2}}\alpha +{\tfrac {1}{4}}\right)\pi .} anda 0 , b 1 , a 1 , b 2 , … {\displaystyle a_{0},b_{1},a_{1},b_{2},\dots } are functions depending onα , x {\displaystyle \alpha ,x} but notn {\displaystyle n} , and regular forx > 0 {\displaystyle x>0} . The first few ones are:a 0 ( x ) = 1 a 1 ( x ) = 0 b 1 ( x ) = 1 48 x 1 2 ( 4 x 2 − 24 ( α + 1 ) x + 3 − 12 α 2 ) {\displaystyle {\begin{aligned}&a_{0}(x)=1\\&a_{1}(x)=0\\&b_{1}(x)={\frac {1}{48x^{\frac {1}{2}}}}\left(4x^{2}-24(\alpha +1)x+3-12\alpha ^{2}\right)\end{aligned}}} This isPerron 's formula.[ 10] [ 11] : 78 There is also a generalization forx ∈ C ∖ [ 0 , ∞ ) {\displaystyle x\in \mathbb {C} \setminus [0,\infty )} .[ 12] Fejér 's formula is a special case of Perron's formula withM = 1 {\displaystyle M=1} .[ 13] [ 12] [ 14]
In terms of Bessel functions [ edit ] TheMehler–Heine formula states:
lim n → ∞ n − α L n ( α ) ( z 2 4 n ) = ( z 2 ) − α J α ( z ) , {\displaystyle \lim _{n\to \infty }n^{-\alpha }L_{n}^{(\alpha )}\left({\frac {z^{2}}{4n}}\right)=\left({\frac {z}{2}}\right)^{-\alpha }J_{\alpha }(z),} whereJ α {\displaystyle J_{\alpha }} is aBessel function of the first kind .
See also:.[ 10]
In terms of Airy functions [ edit ] Letν = 4 n + 2 α + 2 {\displaystyle \nu =4n+2\alpha +2} . LetAi {\displaystyle \operatorname {Ai} } be theAiry function . Letα {\displaystyle \alpha } be arbitrary and real,ϵ {\displaystyle \epsilon } andω {\displaystyle \omega } be positive and fixed.
ThePlancherel–Rotach asymptotics formulas:[ 15] [ 10]
e − x / 2 L n ( α ) ( x ) = ( − 1 ) n ( π sin φ ) − 1 / 2 x − α / 2 − 1 / 4 n α / 2 − 1 / 4 { sin [ ( n + α + 1 2 ) ( sin 2 φ − 2 φ ) + 3 π / 4 ] + ( n x ) − 1 / 2 O ( 1 ) } {\displaystyle e^{-x/2}L_{n}^{(\alpha )}(x)=(-1)^{n}(\pi \sin \varphi )^{-1/2}x^{-\alpha /2-1/4}n^{\alpha /2-1/4}{\big \{}\sin \left[\left(n+{\tfrac {\alpha +1}{2}}\right)(\sin 2\varphi -2\varphi )+3\pi /4\right]+(nx)^{-1/2}{\mathcal {O}}(1){\big \}}} e − x / 2 L n ( α ) ( x ) = 1 2 ( − 1 ) n ( π sinh φ ) − 1 / 2 x − α / 2 − 1 / 4 n α / 2 − 1 / 4 exp [ ( n + α + 1 2 ) ( 2 φ − sinh 2 φ ) ] { 1 + O ( n − 1 ) } {\displaystyle e^{-x/2}L_{n}^{(\alpha )}(x)={\tfrac {1}{2}}(-1)^{n}(\pi \sinh \varphi )^{-1/2}x^{-\alpha /2-1/4}n^{\alpha /2-1/4}\exp \left[\left(n+{\tfrac {\alpha +1}{2}}\right)(2\varphi -\sinh 2\varphi )\right]\{1+{\mathcal {O}}\left(n^{-1}\right)\}} e − x / 2 L n ( α ) ( x ) = ( − 1 ) n π − 1 2 − α − 1 / 3 3 1 / 3 n − 1 / 3 { π Ai ( − 3 − 1 / 3 t ) + O ( n − 2 / 3 ) } {\displaystyle e^{-x/2}L_{n}^{(\alpha )}(x)=(-1)^{n}\pi ^{-1}2^{-\alpha -1/3}3^{1/3}n^{-1/3}{\bigg \{}\pi \operatorname {Ai} (-3^{-1/3}t)+{\mathcal {O}}\left(n^{-2/3}\right){\bigg \}}} See DLMF for higher-order terms.[ 10]
j α , m {\displaystyle j_{\alpha ,m}} is them {\displaystyle m} -th positive zero of theBessel function J α ( x ) {\displaystyle J_{\alpha }(x)} .
a m {\displaystyle a_{m}} is them {\displaystyle m} -th zero of the Airy functionAi ( x ) {\displaystyle \operatorname {Ai} (x)} , in descending order:0 > a 1 > a 2 > ⋯ {\displaystyle 0>a_{1}>a_{2}>\cdots } .
ν = 4 n + 2 α + 2 {\displaystyle \nu =4n+2\alpha +2} .
Ifα > − 1 {\displaystyle \alpha >-1} , thenL n ( α ) {\displaystyle L_{n}^{(\alpha )}} hasn {\displaystyle n} real roots. Thus in this section we assumeα > − 1 {\displaystyle \alpha >-1} by default.
x 1 < ⋯ < x n {\displaystyle x_{1}<\dots <x_{n}} are the real roots ofL n ( α ) {\displaystyle L_{n}^{(\alpha )}} .
Note that( ( − 1 ) n − i L n − i ( α ) ) i = 0 n {\displaystyle \left((-1)^{n-i}L_{n-i}^{(\alpha )}\right)_{i=0}^{n}} is aSturm chain .
Forα > − 1 {\displaystyle \alpha >-1} , we have these bounds:[ 16] [ 17] [ 6] [ 18]
For fixedk = 1 , … , n {\displaystyle k=1,\dots ,n} ,[ 16] [ 6] [ 17] ν x k > j α , k 2 x k < j α , k 2 ν / 2 + ( ν / 2 ) 2 − j α , k 2 if ν / 2 > j α , k x k < [ ν 1 / 2 + 2 − 1 / 3 ν − 1 / 6 a n − k + 1 ] 2 if | α | ⩾ 1 / 4 x k < ν + 2 2 3 a k ν 1 3 + 2 − 2 3 a k 2 ν − 1 3 {\displaystyle {\begin{aligned}\nu x_{k}&>j_{\alpha ,k}^{2}\\x_{k}&<{\frac {j_{\alpha ,k}^{2}}{\nu /2+{\sqrt {(\nu /2)^{2}-j_{\alpha ,k}^{2}}}}}\quad {\text{ if }}\nu /2>j_{\alpha ,k}\\x_{k}&<\left[\nu ^{1/2}+2^{-1/3}\nu ^{-1/6}a_{n-k+1}\right]^{2}\quad {\text{ if }}|\alpha |\geqslant 1/4\\x_{k}&<\nu +2^{\frac {2}{3}}a_{k}\nu ^{\frac {1}{3}}+2^{-{\frac {2}{3}}}a_{k}^{2}\nu ^{-{\frac {1}{3}}}\end{aligned}}} For fixedk {\displaystyle k} , we havelim n → ∞ ν x k = j α , k 2 {\displaystyle \lim _{n\to \infty }\nu x_{k}=j_{\alpha ,k}^{2}} , so the first inequality is sharp.
See also.[ 19]
The zeroes satisfy theStieltjes relations :[ 20] [ 21] ∑ 1 ≤ j ≤ n , i ≠ j 1 x i − x j = 1 2 ( 1 − α + 1 x i ) ∑ 1 ≤ j ≤ n 1 x j = n α + 1 ∑ 1 ≤ j ≤ n , i ≠ j 1 ( x i − x j ) 2 = − ( α + 1 ) ( α + 5 ) 12 x i 2 + 2 n + α + 1 6 x i − 1 12 ∑ 1 ≤ j ≤ n , i ≠ j 1 ( x i − x j ) 3 = − ( α + 1 ) ( α + 3 ) 8 x i 3 + 2 n + α + 1 8 x i 2 {\displaystyle {\begin{aligned}\sum _{1\leq j\leq n,i\neq j}{\frac {1}{x_{i}-x_{j}}}&={\frac {1}{2}}\left(1-{\frac {\alpha +1}{x_{i}}}\right)\\\sum _{1\leq j\leq n}{\frac {1}{x_{j}}}&={\frac {n}{\alpha +1}}\\\sum _{1\leq j\leq n,i\neq j}{\frac {1}{(x_{i}-x_{j})^{2}}}&=-{\frac {(\alpha +1)(\alpha +5)}{12x_{i}^{2}}}+{\frac {2n+\alpha +1}{6x_{i}}}-{\frac {1}{12}}\\\sum _{1\leq j\leq n,i\neq j}{\frac {1}{(x_{i}-x_{j})^{3}}}&=-{\frac {(\alpha +1)(\alpha +3)}{8x_{i}^{3}}}+{\frac {2n+\alpha +1}{8x_{i}^{2}}}\\\end{aligned}}} The first relation can be interpreted physically. Fix an electric particle at origin with charge+ α + 1 2 {\displaystyle +{\frac {\alpha +1}{2}}} , and produce a constant electric field of strength− 1 2 {\displaystyle -{\frac {1}{2}}} . Then, placen {\displaystyle n} electric particles with charge+ 1 {\displaystyle +1} . The first relation states that the zeroes ofL n ( α ) {\displaystyle L_{n}^{(\alpha )}} are the equilibrium positions of the particles.
As the zeroes specify the polynomial up to scaling, this provides an alternative way to uniquely characterize the Laguerre polynomials.
The zeroes also satisfy[ 22] ∑ i = 1 n 1 x − x i = − ∑ k = 0 ∞ S k + 1 x k , S k := ∑ i = 1 n x i − k {\displaystyle \sum _{i=1}^{n}{\frac {1}{x-x_{i}}}=-\sum _{k=0}^{\infty }S_{k+1}x^{k},\quad S_{k}:=\sum _{i=1}^{n}x_{i}^{-k}} which allows the following boundS m − 1 / m < x 1 < S m / S m + 1 , m = 1 , 2 , … {\displaystyle S_{m}^{-1/m}<x_{1}<S_{m}/S_{m+1},\quad m=1,2,\ldots }
LetF n ( t ) := 1 n # { i : x i ≤ t } {\displaystyle F_{n}(t):={\frac {1}{n}}\#\{i:x_{i}\leq t\}} be thecumulative distribution function for the roots, then we have the limit law[ 23] lim n → ∞ F n ( 4 n t ) = 2 π ∫ 0 t 1 − s s d s ∀ t ∈ ( 0 , 1 ] {\displaystyle \lim _{n\to \infty }F_{n}(4nt)={\frac {2}{\pi }}\int _{0}^{t}{\sqrt {\frac {1-s}{s}}}ds\quad \forall t\in (0,1]} which can be interpreted as the limit distribution of theWishart ensemble spectrum.
For fixedα > − 1 {\displaystyle \alpha >-1} and fixedk {\displaystyle k} , asn → ∞ {\displaystyle n\to \infty } ,[ 17] x n + 1 − k = ν + 2 2 / 3 a k ν 1 / 3 + 1 5 2 4 / 3 a k 2 ν − 1 / 3 + ( 11 35 − α 2 − 12 175 a k 3 ) ν − 1 + ( 16 1575 a k + 92 7875 a k 4 ) 2 2 / 3 ν − 5 / 3 − ( 15152 3031875 a k 5 + 1088 121275 a k 2 ) 2 1 / 3 ν − 7 / 3 + O ( ν − 3 ) , {\displaystyle {\begin{aligned}x_{n+1-k}=&\nu +2^{2/3}a_{k}\nu ^{1/3}+{\frac {1}{5}}2^{4/3}a_{k}^{2}\nu ^{-1/3}+\left({\frac {11}{35}}-\alpha ^{2}-{\frac {12}{175}}a_{k}^{3}\right)\nu ^{-1}\\&+\left({\frac {16}{1575}}a_{k}+{\frac {92}{7875}}a_{k}^{4}\right)2^{2/3}\nu ^{-5/3}-\left({\frac {15152}{3031875}}a_{k}^{5}+{\frac {1088}{121275}}a_{k}^{2}\right)2^{1/3}\nu ^{-7/3}+{\mathcal {O}}\left(\nu ^{-3}\right),\end{aligned}}}
Forα ∈ ( − 1 , 0 ) {\displaystyle \alpha \in (-1,0)} ,[ 22] x 1 = α + 1 n + n − 1 2 ( α + 1 n ) 2 − n 2 + 3 n − 4 12 ( α + 1 n ) 3 + 7 n 3 + 6 n 2 + 23 n − 36 144 ( α + 1 n ) 4 − 293 n 4 + 210 n 3 + 235 n 2 + 990 n − 1728 8640 ( α + 1 n ) 5 + ⋯ {\displaystyle {\begin{aligned}x_{1}={\frac {\alpha +1}{n}}&+{\frac {n-1}{2}}\left({\frac {\alpha +1}{n}}\right)^{2}-{\frac {n^{2}+3n-4}{12}}\left({\frac {\alpha +1}{n}}\right)^{3}\\&+{\frac {7n^{3}+6n^{2}+23n-36}{144}}\left({\frac {\alpha +1}{n}}\right)^{4}\\&-{\frac {293n^{4}+210n^{3}+235n^{2}+990n-1728}{8640}}\left({\frac {\alpha +1}{n}}\right)^{5}+\cdots \end{aligned}}}
In quantum mechanics [ edit ] In quantum mechanics the Schrödinger equation for thehydrogen-like atom is exactly solvable by separation of variables in spherical coordinates. The radial part of the wave function is a (generalized) Laguerre polynomial.[ 24]
Vibronic transitions in the Franck-Condon approximation can also be described using Laguerre polynomials.[ 25]
Multiplication theorems [ edit ] Erdélyi gives the following twomultiplication theorems [ 26]
t n + 1 + α e ( 1 − t ) z L n ( α ) ( z t ) = ∑ k = n ∞ ( k n ) ( 1 − 1 t ) k − n L k ( α ) ( z ) , e ( 1 − t ) z L n ( α ) ( z t ) = ∑ k = 0 ∞ ( 1 − t ) k z k k ! L n ( α + k ) ( z ) . {\displaystyle {\begin{aligned}&t^{n+1+\alpha }e^{(1-t)z}L_{n}^{(\alpha )}(zt)=\sum _{k=n}^{\infty }{k \choose n}\left(1-{\frac {1}{t}}\right)^{k-n}L_{k}^{(\alpha )}(z),\\[6pt]&e^{(1-t)z}L_{n}^{(\alpha )}(zt)=\sum _{k=0}^{\infty }{\frac {(1-t)^{k}z^{k}}{k!}}L_{n}^{(\alpha +k)}(z).\end{aligned}}}
Relation to Hermite polynomials [ edit ] The generalized Laguerre polynomials are related to theHermite polynomials :H 2 n ( x ) = ( − 1 ) n 2 2 n n ! L n ( − 1 / 2 ) ( x 2 ) H 2 n + 1 ( x ) = ( − 1 ) n 2 2 n + 1 n ! x L n ( 1 / 2 ) ( x 2 ) {\displaystyle {\begin{aligned}H_{2n}(x)&=(-1)^{n}2^{2n}n!L_{n}^{(-1/2)}(x^{2})\\[4pt]H_{2n+1}(x)&=(-1)^{n}2^{2n+1}n!xL_{n}^{(1/2)}(x^{2})\end{aligned}}} where theH n (x ) are theHermite polynomials based on the weighting functionexp(−x 2 ) , the so-called "physicist's version."
Because of this, the generalized Laguerre polynomials arise in the treatment of thequantum harmonic oscillator .
Applying the addition formula,( − 1 ) n 2 2 n n ! L n ( r 2 − 1 ) ( z 1 2 + ⋯ + z r 2 ) = ∑ m 1 + ⋯ + m r = n ∏ i = 1 r H 2 m i ( z i ) . {\displaystyle (-1)^{n}2^{2n}n!\,L_{n}^{\left({\frac {r}{2}}-1\right)}{\Bigl (}z_{1}^{2}+\cdots +z_{r}^{2}{\Bigr )}=\sum _{m_{1}+\cdots +m_{r}=n}\prod _{i=1}^{r}H_{2m_{i}}(z_{i}).}
Relation to hypergeometric functions [ edit ] The Laguerre polynomials may be defined in terms ofhypergeometric functions , specifically theconfluent hypergeometric functions , asL n ( α ) ( x ) = ( n + α n ) M ( − n , α + 1 , x ) = ( α + 1 ) n n ! 1 F 1 ( − n , α + 1 , x ) {\displaystyle L_{n}^{(\alpha )}(x)={n+\alpha \choose n}M(-n,\alpha +1,x)={\frac {(\alpha +1)_{n}}{n!}}\,_{1}F_{1}(-n,\alpha +1,x)} where( a ) n {\displaystyle (a)_{n}} is thePochhammer symbol (which in this case represents the rising factorial).
Hardy–Hille formula[ edit ] The generalized Laguerre polynomials satisfy theHardy –Hille formula[ 27] [ 28] ∑ n = 0 ∞ n ! Γ ( α + 1 ) Γ ( n + α + 1 ) L n ( α ) ( x ) L n ( α ) ( y ) t n = 1 ( 1 − t ) α + 1 e − ( x + y ) t / ( 1 − t ) 0 F 1 ( ; α + 1 ; x y t ( 1 − t ) 2 ) , {\displaystyle \sum _{n=0}^{\infty }{\frac {n!\,\Gamma \left(\alpha +1\right)}{\Gamma \left(n+\alpha +1\right)}}L_{n}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)t^{n}={\frac {1}{(1-t)^{\alpha +1}}}e^{-(x+y)t/(1-t)}\,_{0}F_{1}\left(;\alpha +1;{\frac {xyt}{(1-t)^{2}}}\right),} where the series on the left converges forα > − 1 {\displaystyle \alpha >-1} and| t | < 1 {\displaystyle |t|<1} . Using the identity0 F 1 ( ; α + 1 ; z ) = Γ ( α + 1 ) z − α / 2 I α ( 2 z ) , {\displaystyle \,_{0}F_{1}(;\alpha +1;z)=\,\Gamma (\alpha +1)z^{-\alpha /2}I_{\alpha }\left(2{\sqrt {z}}\right),} (seegeneralized hypergeometric function ), this can also be written as∑ n = 0 ∞ n ! Γ ( 1 + α + n ) L n ( α ) ( x ) L n ( α ) ( y ) t n = 1 ( x y t ) α / 2 ( 1 − t ) e − ( x + y ) t / ( 1 − t ) I α ( 2 x y t 1 − t ) . {\displaystyle \sum _{n=0}^{\infty }{\frac {n!}{\Gamma (1+\alpha +n)}}L_{n}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)t^{n}={\frac {1}{(xyt)^{\alpha /2}(1-t)}}e^{-(x+y)t/(1-t)}I_{\alpha }\left({\frac {2{\sqrt {xyt}}}{1-t}}\right).} whereI α {\displaystyle I_{\alpha }} denotes the modified Bessel function of the first kind, defined asI α ( z ) = ∑ k = 0 ∞ 1 k ! Γ ( k + α + 1 ) ( z 2 ) 2 k + α {\displaystyle I_{\alpha }(z)=\sum _{k=0}^{\infty }{\frac {1}{k!\,\Gamma (k+\alpha +1)}}\left({\frac {z}{2}}\right)^{2k+\alpha }} This formula is a generalization of theMehler kernel forHermite polynomials , which can be recovered from it by setting the Hermite polynomials as a special case of the associated Laguerre polynomials.
Substitutet ↦ − t / y {\displaystyle t\mapsto -t/y} and take they → ∞ {\displaystyle y\to \infty } limit, we obtain[ 29] ∑ n = 0 ∞ t n Γ ( n + 1 + α ) L n ( α ) ( x ) = e t ( − x t ) α / 2 I α ( 2 − x t ) . {\displaystyle \sum _{n=0}^{\infty }{\frac {t^{n}}{\Gamma (n+1+\alpha )}}L_{n}^{(\alpha )}(x)={\frac {e^{t}}{(-xt)^{\alpha /2}}}I_{\alpha }(2{\sqrt {-xt}}).} The formula is named afterG. H. Hardy andEinar Hille .[ 30] [ 31]
The generalized Laguerre polynomials are used to describe the quantum wavefunction forhydrogen atom orbitals.[ 32] [ 33] [ 34] The convention used throughout this article expresses the generalized Laguerre polynomials as[ 35]
L n ( α ) ( x ) = Γ ( α + n + 1 ) Γ ( α + 1 ) n ! 1 F 1 ( − n ; α + 1 ; x ) , {\displaystyle L_{n}^{(\alpha )}(x)={\frac {\Gamma (\alpha +n+1)}{\Gamma (\alpha +1)n!}}\,_{1}F_{1}(-n;\alpha +1;x),}
where1 F 1 ( a ; b ; x ) {\displaystyle \,_{1}F_{1}(a;b;x)} is theconfluent hypergeometric function .In the physics literature,[ 34] the generalized Laguerre polynomials are instead defined as
L ¯ n ( α ) ( x ) = [ Γ ( α + n + 1 ) ] 2 Γ ( α + 1 ) n ! 1 F 1 ( − n ; α + 1 ; x ) . {\displaystyle {\bar {L}}_{n}^{(\alpha )}(x)={\frac {\left[\Gamma (\alpha +n+1)\right]^{2}}{\Gamma (\alpha +1)n!}}\,_{1}F_{1}(-n;\alpha +1;x).}
The physics version is related to the standard version by
L ¯ n ( α ) ( x ) = ( n + α ) ! L n ( α ) ( x ) . {\displaystyle {\bar {L}}_{n}^{(\alpha )}(x)=(n+\alpha )!L_{n}^{(\alpha )}(x).}
There is yet another, albeit less frequently used, convention in the physics literature[ 36] [ 37] [ 38]
L ~ n ( α ) ( x ) = ( − 1 ) α L ¯ n − α ( α ) . {\displaystyle {\tilde {L}}_{n}^{(\alpha )}(x)=(-1)^{\alpha }{\bar {L}}_{n-\alpha }^{(\alpha )}.}
Umbral calculus convention [ edit ] Generalized Laguerre polynomials are linked toUmbral calculus by beingSheffer sequences forD / ( D − I ) {\displaystyle D/(D-I)} when multiplied byn ! {\displaystyle n!} . In Umbral Calculus convention,[ 39] the default Laguerre polynomials are defined to beL n ( x ) = n ! L n ( − 1 ) ( x ) = ∑ k = 0 n L ( n , k ) ( − x ) k {\displaystyle {\mathcal {L}}_{n}(x)=n!L_{n}^{(-1)}(x)=\sum _{k=0}^{n}L(n,k)(-x)^{k}} whereL ( n , k ) = ( n − 1 k − 1 ) n ! k ! {\textstyle L(n,k)={\binom {n-1}{k-1}}{\frac {n!}{k!}}} are the signlessLah numbers .( L n ( x ) ) n ∈ N {\textstyle ({\mathcal {L}}_{n}(x))_{n\in \mathbb {N} }} is a sequence of polynomials ofbinomial type ,ie they satisfyL n ( x + y ) = ∑ k = 0 n ( n k ) L k ( x ) L n − k ( y ) {\displaystyle {\mathcal {L}}_{n}(x+y)=\sum _{k=0}^{n}{\binom {n}{k}}{\mathcal {L}}_{k}(x){\mathcal {L}}_{n-k}(y)}
^ N. Sonine (1880)."Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries" .Math. Ann. 16 (1):1– 80.doi :10.1007/BF01459227 .S2CID 121602983 . ^ A&S p. 781 ^ A&S p. 509 ^ A&S p. 510 ^ A&S p. 775 ^a b c "DLMF: §18.16 Zeros ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" .dlmf.nist.gov .^ "DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" .dlmf.nist.gov . Retrieved2025-03-18 .^ Koepf, Wolfram (1997). "Identities for families of orthogonal polynomials and special functions".Integral Transforms and Special Functions .5 (1– 2):69– 102.CiteSeerX 10.1.1.298.7657 .doi :10.1080/10652469708819127 . ^ "Associated Laguerre Polynomial" .^a b c d "DLMF: §18.15 Asymptotic Approximations ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" .dlmf.nist.gov . Retrieved2025-07-07 .^ Perron, Oskar (1921-01-01)."Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenztem Wachstum eines Parameters" (in German).1921 (151):63– 78.doi :10.1515/crll.1921.151.63 .ISSN 1435-5345 . {{cite journal }}:Cite journal requires|journal= (help ) ^a b Szegő, p. 198. ^ Turán, Pál (1970),"Asymptotikus Értékek Meghatározásáról" ,Leopold Fejér Gesammelte Arbeiten I (in German), Basel: Birkhäuser Basel, pp. 445– 503,doi :10.1007/978-3-0348-5902-8_31 ,ISBN 978-3-0348-5903-5 , retrieved2025-07-07 ^ D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics",SIAM J. Numer. Anal. , vol. 46 (2008), no. 6, pp. 3285–3312doi :10.1137/07068031X ^ Szegő, pp. 200–201 ^a b Driver, K.; Jordaan, K. (January 2013)."Inequalities for Extreme Zeros of Some Classical Orthogonal andq-orthogonal Polynomials" .Mathematical Modelling of Natural Phenomena .8 (1):48– 59.doi :10.1051/mmnp/20138103 .ISSN 0973-5348 . ^a b c Gatteschi, Luigi (2002-07-01)."Asymptotics and bounds for the zeros of Laguerre polynomials: a survey" .Journal of Computational and Applied Mathematics . Selected papers of the Int. Symp. on Applied Mathematics, August 2000, Dalian, China.144 (1):7– 27.doi :10.1016/S0377-0427(01)00549-0 .ISSN 0377-0427 . ^ Dimitrov, Dimitar K.; Rafaeli, Fernando R. (2009-12-01)."Monotonicity of zeros of Laguerre polynomials" .Journal of Computational and Applied Mathematics . 9th OPSFA Conference.233 (3):699– 702.doi :10.1016/j.cam.2009.02.038 .ISSN 0377-0427 . ^ (Szegő 1975 , Section 6.21. Inequalities for the zeros of the classical polynomials) ^ Marcellán, F.; Martínez-Finkelshtein, A.; Martínez-González, P. (2007-10-15)."Electrostatic models for zeros of polynomials: Old, new, and some open problems" .Journal of Computational and Applied Mathematics . Proceedings of The Conference in Honour of Dr. Nico Temme on the Occasion of his 65th birthday.207 (2):258– 272.arXiv :math/0512293 .doi :10.1016/j.cam.2006.10.020 .ISSN 0377-0427 . ^ (Szegő 1975 , Section 6.7. Electrostatic interpretation of the zeros of the classical polynomials) ^a b Gupta, Dharma P.; Muldoon, Martin E. (2007)."Inequalities for the smallest zeros of Laguerre polynomials and their -analogues" .JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only] .8 (1): Paper No. 24, 7 p., electronic only–Paper No. 24, 7 p., electronic only.ISSN 1443-5756 . ^ Gawronski, Wolfgang (1987-07-01)."On the asymptotic distribution of the zeros of Hermite, Laguerre, and Jonquière polynomials" .Journal of Approximation Theory .50 (3):214– 231.doi :10.1016/0021-9045(87)90020-7 .ISSN 0021-9045 . ^ Ratner, Schatz, Mark A., George C. (2001).Quantum Mechanics in Chemistry . 0-13-895491-7: Prentice Hall. pp. 90– 91. {{cite book }}: CS1 maint: location (link ) CS1 maint: multiple names: authors list (link )^ Jong, Mathijs de; Seijo, Luis; Meijerink, Andries; Rabouw, Freddy T. (2015-06-24)."Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter" .Physical Chemistry Chemical Physics .17 (26):16959– 16969.Bibcode :2015PCCP...1716959D .doi :10.1039/C5CP02093J .hdl :1874/321453 .ISSN 1463-9084 .PMID 26062123 .S2CID 34490576 . ^ C. Truesdell, "On the Addition and Multiplication Theorems for the Special Functions ",Proceedings of the National Academy of Sciences, Mathematics , (1950) pp. 752–757. ^ Szegő, p. 102. ^ Al-Salam, W. A. (1964-03-01)."Operational representations for the Laguerre and other polynomials" .Duke Mathematical Journal .31 (1).doi :10.1215/S0012-7094-64-03113-8 .ISSN 0012-7094 . ^ Szegő, page 102, Equation (5.1.16) ^ G. H. Hardy, “Summation of a series of polynomials of Laguerre,” J. London Math. Soc., v. 7, 1932, pp. 138–139; addendum, 192. ^ E. Hille, “On Laguerre’s series. I, II, III,” Proc. Nat. Acad. Sci. U.S.A., v. 12, 1926, pp. 261–269; 348–352. ^ Griffiths, David J. (2005).Introduction to quantum mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.ISBN 0131118927 . ^ Sakurai, J. J. (2011).Modern quantum mechanics (2nd ed.). Boston: Addison-Wesley.ISBN 978-0805382914 . ^a b Merzbacher, Eugen (1998).Quantum mechanics (3rd ed.). New York: Wiley.ISBN 0471887021 . ^ Abramowitz, Milton (1965).Handbook of mathematical functions, with formulas, graphs, and mathematical tables . New York: Dover Publications.ISBN 978-0-486-61272-0 . ^ Schiff, Leonard I. (1968).Quantum mechanics (3d ed.). New York: McGraw-Hill.ISBN 0070856435 . ^ Messiah, Albert (2014).Quantum Mechanics . Dover Publications.ISBN 9780486784557 . ^ Boas, Mary L. (2006).Mathematical methods in the physical sciences (3rd ed.). Hoboken, NJ: Wiley.ISBN 9780471198260 . ^ Rota, Gian-Carlo; Kahaner, D; Odlyzko, A (1973-06-01)."On the foundations of combinatorial theory. VIII. Finite operator calculus" .Journal of Mathematical Analysis and Applications .42 (3):684– 760.doi :10.1016/0022-247X(73)90172-8 .ISSN 0022-247X . Abramowitz, Milton ;Stegun, Irene Ann , eds. (1983) [June 1964]."Chapter 22" .Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773.ISBN 978-0-486-61272-0 .LCCN 64-60036 .MR 0167642 .LCCN 65-12253 .Szegő, Gábor (1975).Orthogonal Polynomials . American Mathematical Society Colloquium Publications. Vol. 23 (4th ed.). Providence, RI: American Mathematical Society.Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010),"Orthogonal Polynomials" , inOlver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),NIST Handbook of Mathematical Functions , Cambridge University Press,ISBN 978-0-521-19225-5 ,MR 2723248 .Spain, B.; Smith, M.G. (1970). "10. Laguerre polynomials".Functions of mathematical physics . London: Van Nostrand Reinhold Company. "Laguerre polynomials" ,Encyclopedia of Mathematics ,EMS Press , 2001 [1994]George Arfken and Hans Weber (2000).Mathematical Methods for Physicists . Academic Press.ISBN 978-0-12-059825-0 .
International National Other