Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Kaolinite

From Wikipedia, the free encyclopedia
(Redirected fromKaolin clay)
Phyllosilicate clay mineral
"Kaolin" redirects here. For other uses, seeKaolin (disambiguation).
See also:Aluminium silicate

Kaolinite
General
CategoryPhyllosilicateminerals, kaolinite-serpentinegroup, kaolinite subgroup
FormulaAl2Si2O5(OH)4, or in oxide notation:Al2O3·2SiO2·2H2O
IMA symbolKln[1]
Strunz classification9.ED.05
Crystal systemTriclinic
Crystal classPedial (1)
(sameH-M symbol)
Space groupP1
Unit cella = 5.13 Å, b = 8.89 Å
c = 7.25 Å; α = 90°
β = 104.5°, γ = 89.8°; Z = 2
Identification
ColorWhite to cream, sometimes red, blue or brown tints from impurities and pale-yellow; also often stained various hues, tans and browns being common.
Crystal habitRarely as crystals, thin plates or stacked. More commonly as microscopic pseudohexagonal plates and clusters of plates, aggregated into compact, claylike masses.
CleavagePerfect on {001}
TenacityFlexible but inelastic
Mohs scale hardness2–2.5
LusterPearly to dull earthy
StreakWhite
Specific gravity2.16–2.68
Optical propertiesBiaxial (–)
Refractive indexnα = 1.553–1.565,
nβ = 1.559–1.569,
nγ = 1.569–1.570
2V angleMeasured: 24° to 50°, Calculated: 44°
References[2][3][4]

Kaolinite (/ˈk.ələˌnt,-lɪ-/KAY-ə-lə-nyte, -⁠lih-; also calledkaolin)[5][6][7] is aclay mineral, with the chemical compositionAl2Si2O5(OH)4. It is a layeredsilicate mineral, with one "tetrahedral" sheet ofsilicatetetrahedrons (SiO4) linked to one "octahedral" sheet ofaluminateoctahedrons (AlO2(OH)4) throughoxygenatoms on one side, and another such sheet throughhydrogen bonds on the other side.[8][9]

Kaolinite is a soft, earthy, usually white, mineral (dioctahedral phyllosilicateclay), produced by the chemical weathering ofaluminium silicate minerals likefeldspar. It has a lowshrink–swell capacity and a lowcation-exchange capacity (1–15 meq/100 g).

Rocks that are rich in kaolinite, andhalloysite, are known askaolin (/ˈk.əlɪn/) orchina clay.[10] In many parts of the world kaolin is colored pink-orange-red byiron oxide, giving it a distinctrust hue. Lower concentrations of iron oxide yield the white, yellow, or light orange colors of kaolin. Alternating lighter and darker layers are sometimes found, as atProvidence Canyon State Park in Georgia, United States.

Kaolin is an importantraw material in many industries and applications. Commercial grades of kaolin are supplied and transported as powder, lumps, semi-dried noodle orslurry. Global production of kaolin in 2021 was estimated to be 45 million tonnes,[11] with a total market value of US $4.24 billion.[12]

Names

[edit]

TheEnglish namekaolin wasborrowed in 1727 fromFrançois Xavier d'Entrecolles's 1712French reports on the manufacture ofJingdezhen porcelain.[13] D'Entrecolles was transcribing theChinese term高嶺土, nowromanized asgāolǐngtǔ inpinyin, taken from the name of the village of Gaoling ("High Ridge") near Ehu inFuliang County, now part ofJiangxi Province'sJingdezhen Prefecture.[14][15] The area around the village had become the main source of Jingdezhen's kaolin over the course of theQing dynasty.[15] Themineralogical suffix-ite was later added to generalize the name to cover nearly identical minerals from other locations.

Kaolinite is also occasionally discussed under thearchaic nameslithomarge and lithomarga fromLatinlithomarga, a combination oflitho- (Ancient Greek:λίθοςlíthos, "stone") andmarga ("marl"). In more proper modern use, lithomarge now refers specifically to a compacted and massive form of kaolin.[16]

Chemistry

[edit]

Notation

[edit]

Thechemical formula for kaolinite as written inmineralogy isAl2Si2O5(OH)4,[4] however, inceramics applications the same formula is typically written in terms of oxides, thus givingAl2O3·2SiO2·2H2O.[17]

Structure

[edit]
Kaolinite structure, showing the interlayer hydrogen bonds

Compared with other clay minerals, kaolinite is chemically and structurally simple. It is described as a 1:1 orTO clay mineral because its crystals consist of stackedTO layers. EachTO layer consists of a tetrahedral (T) sheet composed of silicon and oxygen ions bonded to an octahedral (O) sheet composed of oxygen, aluminium, and hydroxyl ions. TheT sheet is so called because each silicon ion is surrounded by four oxygen ions forming a tetrahedron. TheO sheet is so called because each aluminium ion is surrounded by six oxygen or hydroxyl ions arranged at the corners of an octahedron. The two sheets in each layer are strongly bonded together via shared oxygen ions, while layers are bonded viahydrogen bonding between oxygen on the outer face of theT sheet of one layer and hydroxyl on the outer face of theO sheet of the next layer.[18]

  • View of the structure of the tetrahedral (T) sheet of kaolinite
    View of the structure of the tetrahedral (T) sheet of kaolinite
  • View of the structure of the octahedral (O) sheet of kaolinite
    View of the structure of the octahedral (O) sheet of kaolinite
  • Kaolinite crystal structure looking along the layers
    Kaolinite crystal structure looking along the layers

A kaolinite layer has no net electrical charge and so there are no large cations (such as calcium, sodium, or potassium) between layers as with most other clay minerals. This accounts for kaolinite's relatively low ion exchange capacity. The close hydrogen bonding between layers also hinders water molecules from infiltrating between layers, accounting for kaolinite's nonswelling character.[18]

When moistened, the tiny platelike crystals of kaolinite acquire a layer of water molecules that cause crystals to adhere to each other and give kaolin clay its cohesiveness. The bonds are weak enough to allow the plates to slip past each other when the clay is being molded, but strong enough to hold the plates in place and allow the molded clay to retain its shape. When the clay is dried, most of the water molecules are removed, and the plates hydrogen bond directly to each other, so that the dried clay is rigid but still fragile. If the clay is moistened again, it will once more become plastic.[19]

Structural transformations

[edit]

Kaolinite group clays undergo a series of phase transformations upon thermal treatment in air at atmospheric pressure.

Milling

[edit]

High-energy milling of kaolin results in the formation of a mechanochemically amorphized phase similar tometakaolin, although the properties of this solid are quite different.[20] The high-energy milling process is highly inefficient and consumes a large amount of energy.[21]

Drying

[edit]
See also:Buell dryer

Below 100 °C, exposure to low humidity air will result in the slow evaporation of any liquid water in the kaolin. At low moisture content the mass can be describedleather dry, and at near 0% moisture it is referred to asbone dry.

Above 100 °C any remaining free water is lost. Above around 400 °C hydroxyl ions (OH) are lost from the kaolinite crystal structure in the form of water: the material cannot now be plasticised by absorbing water.[22] This is irreversible, as are subsequent transformations; this is referred to ascalcination.

Metakaolin

[edit]

Endothermic dehydration of kaolinite begins at 550–600 °C producing disorderedmetakaolin, but continuoushydroxyl loss is observed up to 900 °C (1,650 °F).[23] Although historically there was much disagreement concerning the nature of the metakaolin phase, extensive research has led to a general consensus that metakaolin is not a simple mixture of amorphous silica (SiO2) and alumina (Al2O3), but rather a complex amorphous structure that retains some longer-range order (but notstrictly crystalline) due to stacking of its hexagonal layers.[23]

Al2Si2O5(OH)4 → Al2Si2O7 + 2 H2O

Spinel

[edit]

Further heating to 925–950 °C converts metakaolin to an aluminium-siliconspinel which is sometimes also referred to as a gamma-alumina type structure:

2 Al2Si2O7 → Si3Al4O12 + SiO2

Platelet mullite

[edit]

Upon calcination above 1050 °C, the spinel phase nucleates and transforms toplatelet mullite and highly crystallinecristobalite:

3 Si3Al4O12 → 2 (3 Al2O3 . 2 SiO2) + 5 SiO2

Needle mullite

[edit]

Finally, at 1400 °C the "needle" form ofmullite appears, offering substantial increases in structural strength and heat resistance. This is a structural but not chemical transformation. Seestoneware for more information on this form.

Occurrence

[edit]
Kaolin mine in Czech Republic

Kaolinite is one of the most common minerals; it is mined, as kaolin, inAustralia,Brazil,Bulgaria,China,Czech Republic,France,Germany,India,Iran,Malaysia,South Africa,South Korea,Spain,Tanzania,Thailand,United Kingdom,United States andVietnam.[2]

Mantles of kaolinite are common in Western and Northern Europe. The ages of these mantles areMesozoic to Early Cenozoic.[24]

Kaolinite clay occurs in abundance insoils that have formed from the chemicalweathering of rocks in hot, moistclimates; for example intropical rainforest areas. Comparing soils along a gradient towards progressively cooler or drier climates, the proportion of kaolinite decreases, while the proportion of other clay minerals such asillite (in cooler climates) orsmectite (in drier climates) increases. Such climatically related differences in clay mineral content are often used to infer changes in climates in the geological past, where ancient soils have been buried and preserved.[25]

A kaolin processing plant

In theNational Institute of Agronomic Studies and Research (INERA) classification system, soils in which the clay fraction is predominantly kaolinite are calledkaolisol (from kaolin and soil).[26]

In the United States, the main kaolin deposits are found in centralGeorgia, on a stretch of theAtlantic Seaboard fall line betweenAugusta andMacon. This area of thirteen counties is called the "white gold" belt;Sandersville is known as the "Kaolin Capital of the World" due to its abundance of kaolin.[27][28][29] In the late 1800s, an active kaolin surface-mining industry existed in the extreme southeast corner of Pennsylvania, near the towns ofLandenberg andKaolin, and in what is present-day White Clay Creek Preserve. The product was brought by train toNewark, Delaware, on theNewark-Pomeroy line, along which can still be seen many open-pit clay mines. The deposits were formed between the lateCretaceous and earlyPaleogene, about 100 to 45 million years ago, in sediments derived from weatheredigneous and metakaolin rocks.[14] Kaolin production in the United States during 2011 was 5.5 million tons.[30]

ABuell dryer in the UK, which is used to dry processed kaolin

During thePaleocene–Eocene Thermal Maximum sediments deposited in theEspluga Freda area ofSpain were enriched with kaolinite from adetrital source due todenudation.[31]

Synthesis and genesis

[edit]

Difficulties are encountered when trying to explain kaolinite formation under atmospheric conditions by extrapolation of thermodynamic data from the more successful high-temperature syntheses.[32] La Iglesia and Van Oosterwijk-Gastuche (1978)[33] thought that the conditions under which kaolinite will nucleate can be deduced from stability diagrams, based as they are on dissolution data. Because of a lack of convincing results in their own experiments, La Iglesia and Van Oosterwijk-Gastuche (1978) had to conclude, however, that there were other, still unknown, factors involved in the low-temperature nucleation of kaolinite. Because of the observed very slow crystallization rates of kaolinite from solution at room temperature Fripiat and Herbillon (1971) postulated the existence of high activation energies in the low-temperature nucleation of kaolinite.

At high temperatures,equilibrium thermodynamic models appear to be satisfactory for the description of kaolinite dissolution andnucleation, because the thermal energy suffices to overcome theenergy barriers involved in thenucleation process. The importance of syntheses at ambient temperature and atmospheric pressure towards the understanding of the mechanism involved in the nucleation of clay minerals lies in overcoming these energy barriers. As indicated by Caillère and Hénin (1960)[34] the processes involved will have to be studied in well-defined experiments, because it is virtually impossible to isolate the factors involved by mere deduction from complex natural physico-chemical systems such as thesoil environment.Fripiat and Herbillon (1971),[35] in a review on the formation of kaolinite, raised the fundamental question how adisordered material (i.e., theamorphous fraction of tropical soils) could ever be transformed into a corresponding ordered structure. This transformation seems to take place in soils without major changes in the environment, in a relatively short period of time, and at ambienttemperature (andpressure).

Low-temperature synthesis of clay minerals (with kaolinite as an example) has several aspects. In the first place the silicic acid to be supplied to the growing crystal must be in a monomeric form, i.e., silica should be present in very dilute solution (Caillère et al., 1957;[36] Caillère and Hénin, 1960;[34] Wey and Siffert, 1962;[37] Millot, 1970[38]). In order to prevent the formation ofamorphoussilicagels precipitating from supersaturated solutions without reacting with thealuminium ormagnesiumcations to form crystallinesilicates, thesilicic acid must be present in concentrations below the maximum solubility of amorphous silica. The principle behind this prerequisite can be found in structural chemistry: "Since the polysilicate ions are not of uniform size, they cannot arrange themselves along with the metal ions into a regular crystal lattice." (Iler, 1955, p. 182[39])

The second aspect of the low-temperature synthesis of kaolinite is that thealuminium cations must be hexacoordinated with respect tooxygen (Caillère and Hénin, 1947;[40] Caillère et al., 1953;[41] Hénin and Robichet, 1955[42]). Gastuche et al. (1962)[43] and Caillère and Hénin (1962) have concluded that kaolinite can only ever be formed when the aluminium hydroxide is in the form ofgibbsite. Otherwise, the precipitate formed will be a "mixed alumino-silicic gel" (as Millot, 1970, p. 343 put it). If it were the only requirement, large amounts of kaolinite could be harvested simply by adding gibbsite powder to a silica solution. Undoubtedly a marked degree of adsorption of the silica in solution by the gibbsite surfaces will take place, but, as stated before, mere adsorption does not create the layer lattice typical of kaolinite crystals.

The third aspect is that these two initial components must be incorporated into one mixed crystal with a layer structure. From the following equation (as given by Gastuche and DeKimpe, 1962)[44] for kaolinite formation

2Al(OH)3 + 2H4SiO4 → Si2O5•Al2(OH)4 + 5H2O

it can be seen that five molecules of water must be removed from the reaction for everymolecule of kaolinite formed. Field evidence illustrating the importance of the removal of water from the kaolinite reaction has been supplied by Gastuche and DeKimpe (1962). While studyingsoil formation on abasaltic rock inKivu (Zaïre), they noted how the occurrence of kaolinite depended on the"degrée de drainage" of the area involved. A clear distinction was found between areas with gooddrainage (i.e., areas with a marked difference between wet and dry seasons) and those areas with poordrainage (i.e.,perenniallyswampy areas). Kaolinite was only found in the areas with distinct seasonal alternations between wet and dry. The possible significance of alternating wet and dry conditions on the transition ofallophane into kaolinite has been stressed by Tamura and Jackson (1953).[45] The role of alternations between wetting and drying on the formation of kaolinite has also been noted by Moore (1964).[46]

Laboratory syntheses

[edit]

Syntheses of kaolinite at high temperatures (more than 100 °C [212 °F]) are relatively well known. There are for example the syntheses of Van Nieuwenberg and Pieters (1929);[47] Noll (1934);[48] Noll (1936);[49] Norton (1939);[50] Roy and Osborn (1954);[51] Roy (1961);[52] Hawkins and Roy (1962);[53] Tomura et al. (1985);[54] Satokawa et al. (1994)[55] and Huertas et al. (1999).[56]Relatively few low-temperature syntheses have become known (cf. Brindley and DeKimpe (1961);[57] DeKimpe (1969);[58] Bogatyrev et al. (1997)[59]).

Laboratory syntheses of kaolinite at room temperature and atmospheric pressure have been described by DeKimpe et al. (1961).[60] From those tests the role of periodicity becomes convincingly clear. DeKimpe et al. (1961) had used daily additions ofalumina (asAlCl3·6 H2O) andsilica (in the form ofethyl silicate) during at least two months. In addition, adjustments of the pH took place every day by way of adding eitherhydrochloric acid orsodium hydroxide. Such daily additions of Si and Al to the solution in combination with the daily titrations withhydrochloric acid orsodium hydroxide during at least 60 days will have introduced the necessary element of periodicity. Only now the actual role of what has been described as the "aging" (Alterung) of amorphous alumino-silicates (as for example Harder, 1978[61] had noted) can be fully understood. As such, time is not bringing about any change in a closed system at equilibrium; but a series of alternations of periodically changing conditions (by definition, taking place in an open system) will bring about the low-temperature formation of more and more of the stable phase kaolinite instead of (ill-defined) amorphous alumino-silicates.

Applications

[edit]

Main

[edit]

In 2009, up to 70% of kaolin was used in the production ofpaper. Following reduced demand from the paper industry, resulting from both competing minerals and the effect of digital media, in 2016 the market share was reported to be: paper, 36%; ceramics, 31%; paint, 7% and other, 26%.[62][63] According to theUSGS, in 2021 the global production of kaolin was estimated to be around 45 million tonnes.[64]

  • Paper applications require high-brightness, low abrasion and delaminated kaolins. For paper coatings it is used to enhance the gloss, brilliance, smoothness and receptability to inks; it can account for 25% of mass of the paper. As a paper filler it is used as a pulp extender, and to increase opacity; it can account for 15% of mass.[65][66][67]
  • In whitewareceramic bodies, kaolin can constitute up to 50% of the raw materials. In unfired bodies it contributes to the green strength, plasticity and rheological properties, such as the casting rate. During firing it reacts with other body components to form the crystal and glass phases. With suitable firing schedules it is key to the formation ofmullite. The most valued grades have low contents of chromophoric oxides such that the fired material has high whiteness.[68][66][69][70] In glazes it is primarily used as a rheology control agent, but also contributes some green strength. In both glazes and frits it contributes some SiO2 as a glass network former, and Al2O3 as both a network former and modifier.[71]

Other industrial

[edit]

Medical

[edit]

Cosmetics

[edit]
  • As a filler incosmetics.
  • For facial masks or soap.
  • for spa body treatments, such as body wraps, cocoons, or spot treatments.

Archaeology

[edit]

Geophagy

[edit]
  • Humans sometimes eat kaolin for pleasure or to suppress hunger,[77] a practice known asgeophagy. In Africa, kaolin used for such purposes is known askalaba (inGabon[78] andCameroon[77]),calaba, andcalabachop (inEquatorial Guinea). Consumption is greater among women, especially during pregnancy,[79] and its use is sometimes said by women of the region to be a habit analogous to cigarette smoking among men. The practice has also been observed within a small population of African-American women in theSouthern United States, especiallyGeorgia, likely brought with the traditions of the aforementioned Africans viaslavery.[80][81] There, the kaolin is calledwhite dirt,chalk orwhite clay.[80]

Geotechnical engineering

[edit]
  • Research results show that the utilization of kaolinite ingeotechnical engineering can be alternatively replaced by safer illite, especially if its presence is less than 10.8% of the total rock mass.[82]

Small-scale uses

[edit]

Production output

[edit]

Global production of kaolin by country in 2012 was estimated to be:[84]

'000 tonnes
Global - total26,651
Egypt275
Nigeria100
Algeria80
Tanzania45
Sudan35
Uganda30
South Africa15
Ethiopia2
Kenya1
Africa - total583
China3,950
South Korea800
Vietnam650
Malaysia450
Thailand180
Indonesia'175
India75
Bangladesh20
Taiwan17
Pakistan15
Sri Lanka11
Japan3
Philippines2
Asia - total6,348
Germany4,800
UK1,000
Czech Republic650
Italy625
France350
Portugal325
Spain300
Bosnia–Herzegovina250
Bulgaria225
Russia170
Poland125
Ukraine100
Serbia90
Austria65
Denmark3
Europe - total9,078
USA5,900
Mexico120
N. America - total6,020
Iran1,500
Turkey725
Jordan100
Saudi Arabia70
Iraq3
Middle East - total2,398
Australia40
New Zealand11
Oceania - total51
Brazil1,900
Argentina80
Paraguay66
Chile60
Colombia20
Peru20
Ecuador15
Venezuela10
Guatemala2
S. & C. America - total2,173

Typical properties

[edit]

Some selected typical properties of various ceramic grade kaolins are:[62]

Product nameSSPPremiumLongyan 325#Zettlitz 1AOKA
CountryUKNew ZealandChinaCzech RepublicGermany
ManufacturerImerysImerysLogyanSedleckyAKW
% < 2 μm8597255682
% <1 μm5088154150
SiO2, %48.049.549.348.049.5
Al2O3, %37.035.535.537.035.5
Fe2O3, %0.440.290.220.680.43
TiO2, %0.010.090.010.200.17
CaO, %0.10-0.030.080.20
MgO, %0.25-0.250.230.02
K2O, %1.25-1.900.920.30
Na2O, %0.15-0.090.070.01
LOI%12.813.811.912.913.4
Kaolinite, %95-408986
Halloysite, %-9240--
Mica, %4----
Quartz, %14318
Smectite, %---16
Cristobalite, %-4---

Safety

[edit]
NFPA 704
safety square
Kaolin

Kaolin isgenerally recognized as safe, but may cause mild irritation of the skin or mucous membranes. Kaolin products may also contain traces ofcrystalline silica, a knowncarcinogen if inhaled.[85]

In the US, theOccupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for kaolin exposure in the workplace as 15 mg/m3 total exposure and 5 mg/m3 respiratory exposure over an 8-hour workday. TheNational Institute for Occupational Safety and Health (NIOSH) has set arecommended exposure limit (REL) of 10 mg/m3 total exposure TWA 5 mg/m3 respiratory exposure over an 8-hour workday.[86]

See also

[edit]

References

[edit]

Citations

[edit]
  1. ^Warr, L.N. (2021)."IMA–CNMNC approved mineral symbols".Mineralogical Magazine.85 (3):291–320.Bibcode:2021MinM...85..291W.doi:10.1180/mgm.2021.43.S2CID 235729616.
  2. ^ab"Kaolinite".Mindat.org. Retrieved5 August 2009.
  3. ^Kaolinite Mineral Data, WebMineral.com, retrieved5 August 2009
  4. ^abAnthony JW, Bideaux RA, Bladh KW, et al., eds. (1995)."Kaolinite"(PDF).Handbook of Mineralogy: Silica, silicates. Tucson, Ariz.: Mineral Data Publishing.ISBN 9780962209734.OCLC 928816381.
  5. ^"kaolinite".Dictionary.com Unabridged (Online). n.d.
  6. ^"kaolinite".Lexico UK English Dictionary.Oxford University Press. Archived fromthe original on 25 January 2021.
  7. ^"kaolinite".The American Heritage Dictionary of the English Language (5th ed.). HarperCollins.
  8. ^Deer, Howie & Zussman (1992).
  9. ^Clay Minerals - Thompson Rivers University
  10. ^Pohl WL (2011).Economic geology: principles and practice: metals, minerals, coal and hydrocarbons – introduction to formation and sustainable exploitation of mineral deposits. Chichester, West Sussex: Wiley-Blackwell. p. 331.ISBN 9781444336627.
  11. ^'U.S. Geological Survey, Mineral Commodity Summaries, January 2022' USGS, 2022.
  12. ^'Kaolin Market Size, Share & Trends Analysis Report By Application, By Region And Segment Forecasts, 2022 - 2030. Grand View Research, 2022
  13. ^Harper, Douglas."kaolin".Online Etymology Dictionary.
  14. ^abSchroeder PA (31 July 2018)."Kaolin".New Georgia Encyclopedia (online). Retrieved14 March 2019.
  15. ^abNeedham & al. (2004), p. 220.
  16. ^"Lithomarge".www.mindat.org. Retrieved23 February 2022.
  17. ^Perry DL (2011).Handbook of Inorganic Compounds (2nd ed.). Boca Raton: Taylor & Francis.ISBN 9781439814611.OCLC 587104373.
  18. ^abNesse, William D. (2000).Introduction to mineralogy. New York: Oxford University Press. pp. 254–255.ISBN 9780195106916.
  19. ^Breuer, Stephen (July 2012)."The chemistry of pottery"(PDF).Education in Chemistry:17–20. Retrieved8 December 2020.
  20. ^Kasa E, Szabados M, Baan K, Konya Z, Kukovecz A, Kutus B, Palinko I, Sipos P (2021)."The dissolution kinetics of raw and mechanochemically treated kaolinites in industrial spent liquor – The effect of the physico-chemical properties of the solids".Appl. Clay Sci.203 105994.Bibcode:2021ApCS..20305994K.doi:10.1016/j.clay.2021.105994.hdl:21.11116/0000-0008-06AA-2.
  21. ^Baláž, Peter (2008). "High-Energy Milling".Mechanochemistry in Nanoscience and Minerals Engineering. pp. 103–132.doi:10.1007/978-3-540-74855-7_2.ISBN 978-3-540-74854-0.
  22. ^'Ceramics Are More Than Clay Alone - Raw Materials, Products, Applications' P. Bormans. Cambridge International Science Publishing, 2004. pg. 180
  23. ^abBellotto M, Gualtieri A, Artioli G, et al. (1995). "Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation".Phys. Chem. Miner.22 (4):207–214.Bibcode:1995PCM....22..207B.doi:10.1007/BF00202253.hdl:11380/10091.S2CID 95897543.
  24. ^Migoń P,Lidmar-Bergström K (2002). "Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record".Catena.49 (1–2):25–40.Bibcode:2002Caten..49...25M.doi:10.1016/S0341-8162(02)00015-2.
  25. ^Girard, Jean-Pierre; Freyssinet, Philippe; Chazot, Gilles (1 February 2000)."Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: an integrated study from Yaou, French Guiana".Geochimica et Cosmochimica Acta.64 (3):409–426.Bibcode:2000GeCoA..64..409G.doi:10.1016/S0016-7037(99)00299-9.ISSN 0016-7037.
  26. ^Young A (1980).Tropical soils and soil survey. Cambridge Geographical Studies. Vol. 9. CUP Archive. p. 132.ISBN 9780521297684.
  27. ^"Kaolin Capital of the World".City of Sandersville, GA. Retrieved27 August 2018.
  28. ^Reece C."Making Peace With the Age-Old Practice of Eating White Dirt".The Bitter Southerner. Retrieved27 August 2018.
  29. ^Smothers, Ronald (12 December 1987)."White George clay turns into cash".The New York Times. Retrieved19 January 2021.
  30. ^Virta R (2012).Mineral Commodity Summaries(PDF) (Technical report). U.S. Geological Survey. pp. 44–45.
  31. ^Adatte T, Khozyem H, Spangenberg JE, et al. (2014)."Response of terrestrial environment to the Paleocene-Eocene Thermal Maximum (PETM), new insights from India and NE Spain".Rendiconti Online della Società Geologica Italiana.31:5–6.Bibcode:2014ROSGI..31....5A.doi:10.3301/ROL.2014.17.
  32. ^Meijer EL, van der Plas L (1980).Relative stabilities of soil minerals. Mededelingen Landbouwhogeschool Wageningen. Vol. 80. Wageningen: Veenman. p. 18.
  33. ^La Iglesia A, Van Oosterwyck-Gastuche MC (1978)."Kaolinite Synthesis. I. Crystallization Conditions at Low Temperatures and Calculation of Thermodynamic Equilibria. Application to Laboratory and Field Observations".Clays and Clay Minerals.26 (6):397–408.Bibcode:1978CCM....26..397L.doi:10.1346/CCMN.1978.0260603.
  34. ^abCaillère S, Hénin S (1960). "Vues d'ensemble sur le problème de la synthèse des minéraux argileux à basse température".Bulletin du Groupe français des argiles (in French).12 (7): 63.doi:10.3406/argil.1960.969.
  35. ^Fripiat JJ, Herbillon AJ (1971). "Formation and transformations of clay minerals in tropical soils".Soils and tropical weathering: proceedings of the Bandung Symposium 16 to 23 November 1969. Natural resources research. Vol. 11. Paris:Unesco. pp. 15–24.OCLC 421565.
  36. ^Caillère S, Hénin S, Esquevin J (1957). "Synthèse des minéraux argileux".Bulletin du Groupe français des argiles (in French).9 (4):67–76.doi:10.3406/argil.1957.940.
  37. ^Wey R, Siffert B (1961). "Réactions de la silice monomoléculaire en solutions avec les ions Al3+ et Mg2+".Colloques Internationaux (in French).105. Centre National des Recherches Scientifiques:11–23.
  38. ^Millot G (1970).Geology of Clays. Translated by Paquet H, Farrand WR. New York: Springer-Verlag.doi:10.1007/978-3-662-41609-9.ISBN 9783662416099.S2CID 128831318.
  39. ^Iler RK (1955).The colloid chemistry of silica and silicates. Ithaca, N.Y.: Cornell University Press.
  40. ^Caillère S, Hénin S (1947). "Formation d'une phyllite du type kaolinique par traitement d'une montmorillonite".Comptes Rendus de l'Académie des Sciences de Paris.224 (1):53–55.
  41. ^Caillère S, Hénin S, Esquevin J (1953). "Recherches sur la synthèse des minéraux argileux".Bulletin de la Société française de Minéralogie et de Cristallographie (in French).76 (7):300–314.doi:10.3406/bulmi.1953.4841.
  42. ^Hénin S, Robichet O (1955). "Résultats obtenus au cours de nouveaux essais de synthèse de minéraux argileux".Bulletin du Groupe français des argiles (in French).6 (1):19–22.doi:10.3406/argil.1955.1257.
  43. ^Gastuche MC, Fripiat JJ, DeKimpe C (1962). "La genèse des minéraux argileux de la famille du kaolin. I. – Aspect colloidal".Colloque C.N.R.S.105:57–65.
  44. ^Gastuche MC, DeKimpe C (1962). "La genèse des minéraux argileux de la famille du kaolin. II. Aspect cristallin".Colloque C.N.R.S.105:75–88.
  45. ^Tamura T, Jackson ML (1953). "Structural and Energy Relationships in the Formation of Iron and Aluminum Oxides, Hydroxides, and Silicates".Science.117 (3041):381–383.Bibcode:1953Sci...117..381T.doi:10.1126/science.117.3041.381.PMID 17749950.
  46. ^Moore LR (1964)."The in Situ Formation and Development of Some Kaolinite Macrocrystals".Clay Minerals.5 (31):338–352.Bibcode:1964ClMin...5..338M.doi:10.1180/claymin.1964.005.31.02 (inactive 1 July 2025).{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  47. ^van Nieuwenburg CJ, Pieters HA (1929). "Studies on hydrated aluminium silicates: I. The rehydration of metakaolin and the synthesis of kaolin".Recl. Trav. Chim. Pays-Bas.48 (1):27–36.doi:10.1002/recl.19290480106.
  48. ^Noll W (1934). "Hydrothermale Synthese des Kaolins".Zeitschrift für Kristallographie, Mineralogie und Petrographie (in German).45 (2–3):175–190.Bibcode:1934ZKMP...45..175N.doi:10.1007/BF02943371.S2CID 96869398.
  49. ^Noll W (1936). "Über die Bildungsbedingungen von Kaolin, Montmorillonit, Sericit, Pyrophyllit und Analcim".Zeitschrift für Kristallographie, Mineralogie und Petrographie (in German).48 (3–4):210–247.Bibcode:1936ZKMP...48..210N.doi:10.1007/BF02939458.S2CID 128744123.
  50. ^Norton FH (1939)."Hydrothermal formation of clay minerals in the laboratory".Am. Mineral.24 (1):1–17.
  51. ^Roy R, Osborn EF (1954)."The system Al2O3-SiO2-H2O".Am. Mineral.39 (11–12):853–885.
  52. ^Roy R (1962). "The preparation and properties of synthetic clay minerals".Colloque C.N.R.S.105:83–98.
  53. ^Hawkins DB, Roy R (1962). "Electrolytic Synthesis of Kaolinite Under Hydrothermal Conditions".J. Am. Ceram. Soc.45 (10):507–508.doi:10.1111/j.1151-2916.1962.tb11044.x.
  54. ^Tomura S, Shibasaki Y, Mizuta H, et al. (1985)."Growth Conditions and Genesis of Spherical and Platy Kaolinite".Clays and Clay Minerals.33 (3):200–206.Bibcode:1985CCM....33..200T.doi:10.1346/CCMN.1985.0330305.
  55. ^Satokawa S, Osaki Y, Samejima S, et al. (1994)."Effects of the Structure of Silica-Alumina Gel on the Hydrothermal Synthesis of Kaolinite".Clays and Clay Minerals.42 (3):288–297.Bibcode:1994CCM....42..288S.doi:10.1346/CCMN.1994.0420307.
  56. ^Huertas FJ, Fiore S, Huertas F, et al. (1999). "Experimental study of the hydrothermal formation of kaolinite".Chemical Geology.156 (1–4):171–190.Bibcode:1999ChGeo.156..171H.doi:10.1016/S0009-2541(98)00180-6.
  57. ^Brindley GW, De Kimpe C (1961)."Attempted Low-Temperature Syntheses of Kaolin Minerals".Nature.190 (4772): 254.Bibcode:1961Natur.190..254B.doi:10.1038/190254a0.S2CID 4149442.
  58. ^De Kimpe CR (1969)."Crystallization of kaolinite at low temperature from an alumino-silicic gel".Clays and Clay Minerals.17 (1):37–38.Bibcode:1969CCM....17...37D.doi:10.1346/CCMN.1969.0170107.
  59. ^Bogatyrev BA, Mateeva LA, Zhukov VV, et al. (1997). "Low-temperature synthesis of kaolinite and halloysite on the gibbsite – silicic acid solution system".Transactions (Doklady) of the Russian Academy of Sciences. Earth science sections. 353 A:403–405.
  60. ^DeKimpe CR, Gastuche MC, Brindley GW (1961)."Ionic coordination in alumino-silicic acids in relation to clay mineral formation"(PDF).Am. Mineral.46 (11–12):1370–1381.
  61. ^Harder H (1978). "Synthesen von Tonmineralen unter spezieller Berücksichtigung festländischer Bedingungen".Schriftenreihe für geologische Wissenschaften (Berlin) (in German).11:51–78.
  62. ^ab'Positive Outlook For Kaolin In Ceramics' F. Hart, I. Wilson. Industrial Minerals, April 2019. Pg.28
  63. ^King, R.J. (March 2009). "Kaolinite".Geology Today.25 (2):75–78.Bibcode:2009GeolT..25...75K.doi:10.1111/j.1365-2451.2009.00711.x.S2CID 242917623.
  64. ^U.S. Geological Survey, Mineral Commodity Summaries, January 2022
  65. ^’Industrial Minerals And Their Uses - A Handbook And Formulary. P. A. Ciullo. William Andrew, 1996. Pg. 43
  66. ^ab'Kaolin - Global Markets And Industry Outlook' 13th edition. Roskill Information Services, 2013. Pg. 332
  67. ^Murray HH, Lyons SC (1955)."Correlation of Paper-Coating Quality with Degree of Crystal Perfection of Kaolinite".Clays and Clay Minerals.4 (1):31–40.Bibcode:1955CCM.....4...31M.doi:10.1346/CCMN.1955.0040105.
  68. ^’Industrial Minerals And Their Uses - A Handbook And Formular’ P. A. Ciullo. William Andrew, 1996. Pg. 43
  69. ^’Dictionary Of Ceramic Science And Engineering' L. S. O’Bannon. Plenum Press / Springer. 1984. Pg.146
  70. ^’Dictionary Of Ceramic Science And Engineering’ 3rd edition. I. MCcolm. Springer, 2013
  71. ^'Ceramics Glaze Technology.' J.R.Taylor & A.C.Bull. The Institute Of Ceramics/Pergamon Press986
  72. ^Ciullo PA (1996).Industrial Minerals and Their Uses: A Handbook and Formulary. Westwood, NJ: Noyes Publications. pp. 41–43.ISBN 9780815518082.
  73. ^Leiviskä T, Gehör S, Eijärvi E, et al. (2012)."Characteristics and potential applications of coarse clay fractions from Puolanka, Finland".Open Eng.2 (2):239–247.Bibcode:2012CEJE....2..239L.doi:10.2478/s13531-011-0067-9.
  74. ^Diamond JM (1999)."Dirty eating for healthy living".Nature. Evolutionary biology.400 (6740):120–121.Bibcode:1999Natur.400..120D.doi:10.1038/22014.PMID 10408435.
  75. ^"Stokoderm Protect PURE"(PDF).debgroup.com (product leaflet). Deb USA, Inc. 2017. Retrieved12 April 2018.
  76. ^Rowe A (24 April 2008)."Nanoparticles Help Gauze Stop Gushing Wounds".Wired. Condé Nast.Archived from the original on 6 July 2009. Retrieved5 August 2009.
  77. ^abKamtche F (2012)."Balengou: autour des mines" [Balengou: around the mines].Le Jour (in French). Archived fromthe original on 4 March 2012. Retrieved22 March 2019.
  78. ^Karine Boucher, Suzanne Lafage."Le lexique français du Gabon: K."Le Français en Afrique: Revue du Réseau des Observatoires du Français Contemporain en Afrique. 2000.
  79. ^Gerald N. Callahan."Eating Dirt."Emerging Infectious Diseases. 9.8 (August 2003).
  80. ^abGrigsby RK (3 February 2004)."Clay Eating".New Georgia Encyclopedia (online). Science & Medicine. Retrieved20 October 2019.
  81. ^Chen L (2 April 2014)."The Old And Mysterious Practice of Eating Dirt, Revealed".The Salt. NPR.
  82. ^Supandi, Supandi; Zakaria, Zufialdi; Sukiyah, Emi; Sudradjat, Adjat (29 August 2019)."The Influence of Kaolinite - Illite toward mechanical properties of Claystone".Open Geosciences.11 (1):440–446.Bibcode:2019OGeo...11...35S.doi:10.1515/geo-2019-0035.
  83. ^Gracyk T (2006)."Edison Diamond Discs: 1912 - 1929".Tim Gracyk's Phonographs, Singers, & Old Records. Retrieved22 March 2019.
  84. ^'Kaolin - Global Markets And Industry Outlook' 13th edition. Roskill Information Services, 2013. Pgs. 28-30
  85. ^ab"Material Safety Data Sheet: Kaolin"(PDF).Connecticut College. Imerys Pigments and Additives Group. Retrieved11 November 2021.
  86. ^"Kaolin".NIOSH Pocket Guide to Chemical Hazards.CDC. Retrieved6 November 2015.

General references

[edit]

External links

[edit]
Micas
Talcs
Pyrophyllite series
Kaolinites
Serpentines
Corrensites
Smectites andvermiculite family
Chlorites
Allophanes
Sepiolites
Pyrosmalites
Stilpnomelanes
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Kaolinite&oldid=1308380046"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp