Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Johansen test

From Wikipedia, the free encyclopedia
Time series statistical test

Instatistics, theJohansen test,[1] named afterSøren Johansen, is a procedure for testingcointegration of several, sayk,I(1)time series.[2] This test permits more than one cointegrating relationship so is more generally applicable than theEngle-Granger test which is based on theDickey–Fuller (or theaugmented) test forunit roots in the residuals from a single (estimated) cointegrating relationship.[3]

Types

[edit]

There are two types of Johansen test, either withtrace or witheigenvalue, and the inferences might be a little bit different.[4] The null hypothesis for the trace test is that the number of cointegration vectors isr = r* < k, vs. the alternative thatr = k. Testing proceeds sequentially forr* = 1,2, etc. and the first non-rejection of the null is taken as an estimate of r. The null hypothesis for the "maximum eigenvalue" test is as for the trace test but the alternative isr = r* + 1 and, again, testing proceeds sequentially forr* = 1,2,etc., with the first non-rejection used as an estimator forr.

Just like aunit root test, there can be a constant term, a trend term, both, or neither in the model. For a generalVAR(p) model:

Xt=μ+ΦDt+ΠpXtp++Π1Xt1+et,t=1,,T{\displaystyle X_{t}=\mu +\Phi D_{t}+\Pi _{p}X_{t-p}+\cdots +\Pi _{1}X_{t-1}+e_{t},\quad t=1,\dots ,T}

There are two possible specifications for error correction: that is, two vectorerror correction models (VECM):

1. The longrun VECM:

ΔXt=μ+ΦDt+ΠXtp+Γp1ΔXtp+1++Γ1ΔXt1+εt,t=1,,T{\displaystyle \Delta X_{t}=\mu +\Phi D_{t}+\Pi X_{t-p}+\Gamma _{p-1}\Delta X_{t-p+1}+\cdots +\Gamma _{1}\Delta X_{t-1}+\varepsilon _{t},\quad t=1,\dots ,T}
where
Γi=Π1++ΠiI,i=1,,p1.{\displaystyle \Gamma _{i}=\Pi _{1}+\cdots +\Pi _{i}-I,\quad i=1,\dots ,p-1.\,}

2. The transitory VECM:

ΔXt=μ+ΦDt+ΠXt1j=1p1ΓjΔXtj+εt,t=1,,T{\displaystyle \Delta X_{t}=\mu +\Phi D_{t}+\Pi X_{t-1}-\sum _{j=1}^{p-1}\Gamma _{j}\Delta X_{t-j}+\varepsilon _{t},\quad t=1,\cdots ,T}
where
Γi=(Πi+1++Πp),i=1,,p1.{\displaystyle \Gamma _{i}=\left(\Pi _{i+1}+\cdots +\Pi _{p}\right),\quad i=1,\dots ,p-1.\,}

The two are the same. In both VECM,

Π=Π1++ΠpI.{\displaystyle \Pi =\Pi _{1}+\cdots +\Pi _{p}-I.\,}

Inferences are drawn on Π, and they will be the same, so is the explanatory power.[citation needed]

References

[edit]
  1. ^Johansen, Søren (1991). "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models".Econometrica.59 (6):1551–1580.doi:10.2307/2938278.JSTOR 2938278.
  2. ^For the presence of I(2) variables see Ch. 9 ofJohansen, Søren (1995).Likelihood-based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press.ISBN 978-0-19-877450-1.
  3. ^Davidson, James (2000).Econometric Theory. Wiley.ISBN 0-631-21584-0.
  4. ^Hänninen, R. (2012)."The Law of One Price in United Kingdom Soft Sawnwood Imports – A Cointegration Approach".Modern Time Series Analysis in Forest Products Markets. Springer. p. 66.ISBN 978-94-011-4772-9.

Further reading

[edit]
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis (see alsoTemplate:Least squares and regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Johansen_test&oldid=1270098512"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp