Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Jet bundle

From Wikipedia, the free encyclopedia
Construction in differential topology
"Jet space" redirects here; not to be confused withspace jet.
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(May 2025) (Learn how and when to remove this message)

Indifferential topology, thejet bundle is a certain construction that makes a newsmoothfiber bundle out of a given smooth fiber bundle. It makes it possible to writedifferential equations onsections of a fiber bundle in an invariant form.Jets may also be seen as the coordinate free versions ofTaylor expansions.

Historically, jet bundles are attributed toCharles Ehresmann, and were an advance on the method (prolongation) ofÉlie Cartan, of dealinggeometrically withhigher derivatives, by imposingdifferential form conditions on newly introduced formal variables. Jet bundles are sometimes calledsprays, althoughsprays usually refer more specifically to the associatedvector field induced on the corresponding bundle (e.g., thegeodesic spray onFinsler manifolds.)

Since the early 1980s, jet bundles have appeared as a concise way to describe phenomena associated with the derivatives of maps, particularly those associated with thecalculus of variations.[1] Consequently, the jet bundle is now recognized as the correct domain for ageometrical covariant field theory and much work is done ingeneral relativistic formulations of fields using this approach.

Jets

[edit]
Main article:Jet (mathematics)

SupposeM is anm-dimensionalmanifold and that (E, π,M) is afiber bundle. ForpM, let Γ(p) denote the set of all local sections whose domain containsp. LetI=(I(1),I(2),...,I(m)){\displaystyle I=(I(1),I(2),...,I(m))} be amulti-index (anm-tuple of non-negative integers, not necessarily in ascending order), then define:

|I|:=i=1mI(i)|I|xI:=i=1m(xi)I(i).{\displaystyle {\begin{aligned}|I|&:=\sum _{i=1}^{m}I(i)\\{\frac {\partial ^{|I|}}{\partial x^{I}}}&:=\prod _{i=1}^{m}\left({\frac {\partial }{\partial x^{i}}}\right)^{I(i)}.\end{aligned}}}

Define the local sections σ, η ∈ Γ(p) to have the samer-jet atp if

|I|σαxI|p=|I|ηαxI|p,0|I|r.{\displaystyle \left.{\frac {\partial ^{|I|}\sigma ^{\alpha }}{\partial x^{I}}}\right|_{p}=\left.{\frac {\partial ^{|I|}\eta ^{\alpha }}{\partial x^{I}}}\right|_{p},\quad 0\leq |I|\leq r.}

The relation that two maps have the samer-jet is anequivalence relation. Anr-jet is anequivalence class under this relation, and ther-jet with representative σ is denotedjprσ{\displaystyle j_{p}^{r}\sigma }. The integerr is also called theorder of the jet,p is itssource and σ(p) is itstarget.

Jet manifolds

[edit]

Ther-th jet manifold of π is the set

Jr(π)={jprσ:pM,σΓ(p)}.{\displaystyle J^{r}(\pi )=\left\{j_{p}^{r}\sigma :p\in M,\sigma \in \Gamma (p)\right\}.}

We may define projectionsπr andπr,0 called thesource and target projections respectively, by

{πr:Jr(π)Mjprσp,{πr,0:Jr(π)Ejprσσ(p){\displaystyle {\begin{cases}\pi _{r}:J^{r}(\pi )\to M\\j_{p}^{r}\sigma \mapsto p\end{cases}},\qquad {\begin{cases}\pi _{r,0}:J^{r}(\pi )\to E\\j_{p}^{r}\sigma \mapsto \sigma (p)\end{cases}}}

If 1 ≤kr, then thek-jet projection is the functionπr,k defined by

{πr,k:Jr(π)Jk(π)jprσjpkσ{\displaystyle {\begin{cases}\pi _{r,k}:J^{r}(\pi )\to J^{k}(\pi )\\j_{p}^{r}\sigma \mapsto j_{p}^{k}\sigma \end{cases}}}

From this definition, it is clear thatπr =π oπr,0 and that if 0 ≤mk, thenπr,m =πk,m oπr,k. It is conventional to regardπr,r as theidentity map onJ r(π) and to identifyJ0(π) withE.

The functionsπr,k,πr,0 andπr aresmoothsurjectivesubmersions.

Acoordinate system onE will generate a coordinate system onJ r(π). Let (U,u) be an adaptedcoordinate chart onE, whereu = (xi,uα). Theinduced coordinate chart (Ur,ur) onJ r(π) is defined by

Ur={jprσ:pM,σ(p)U}ur=(xi,uα,uIα){\displaystyle {\begin{aligned}U^{r}&=\left\{j_{p}^{r}\sigma :p\in M,\sigma (p)\in U\right\}\\u^{r}&=\left(x^{i},u^{\alpha },u_{I}^{\alpha }\right)\end{aligned}}}

where

xi(jprσ)=xi(p)uα(jprσ)=uα(σ(p)){\displaystyle {\begin{aligned}x^{i}\left(j_{p}^{r}\sigma \right)&=x^{i}(p)\\u^{\alpha }\left(j_{p}^{r}\sigma \right)&=u^{\alpha }(\sigma (p))\end{aligned}}}

and then((m+rr)1){\displaystyle n\left({\binom {m+r}{r}}-1\right)} functions known as thederivative coordinates:

{uIα:UkRuIα(jprσ)=|I|σαxI|p{\displaystyle {\begin{cases}u_{I}^{\alpha }:U^{k}\to \mathbf {R} \\u_{I}^{\alpha }\left(j_{p}^{r}\sigma \right)=\left.{\frac {\partial ^{|I|}\sigma ^{\alpha }}{\partial x^{I}}}\right|_{p}\end{cases}}}

Given an atlas of adapted charts (U,u) onE, the corresponding collection of charts (U r,u r) is afinite-dimensionalC atlas onJ r(π).

Jet bundles

[edit]

Since the atlas on eachJr(π){\displaystyle J^{r}(\pi )} defines a manifold, the triples(Jr(π),πr,k,Jk(π)){\displaystyle (J^{r}(\pi ),\pi _{r,k},J^{k}(\pi ))},(Jr(π),πr,0,E){\displaystyle (J^{r}(\pi ),\pi _{r,0},E)} and(Jr(π),πr,M){\displaystyle (J^{r}(\pi ),\pi _{r},M)} all define fibered manifolds. In particular, if(E,π,M){\displaystyle (E,\pi ,M)}is a fiber bundle, the triple(Jr(π),πr,M){\displaystyle (J^{r}(\pi ),\pi _{r},M)} defines ther-th jet bundle of π.

IfWM is an open submanifold, then

Jr(π|π1(W))πr1(W).{\displaystyle J^{r}\left(\pi |_{\pi ^{-1}(W)}\right)\cong \pi _{r}^{-1}(W).\,}

IfpM, then the fiberπr1(p){\displaystyle \pi _{r}^{-1}(p)\,} is denotedJpr(π){\displaystyle J_{p}^{r}(\pi )}.

Let σ be a local section of π with domainWM. Ther-th jet prolongation of σ is the mapjrσ:WJr(π){\displaystyle j^{r}\sigma :W\rightarrow J^{r}(\pi )} defined by

(jrσ)(p)=jprσ.{\displaystyle (j^{r}\sigma )(p)=j_{p}^{r}\sigma .\,}

Note thatπrjrσ=idW{\displaystyle \pi _{r}\circ j^{r}\sigma =\mathbb {id} _{W}}, sojrσ{\displaystyle j^{r}\sigma } really is a section. In local coordinates,jrσ{\displaystyle j^{r}\sigma } is given by

(σα,|I|σαxI)1|I|r.{\displaystyle \left(\sigma ^{\alpha },{\frac {\partial ^{|I|}\sigma ^{\alpha }}{\partial x^{I}}}\right)\qquad 1\leq |I|\leq r.\,}

We identifyj0σ{\displaystyle j^{0}\sigma } withσ{\displaystyle \sigma } .

Algebro-geometric perspective

[edit]

An independently motivated construction of the sheaf of sectionsΓJk(πTM){\displaystyle \Gamma J^{k}\left(\pi _{TM}\right)} is given.

Consider a diagonal mapΔn:Mi=1n+1M{\textstyle \Delta _{n}:M\to \prod _{i=1}^{n+1}M}, where the smooth manifoldM{\displaystyle M} is alocally ringed space byCk(U){\displaystyle C^{k}(U)} for each openU{\displaystyle U}. LetI{\displaystyle {\mathcal {I}}} be theideal sheaf ofΔn(M){\displaystyle \Delta _{n}(M)}, equivalently letI{\displaystyle {\mathcal {I}}} be thesheaf of smoothgerms which vanish onΔn(M){\displaystyle \Delta _{n}(M)} for all0<nk{\displaystyle 0<n\leq k}. Thepullback of thequotient sheafΔn(I/In+1){\displaystyle {\Delta _{n}}^{*}\left({\mathcal {I}}/{\mathcal {I}}^{n+1}\right)} fromi=1n+1M{\textstyle \prod _{i=1}^{n+1}M} toM{\displaystyle M} byΔn{\displaystyle \Delta _{n}} is the sheaf of k-jets.[2]

Thedirect limit of the sequence of injections given by the canonical inclusionsIn+1In{\displaystyle {\mathcal {I}}^{n+1}\hookrightarrow {\mathcal {I}}^{n}} of sheaves, gives rise to theinfinite jet sheafJ(TM){\displaystyle {\mathcal {J}}^{\infty }(TM)}. Observe that by the direct limit construction it is a filtered ring.

Example

[edit]

If π is thetrivial bundle (M ×R, pr1,M), then there is a canonicaldiffeomorphism between the first jet bundleJ1(π){\displaystyle J^{1}(\pi )} andT*M ×R. To construct this diffeomorphism, for each σ inΓM(π){\displaystyle \Gamma _{M}(\pi )} writeσ¯=pr2σC(M){\displaystyle {\bar {\sigma }}=pr_{2}\circ \sigma \in C^{\infty }(M)\,}.

Then, wheneverpM

jp1σ={ψ:ψΓp(π);ψ¯(p)=σ¯(p);dψ¯p=dσ¯p}.{\displaystyle j_{p}^{1}\sigma =\left\{\psi :\psi \in \Gamma _{p}(\pi );{\bar {\psi }}(p)={\bar {\sigma }}(p);d{\bar {\psi }}_{p}=d{\bar {\sigma }}_{p}\right\}.\,}

Consequently, the mapping

{J1(π)TM×Rjp1σ(dσ¯p,σ¯(p)){\displaystyle {\begin{cases}J^{1}(\pi )\to T^{*}M\times \mathbf {R} \\j_{p}^{1}\sigma \mapsto \left(d{\bar {\sigma }}_{p},{\bar {\sigma }}(p)\right)\end{cases}}}

is well-defined and is clearlyinjective. Writing it out in coordinates shows that it is a diffeomorphism, because if(xi, u) are coordinates onM ×R, whereu = idR is the identity coordinate, then the derivative coordinatesui onJ1(π) correspond to the coordinates ∂i onT*M.

Likewise, if π is the trivial bundle (R ×M, pr1,R), then there exists a canonical diffeomorphism betweenJ1(π){\displaystyle J^{1}(\pi )}andR ×TM.

Contact structure

[edit]

The spaceJr(π) carries a naturaldistribution, that is, a sub-bundle of thetangent bundleTJr(π)), called theCartan distribution. The Cartan distribution is spanned by all tangent planes to graphs of holonomic sections; that is, sections of the formjrφ forφ a section of π.

The annihilator of the Cartan distribution is a space ofdifferential one-forms calledcontact forms, onJr(π). The space of differential one-forms onJr(π) is denoted byΛ1Jr(π){\displaystyle \Lambda ^{1}J^{r}(\pi )} and the space of contact forms is denoted byΛCrπ{\displaystyle \Lambda _{C}^{r}\pi }. A one form is a contact form provided itspullback along every prolongation is zero. In other words,θΛ1Jrπ{\displaystyle \theta \in \Lambda ^{1}J^{r}\pi } is a contact form if and only if

(jr+1σ)θ=0{\displaystyle \left(j^{r+1}\sigma \right)^{*}\theta =0}

for all local sections σ of π overM.

The Cartan distribution is the main geometrical structure on jet spaces and plays an important role in the geometric theory ofpartial differential equations. The Cartan distributions are completely non-integrable. In particular, they are notinvolutive. The dimension of the Cartan distribution grows with the order of the jet space. However, on the space of infinite jetsJ the Cartan distribution becomes involutive and finite-dimensional: its dimension coincides with the dimension of the base manifoldM.

Example

[edit]

Consider the case(E, π, M), whereER2 andMR. Then,(J1(π), π, M) defines the first jet bundle, and may be coordinated by(x, u, u1), where

x(jp1σ)=x(p)=xu(jp1σ)=u(σ(p))=u(σ(x))=σ(x)u1(jp1σ)=σx|p=σ(x){\displaystyle {\begin{aligned}x\left(j_{p}^{1}\sigma \right)&=x(p)=x\\u\left(j_{p}^{1}\sigma \right)&=u(\sigma (p))=u(\sigma (x))=\sigma (x)\\u_{1}\left(j_{p}^{1}\sigma \right)&=\left.{\frac {\partial \sigma }{\partial x}}\right|_{p}=\sigma '(x)\end{aligned}}}

for allpM and σ in Γp(π). A general 1-form onJ1(π) takes the form

θ=a(x,u,u1)dx+b(x,u,u1)du+c(x,u,u1)du1{\displaystyle \theta =a(x,u,u_{1})dx+b(x,u,u_{1})du+c(x,u,u_{1})du_{1}\,}

A section σ in Γp(π) has first prolongation

j1σ=(u,u1)=(σ(p),σx|p).{\displaystyle j^{1}\sigma =(u,u_{1})=\left(\sigma (p),\left.{\frac {\partial \sigma }{\partial x}}\right|_{p}\right).}

Hence,(j1σ)*θ can be calculated as

(jp1σ)θ=θjp1σ=a(x,σ(x),σ(x))dx+b(x,σ(x),σ(x))d(σ(x))+c(x,σ(x),σ(x))d(σ(x))=a(x,σ(x),σ(x))dx+b(x,σ(x),σ(x))σ(x)dx+c(x,σ(x),σ(x))σ(x)dx=[a(x,σ(x),σ(x))+b(x,σ(x),σ(x))σ(x)+c(x,σ(x),σ(x))σ(x)]dx{\displaystyle {\begin{aligned}\left(j_{p}^{1}\sigma \right)^{*}\theta &=\theta \circ j_{p}^{1}\sigma \\&=a(x,\sigma (x),\sigma '(x))dx+b(x,\sigma (x),\sigma '(x))d(\sigma (x))+c(x,\sigma (x),\sigma '(x))d(\sigma '(x))\\&=a(x,\sigma (x),\sigma '(x))dx+b(x,\sigma (x),\sigma '(x))\sigma '(x)dx+c(x,\sigma (x),\sigma '(x))\sigma ''(x)dx\\&=[a(x,\sigma (x),\sigma '(x))+b(x,\sigma (x),\sigma '(x))\sigma '(x)+c(x,\sigma (x),\sigma '(x))\sigma ''(x)]dx\end{aligned}}}

This will vanish for all sections σ if and only ifc = 0 anda = −bσ′(x). Hence, θ =b(x, u, u10 must necessarily be a multiple of the basic contact form θ0 =duu1dx. Proceeding to the second jet spaceJ2(π) with additional coordinateu2, such that

u2(jp2σ)=2σx2|p=σ(x){\displaystyle u_{2}(j_{p}^{2}\sigma )=\left.{\frac {\partial ^{2}\sigma }{\partial x^{2}}}\right|_{p}=\sigma ''(x)\,}

a general 1-form has the construction

θ=a(x,u,u1,u2)dx+b(x,u,u1,u2)du+c(x,u,u1,u2)du1+e(x,u,u1,u2)du2{\displaystyle \theta =a(x,u,u_{1},u_{2})dx+b(x,u,u_{1},u_{2})du+c(x,u,u_{1},u_{2})du_{1}+e(x,u,u_{1},u_{2})du_{2}\,}

This is a contact form if and only if

(jp2σ)θ=θjp2σ=a(x,σ(x),σ(x),σ(x))dx+b(x,σ(x),σ(x),σ(x))d(σ(x))+c(x,σ(x),σ(x),σ(x))d(σ(x))+e(x,σ(x),σ(x),σ(x))d(σ(x))=adx+bσ(x)dx+cσ(x)dx+eσ(x)dx=[a+bσ(x)+cσ(x)+eσ(x)]dx=0{\displaystyle {\begin{aligned}\left(j_{p}^{2}\sigma \right)^{*}\theta &=\theta \circ j_{p}^{2}\sigma \\&=a(x,\sigma (x),\sigma '(x),\sigma ''(x))dx+b(x,\sigma (x),\sigma '(x),\sigma ''(x))d(\sigma (x))+{}\\&\qquad \qquad c(x,\sigma (x),\sigma '(x),\sigma ''(x))d(\sigma '(x))+e(x,\sigma (x),\sigma '(x),\sigma ''(x))d(\sigma ''(x))\\&=adx+b\sigma '(x)dx+c\sigma ''(x)dx+e\sigma '''(x)dx\\&=[a+b\sigma '(x)+c\sigma ''(x)+e\sigma '''(x)]dx\\&=0\end{aligned}}}

which implies thate = 0 anda = −bσ′(x)cσ′′(x). Therefore, θ is a contact form if and only if

θ=b(x,σ(x),σ(x))θ0+c(x,σ(x),σ(x))θ1,{\displaystyle \theta =b(x,\sigma (x),\sigma '(x))\theta _{0}+c(x,\sigma (x),\sigma '(x))\theta _{1},}

where θ1 =du1u2dx is the next basic contact form (Note that here we are identifying the form θ0 with its pull-back(π2,1)θ0{\displaystyle \left(\pi _{2,1}\right)^{*}\theta _{0}} toJ2(π)).

In general, providingx, uR, a contact form onJr+1(π) can be written as alinear combination of the basic contact forms

θk=dukuk+1dxk=0,,r1{\displaystyle \theta _{k}=du_{k}-u_{k+1}dx\qquad k=0,\ldots ,r-1\,}

where

uk(jkσ)=kσxk|p.{\displaystyle u_{k}\left(j^{k}\sigma \right)=\left.{\frac {\partial ^{k}\sigma }{\partial x^{k}}}\right|_{p}.}

Similar arguments lead to a complete characterization of all contact forms.

In local coordinates, every contact one-form onJr+1(π) can be written as a linear combination

θ=|I|=0rPαIθIα{\displaystyle \theta =\sum _{|I|=0}^{r}P_{\alpha }^{I}\theta _{I}^{\alpha }}

with smooth coefficientsPiα(xi,uα,uIα){\displaystyle P_{i}^{\alpha }(x^{i},u^{\alpha },u_{I}^{\alpha })} of the basic contact forms

θIα=duIαuI,iαdxi{\displaystyle \theta _{I}^{\alpha }=du_{I}^{\alpha }-u_{I,i}^{\alpha }dx^{i}\,}

|I| is known as theorder of the contact formθiα{\displaystyle \theta _{i}^{\alpha }}. Note that contact forms onJr+1(π) have orders at mostr. Contact forms provide a characterization of those local sections ofπr+1 which are prolongations of sections of π.

Let ψ ∈ ΓW(πr+1), thenψ =jr+1σ where σ ∈ ΓW(π) if and only ifψ(θ|W)=0,θΛC1πr+1,r.{\displaystyle \psi ^{*}(\theta |_{W})=0,\forall \theta \in \Lambda _{C}^{1}\pi _{r+1,r}.\,}

Vector fields

[edit]

A generalvector field on the total spaceE, coordinated by(x,u)=def(xi,uα){\displaystyle (x,u)\mathrel {\stackrel {\mathrm {def} }{=}} \left(x^{i},u^{\alpha }\right)\,}, is

V=defρi(x,u)xi+ϕα(x,u)uα.{\displaystyle V\mathrel {\stackrel {\mathrm {def} }{=}} \rho ^{i}(x,u){\frac {\partial }{\partial x^{i}}}+\phi ^{\alpha }(x,u){\frac {\partial }{\partial u^{\alpha }}}.\,}

A vector field is calledhorizontal, meaning that all the vertical coefficients vanish, ifϕα{\displaystyle \phi ^{\alpha }} = 0.

A vector field is calledvertical, meaning that all the horizontal coefficients vanish, ifρi = 0.

For fixed(x, u), we identify

V(x,u)=defρi(x,u)xi+ϕα(x,u)uα{\displaystyle V_{(x,u)}\mathrel {\stackrel {\mathrm {def} }{=}} \rho ^{i}(x,u){\frac {\partial }{\partial x^{i}}}+\phi ^{\alpha }(x,u){\frac {\partial }{\partial u^{\alpha }}}\,}

having coordinates(x, u, ρi, φα), with an element in the fiberTxuE ofTE over(x, u) inE, calledatangent vector inTE. A section

{ψ:ETE(x,u)ψ(x,u)=V{\displaystyle {\begin{cases}\psi :E\to TE\\(x,u)\mapsto \psi (x,u)=V\end{cases}}}

is calleda vector field onE with

V=ρi(x,u)xi+ϕα(x,u)uα{\displaystyle V=\rho ^{i}(x,u){\frac {\partial }{\partial x^{i}}}+\phi ^{\alpha }(x,u){\frac {\partial }{\partial u^{\alpha }}}}

and ψ inΓ(TE).

The jet bundleJr(π) is coordinated by(x,u,w)=def(xi,uα,wiα){\displaystyle (x,u,w)\mathrel {\stackrel {\mathrm {def} }{=}} \left(x^{i},u^{\alpha },w_{i}^{\alpha }\right)\,}. For fixed(x, u, w), identify

V(x,u,w)=defVi(x,u,w)xi+Vα(x,u,w)uα+Viα(x,u,w)wiα+Vi1i2α(x,u,w)wi1i2α++Vi1irα(x,u,w)wi1irα{\displaystyle V_{(x,u,w)}\mathrel {\stackrel {\mathrm {def} }{=}} V^{i}(x,u,w){\frac {\partial }{\partial x^{i}}}+V^{\alpha }(x,u,w){\frac {\partial }{\partial u^{\alpha }}}+V_{i}^{\alpha }(x,u,w){\frac {\partial }{\partial w_{i}^{\alpha }}}+V_{i_{1}i_{2}}^{\alpha }(x,u,w){\frac {\partial }{\partial w_{i_{1}i_{2}}^{\alpha }}}+\cdots +V_{i_{1}\cdots i_{r}}^{\alpha }(x,u,w){\frac {\partial }{\partial w_{i_{1}\cdots i_{r}}^{\alpha }}}}

having coordinates

(x,u,w,viα,vi1i2α,,vi1irα),{\displaystyle \left(x,u,w,v_{i}^{\alpha },v_{i_{1}i_{2}}^{\alpha },\cdots ,v_{i_{1}\cdots i_{r}}^{\alpha }\right),}

with an element in the fiberTxuw(Jrπ){\displaystyle T_{xuw}(J^{r}\pi )} ofTJr(π) over(x, u, w)Jr(π), calleda tangent vector inTJr(π). Here,

viα,vi1i2α,,vi1irα{\displaystyle v_{i}^{\alpha },v_{i_{1}i_{2}}^{\alpha },\ldots ,v_{i_{1}\cdots i_{r}}^{\alpha }}

are real-valued functions onJr(π). A section

{Ψ:Jr(π)TJr(π)(x,u,w)Ψ(u,w)=V{\displaystyle {\begin{cases}\Psi :J^{r}(\pi )\to TJ^{r}(\pi )\\(x,u,w)\mapsto \Psi (u,w)=V\end{cases}}}

isa vector field onJr(π), and we sayΨΓ(T(Jrπ)).{\displaystyle \Psi \in \Gamma (T\left(J^{r}\pi \right)).}

Partial differential equations

[edit]

Let(E, π, M) be a fiber bundle. Anr-th orderpartial differential equation on π is aclosedembedded submanifoldS of the jet manifoldJr(π). A solution is a local section σ ∈ ΓW(π) satisfyingjprσS{\displaystyle j_{p}^{r}\sigma \in S}, for allp inM.

Consider an example of a first order partial differential equation.

Example

[edit]

Let π be the trivial bundle (R2 ×R, pr1,R2) with global coordinates (x1,x2,u1). Then the mapF :J1(π) →R defined by

F=u11u212x2u1{\displaystyle F=u_{1}^{1}u_{2}^{1}-2x^{2}u^{1}}

gives rise to the differential equation

S={jp1σJ1π : (u11u212x2u1)(jp1σ)=0}{\displaystyle S=\left\{j_{p}^{1}\sigma \in J^{1}\pi \ :\ \left(u_{1}^{1}u_{2}^{1}-2x^{2}u^{1}\right)\left(j_{p}^{1}\sigma \right)=0\right\}}

which can be written

σx1σx22x2σ=0.{\displaystyle {\frac {\partial \sigma }{\partial x^{1}}}{\frac {\partial \sigma }{\partial x^{2}}}-2x^{2}\sigma =0.}

The particular

{σ:R2R2×Rσ(p1,p2)=(p1,p2,p1(p2)2){\displaystyle {\begin{cases}\sigma :\mathbf {R} ^{2}\to \mathbf {R} ^{2}\times \mathbf {R} \\\sigma (p_{1},p_{2})=\left(p^{1},p^{2},p^{1}(p^{2})^{2}\right)\end{cases}}}

has first prolongation given by

j1σ(p1,p2)=(p1,p2,p1(p2)2,(p2)2,2p1p2){\displaystyle j^{1}\sigma \left(p_{1},p_{2}\right)=\left(p^{1},p^{2},p^{1}\left(p^{2}\right)^{2},\left(p^{2}\right)^{2},2p^{1}p^{2}\right)}

and is a solution of this differential equation, because

(u11u212x2u1)(jp1σ)=u11(jp1σ)u21(jp1σ)2x2(jp1σ)u1(jp1σ)=(p2)22p1p22p2p1(p2)2=2p1(p2)32p1(p2)3=0{\displaystyle {\begin{aligned}\left(u_{1}^{1}u_{2}^{1}-2x^{2}u^{1}\right)\left(j_{p}^{1}\sigma \right)&=u_{1}^{1}\left(j_{p}^{1}\sigma \right)u_{2}^{1}\left(j_{p}^{1}\sigma \right)-2x^{2}\left(j_{p}^{1}\sigma \right)u^{1}\left(j_{p}^{1}\sigma \right)\\&=\left(p^{2}\right)^{2}\cdot 2p^{1}p^{2}-2\cdot p^{2}\cdot p^{1}\left(p^{2}\right)^{2}\\&=2p^{1}\left(p^{2}\right)^{3}-2p^{1}\left(p^{2}\right)^{3}\\&=0\end{aligned}}}

and sojp1σS{\displaystyle j_{p}^{1}\sigma \in S} foreverypR2.

Jet prolongation

[edit]

A local diffeomorphismψ :Jr(π) →Jr(π) defines a contact transformation of orderr if it preserves the contact ideal, meaning that if θ is any contact form onJr(π), thenψ*θ is also a contact form.

The flow generated by a vector fieldVr on the jet spaceJr(π) forms a one-parameter group of contact transformations if and only if theLie derivativeLVr(θ){\displaystyle {\mathcal {L}}_{V^{r}}(\theta )} of any contact form θ preserves the contact ideal.

Let us begin with the first order case. Consider a general vector fieldV1 onJ1(π), given by

V1 =def ρi(xi,uα,uIα)xi+ϕα(xi,uα,uIα)uα+χiα(xi,uα,uIα)uiα.{\displaystyle V^{1}\ {\stackrel {\mathrm {def} }{=}}\ \rho ^{i}\left(x^{i},u^{\alpha },u_{I}^{\alpha }\right){\frac {\partial }{\partial x^{i}}}+\phi ^{\alpha }\left(x^{i},u^{\alpha },u_{I}^{\alpha }\right){\frac {\partial }{\partial u^{\alpha }}}+\chi _{i}^{\alpha }\left(x^{i},u^{\alpha },u_{I}^{\alpha }\right){\frac {\partial }{\partial u_{i}^{\alpha }}}.}

We now applyLV1{\displaystyle {\mathcal {L}}_{V^{1}}} to the basic contact formsθ0α=duαuiαdxi,{\displaystyle \theta _{0}^{\alpha }=du^{\alpha }-u_{i}^{\alpha }dx^{i},} and expand theexterior derivative of the functions in terms of their coordinates to obtain:

LV1(θ0α)=LV1(duαuiαdxi)=LV1duα(LV1uiα)dxiuiα(LV1dxi)=d(V1uα)V1uiαdxiuiαd(V1xi)=dϕαχiαdxiuiαdρi=ϕαxidxi+ϕαukduk+ϕαuikduikχiαdxiuiα[ρixmdxm+ρiukduk+ρiumkdumk]=ϕαxidxi+ϕαuk(θk+uikdxi)+ϕαuikduikχiαdxiulα[ρlxidxi+ρluk(θk+uikdxi)+ρluikduik]=[ϕαxi+ϕαukuikulα(ρlxi+ρlukuik)χiα]dxi+[ϕαuikulαρluik]duik+(ϕαukulαρluk)θk{\displaystyle {\begin{aligned}{\mathcal {L}}_{V^{1}}\left(\theta _{0}^{\alpha }\right)&={\mathcal {L}}_{V^{1}}\left(du^{\alpha }-u_{i}^{\alpha }dx^{i}\right)\\&={\mathcal {L}}_{V^{1}}du^{\alpha }-\left({\mathcal {L}}_{V^{1}}u_{i}^{\alpha }\right)dx^{i}-u_{i}^{\alpha }\left({\mathcal {L}}_{V^{1}}dx^{i}\right)\\&=d\left(V^{1}u^{\alpha }\right)-V^{1}u_{i}^{\alpha }dx^{i}-u_{i}^{\alpha }d\left(V^{1}x^{i}\right)\\&=d\phi ^{\alpha }-\chi _{i}^{\alpha }dx^{i}-u_{i}^{\alpha }d\rho ^{i}\\&={\frac {\partial \phi ^{\alpha }}{\partial x^{i}}}dx^{i}+{\frac {\partial \phi ^{\alpha }}{\partial u^{k}}}du^{k}+{\frac {\partial \phi ^{\alpha }}{\partial u_{i}^{k}}}du_{i}^{k}-\chi _{i}^{\alpha }dx^{i}-u_{i}^{\alpha }\left[{\frac {\partial \rho ^{i}}{\partial x^{m}}}dx^{m}+{\frac {\partial \rho ^{i}}{\partial u^{k}}}du^{k}+{\frac {\partial \rho ^{i}}{\partial u_{m}^{k}}}du_{m}^{k}\right]\\&={\frac {\partial \phi ^{\alpha }}{\partial x^{i}}}dx^{i}+{\frac {\partial \phi ^{\alpha }}{\partial u^{k}}}\left(\theta ^{k}+u_{i}^{k}dx^{i}\right)+{\frac {\partial \phi ^{\alpha }}{\partial u_{i}^{k}}}du_{i}^{k}-\chi _{i}^{\alpha }dx^{i}-u_{l}^{\alpha }\left[{\frac {\partial \rho ^{l}}{\partial x^{i}}}dx^{i}+{\frac {\partial \rho ^{l}}{\partial u^{k}}}\left(\theta ^{k}+u_{i}^{k}dx^{i}\right)+{\frac {\partial \rho ^{l}}{\partial u_{i}^{k}}}du_{i}^{k}\right]\\&=\left[{\frac {\partial \phi ^{\alpha }}{\partial x^{i}}}+{\frac {\partial \phi ^{\alpha }}{\partial u^{k}}}u_{i}^{k}-u_{l}^{\alpha }\left({\frac {\partial \rho ^{l}}{\partial x^{i}}}+{\frac {\partial \rho ^{l}}{\partial u^{k}}}u_{i}^{k}\right)-\chi _{i}^{\alpha }\right]dx^{i}+\left[{\frac {\partial \phi ^{\alpha }}{\partial u_{i}^{k}}}-u_{l}^{\alpha }{\frac {\partial \rho ^{l}}{\partial u_{i}^{k}}}\right]du_{i}^{k}+\left({\frac {\partial \phi ^{\alpha }}{\partial u^{k}}}-u_{l}^{\alpha }{\frac {\partial \rho ^{l}}{\partial u^{k}}}\right)\theta ^{k}\end{aligned}}}

Therefore,V1 determines a contact transformation if and only if the coefficients ofdxi andduik{\displaystyle du_{i}^{k}} in the formula vanish. The latter requirements imply thecontact conditions

ϕαuikulαρluik=0{\displaystyle {\frac {\partial \phi ^{\alpha }}{\partial u_{i}^{k}}}-u_{l}^{\alpha }{\frac {\partial \rho ^{l}}{\partial u_{i}^{k}}}=0}

The former requirements provide explicit formulae for the coefficients of the first derivative terms inV1:

χiα=D^iϕαulα(D^iρl){\displaystyle \chi _{i}^{\alpha }={\widehat {D}}_{i}\phi ^{\alpha }-u_{l}^{\alpha }\left({\widehat {D}}_{i}\rho ^{l}\right)}

where

D^i=xi+uikuk{\displaystyle {\widehat {D}}_{i}={\frac {\partial }{\partial x^{i}}}+u_{i}^{k}{\frac {\partial }{\partial u^{k}}}}

denotes the zeroth order truncation of the total derivativeDi.

Thus, the contact conditions uniquely prescribe the prolongation of any point or contact vector field. That is, ifLVr{\displaystyle {\mathcal {L}}_{V^{r}}} satisfies these equations,Vr is called ther-th prolongation ofV to a vector field onJr(π).

These results are best understood when applied to a particular example. Hence, let us examine the following.

Example

[edit]

Consider the case(E, π, M), whereER2 andMR. Then,(J1(π), π, E) defines the first jet bundle, and may be coordinated by(x, u, u1), where

x(jp1σ)=x(p)=xu(jp1σ)=u(σ(p))=u(σ(x))=σ(x)u1(jp1σ)=σx|p=σ˙(x){\displaystyle {\begin{aligned}x(j_{p}^{1}\sigma )&=x(p)=x\\u(j_{p}^{1}\sigma )&=u(\sigma (p))=u(\sigma (x))=\sigma (x)\\u_{1}(j_{p}^{1}\sigma )&=\left.{\frac {\partial \sigma }{\partial x}}\right|_{p}={\dot {\sigma }}(x)\end{aligned}}}

for allpM andσ in Γp(π). A contact form onJ1(π) has the form

θ=duu1dx{\displaystyle \theta =du-u_{1}dx}

Consider a vectorV onE, having the form

V=xuux{\displaystyle V=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}}

Then, the first prolongation of this vector field toJ1(π) is

V1=V+Z=xuux+Z=xuux+ρ(x,u,u1)u1{\displaystyle {\begin{aligned}V^{1}&=V+Z\\&=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}+Z\\&=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}+\rho (x,u,u_{1}){\frac {\partial }{\partial u_{1}}}\end{aligned}}}

If we now take the Lie derivative of the contact form with respect to this prolonged vector field,LV1(θ),{\displaystyle {\mathcal {L}}_{V^{1}}(\theta ),} we obtain

LV1(θ)=LV1(duu1dx)=LV1du(LV1u1)dxu1(LV1dx)=d(V1u)V1u1dxu1d(V1x)=dxρ(x,u,u1)dx+u1du=(1ρ(x,u,u1))dx+u1du=[1ρ(x,u,u1)]dx+u1(θ+u1dx)du=θ+u1dx=[1+u1u1ρ(x,u,u1)]dx+u1θ{\displaystyle {\begin{aligned}{\mathcal {L}}_{V^{1}}(\theta )&={\mathcal {L}}_{V^{1}}(du-u_{1}dx)\\&={\mathcal {L}}_{V^{1}}du-\left({\mathcal {L}}_{V^{1}}u_{1}\right)dx-u_{1}\left({\mathcal {L}}_{V^{1}}dx\right)\\&=d\left(V^{1}u\right)-V^{1}u_{1}dx-u_{1}d\left(V^{1}x\right)\\&=dx-\rho (x,u,u_{1})dx+u_{1}du\\&=(1-\rho (x,u,u_{1}))dx+u_{1}du\\&=[1-\rho (x,u,u_{1})]dx+u_{1}(\theta +u_{1}dx)&&du=\theta +u_{1}dx\\&=[1+u_{1}u_{1}-\rho (x,u,u_{1})]dx+u_{1}\theta \end{aligned}}}

Hence, for preservation of the contact ideal, we require

1+u1u1ρ(x,u,u1)=0ρ(x,u,u1)=1+u1u1.{\displaystyle 1+u_{1}u_{1}-\rho (x,u,u_{1})=0\quad \Leftrightarrow \quad \rho (x,u,u_{1})=1+u_{1}u_{1}.}

And so the first prolongation ofV to a vector field onJ1(π) is

V1=xuux+(1+u1u1)u1.{\displaystyle V^{1}=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}+(1+u_{1}u_{1}){\frac {\partial }{\partial u_{1}}}.}

Let us also calculate the second prolongation ofV to a vector field onJ2(π). We have{x,u,u1,u2}{\displaystyle \{x,u,u_{1},u_{2}\}} as coordinates onJ2(π). Hence, the prolonged vector has the form

V2=xuux+ρ(x,u,u1,u2)u1+ϕ(x,u,u1,u2)u2.{\displaystyle V^{2}=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}+\rho (x,u,u_{1},u_{2}){\frac {\partial }{\partial u_{1}}}+\phi (x,u,u_{1},u_{2}){\frac {\partial }{\partial u_{2}}}.}

The contact forms are

θ=duu1dxθ1=du1u2dx{\displaystyle {\begin{aligned}\theta &=du-u_{1}dx\\\theta _{1}&=du_{1}-u_{2}dx\end{aligned}}}

To preserve the contact ideal, we require

LV2(θ)=0LV2(θ1)=0{\displaystyle {\begin{aligned}{\mathcal {L}}_{V^{2}}(\theta )&=0\\{\mathcal {L}}_{V^{2}}(\theta _{1})&=0\end{aligned}}}

Now,θ has nou2 dependency. Hence, from this equation we will pick up the formula forρ, which will necessarily be the same result as we found forV1. Therefore, the problem is analogous to prolonging the vector fieldV1 toJ2(π). That is to say, we may generate ther-th prolongation of a vector field by recursively applying the Lie derivative of the contact forms with respect to the prolonged vector fields,r times. So, we have

ρ(x,u,u1)=1+u1u1{\displaystyle \rho (x,u,u_{1})=1+u_{1}u_{1}}

and so

V2=V1+ϕ(x,u,u1,u2)u2=xuux+(1+u1u1)u1+ϕ(x,u,u1,u2)u2{\displaystyle {\begin{aligned}V^{2}&=V^{1}+\phi (x,u,u_{1},u_{2}){\frac {\partial }{\partial u_{2}}}\\&=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}+(1+u_{1}u_{1}){\frac {\partial }{\partial u_{1}}}+\phi (x,u,u_{1},u_{2}){\frac {\partial }{\partial u_{2}}}\end{aligned}}}

Therefore, the Lie derivative of the second contact form with respect toV2 is

LV2(θ1)=LV2(du1u2dx)=LV2du1(LV2u2)dxu2(LV2dx)=d(V2u1)V2u2dxu2d(V2x)=d(1+u1u1)ϕ(x,u,u1,u2)dx+u2du=2u1du1ϕ(x,u,u1,u2)dx+u2du=2u1du1ϕ(x,u,u1,u2)dx+u2(θ+u1dx)du=θ+u1dx=2u1(θ1+u2dx)ϕ(x,u,u1,u2)dx+u2(θ+u1dx)du1=θ1+u2dx=[3u1u2ϕ(x,u,u1,u2)]dx+u2θ+2u1θ1{\displaystyle {\begin{aligned}{\mathcal {L}}_{V^{2}}(\theta _{1})&={\mathcal {L}}_{V^{2}}(du_{1}-u_{2}dx)\\&={\mathcal {L}}_{V^{2}}du_{1}-\left({\mathcal {L}}_{V^{2}}u_{2}\right)dx-u_{2}\left({\mathcal {L}}_{V^{2}}dx\right)\\&=d(V^{2}u_{1})-V^{2}u_{2}dx-u_{2}d(V^{2}x)\\&=d(1+u_{1}u_{1})-\phi (x,u,u_{1},u_{2})dx+u_{2}du\\&=2u_{1}du_{1}-\phi (x,u,u_{1},u_{2})dx+u_{2}du\\&=2u_{1}du_{1}-\phi (x,u,u_{1},u_{2})dx+u_{2}(\theta +u_{1}dx)&du&=\theta +u_{1}dx\\&=2u_{1}(\theta _{1}+u_{2}dx)-\phi (x,u,u_{1},u_{2})dx+u_{2}(\theta +u_{1}dx)&du_{1}&=\theta _{1}+u_{2}dx\\&=[3u_{1}u_{2}-\phi (x,u,u_{1},u_{2})]dx+u_{2}\theta +2u_{1}\theta _{1}\end{aligned}}}

Hence, forLV2(θ1){\displaystyle {\mathcal {L}}_{V^{2}}(\theta _{1})} to preserve the contact ideal, we require

3u1u2ϕ(x,u,u1,u2)=0ϕ(x,u,u1,u2)=3u1u2.{\displaystyle 3u_{1}u_{2}-\phi (x,u,u_{1},u_{2})=0\quad \Leftrightarrow \quad \phi (x,u,u_{1},u_{2})=3u_{1}u_{2}.}

And so the second prolongation ofV to a vector field onJ2(π) is

V2=xuux+(1+u1u1)u1+3u1u2u2.{\displaystyle V^{2}=x{\frac {\partial }{\partial u}}-u{\frac {\partial }{\partial x}}+(1+u_{1}u_{1}){\frac {\partial }{\partial u_{1}}}+3u_{1}u_{2}{\frac {\partial }{\partial u_{2}}}.}

Note that the first prolongation ofV can be recovered by omitting the second derivative terms inV2, or by projecting back toJ1(π).

Infinite jet spaces

[edit]

Theinverse limit of the sequence of projectionsπk+1,k:Jk+1(π)Jk(π){\displaystyle \pi _{k+1,k}:J^{k+1}(\pi )\to J^{k}(\pi )} gives rise to theinfinite jet spaceJ(π). A pointjp(σ){\displaystyle j_{p}^{\infty }(\sigma )} is the equivalence class of sections of π that have the samek-jet inp as σ for all values ofk. The natural projection π mapsjp(σ){\displaystyle j_{p}^{\infty }(\sigma )} intop.

Just by thinking in terms of coordinates,J(π) appears to be an infinite-dimensional geometric object. In fact, the simplest way of introducing a differentiable structure onJ(π), not relying on differentiable charts, is given by thedifferential calculus over commutative algebras. Dual to the sequence of projectionsπk+1,k:Jk+1(π)Jk(π){\displaystyle \pi _{k+1,k}:J^{k+1}(\pi )\to J^{k}(\pi )} of manifolds is the sequence of injectionsπk+1,k:C(Jk(π))C(Jk+1(π)){\displaystyle \pi _{k+1,k}^{*}:C^{\infty }(J^{k}(\pi ))\to C^{\infty }\left(J^{k+1}(\pi )\right)} of commutative algebras. Let's denoteC(Jk(π)){\displaystyle C^{\infty }(J^{k}(\pi ))} simply byFk(π){\displaystyle {\mathcal {F}}_{k}(\pi )}. Take now thedirect limitF(π){\displaystyle {\mathcal {F}}(\pi )} of theFk(π){\displaystyle {\mathcal {F}}_{k}(\pi )}'s. It will be a commutative algebra, which can be assumed to be the smooth functions algebra over the geometric objectJ(π). Observe thatF(π){\displaystyle {\mathcal {F}}(\pi )}, being born as a direct limit, carries an additional structure: it is a filtered commutative algebra.

Roughly speaking, a concrete elementφF(π){\displaystyle \varphi \in {\mathcal {F}}(\pi )} will always belong to someFk(π){\displaystyle {\mathcal {F}}_{k}(\pi )}, so it is a smooth function on the finite-dimensional manifoldJk(π) in the usual sense.

Infinitely prolonged PDEs

[edit]

Given ak-th order system of PDEsEJk(π), the collectionI(E) of vanishing onE smooth functions onJ(π) is anideal in the algebraFk(π){\displaystyle {\mathcal {F}}_{k}(\pi )}, and hence in the direct limitF(π){\displaystyle {\mathcal {F}}(\pi )} too.

EnhanceI(E) by adding all the possible compositions oftotal derivatives applied to all its elements. This way we get a new idealI ofF(π){\displaystyle {\mathcal {F}}(\pi )} which is now closed under the operation of taking total derivative. The submanifoldE(∞) ofJ(π) cut out byI is called theinfinite prolongation ofE.

Geometrically,E(∞) is the manifold offormal solutions ofE. A pointjp(σ){\displaystyle j_{p}^{\infty }(\sigma )} ofE(∞) can be easily seen to be represented by a section σ whosek-jet's graph is tangent toE at the pointjpk(σ){\displaystyle j_{p}^{k}(\sigma )} with arbitrarily high order of tangency.

Analytically, ifE is given by φ = 0, a formal solution can be understood as the set of Taylor coefficients of a section σ in a pointp that make vanish theTaylor series ofφjk(σ){\displaystyle \varphi \circ j^{k}(\sigma )} at the pointp.

Most importantly, the closure properties ofI imply thatE(∞) is tangent to theinfinite-order contact structureC{\displaystyle {\mathcal {C}}} onJ(π), so that by restrictingC{\displaystyle {\mathcal {C}}} toE(∞) one gets thediffiety(E(),C|E()){\displaystyle (E_{(\infty )},{\mathcal {C}}|_{E_{(\infty )}})}, and can study the associatedVinogradov (C-spectral) sequence.

Remark

[edit]

This article has defined jets of local sections of a bundle, but it is possible to define jets of functionsf: MN, whereM andN are manifolds; the jet off then just corresponds to the jet of the section

grf: MM ×N
grf(p) =(p, f(p))

(grf is known as thegraph of the functionf) of the trivial bundle (M ×N, π1,M). However, this restriction does not simplify the theory, as the global triviality of π does not imply the global triviality of π1.

See also

[edit]

References

[edit]
  1. ^Krupka, Demeter (2015).Introduction to Global Variational Geometry. Atlantis Press.ISBN 978-94-6239-073-7.
  2. ^Vakil, Ravi (August 25, 1998)."A beginner's guide to jet bundles from the point of view of algebraic geometry"(PDF). RetrievedJune 25, 2017.

Further reading

[edit]
  • Ehresmann, C., "Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie."Geometrie Differentielle, Colloq. Inter. du Centre Nat. de la Recherche Scientifique, Strasbourg, 1953, 97-127.
  • Kolář, I., Michor, P., Slovák, J.,Natural operations in differential geometry. Springer-Verlag: Berlin Heidelberg, 1993.ISBN 3-540-56235-4,ISBN 0-387-56235-4.
  • Saunders, D. J., "The Geometry of Jet Bundles", Cambridge University Press, 1989,ISBN 0-521-36948-7
  • Krasil'shchik, I. S., Vinogradov, A. M., [et al.], "Symmetries and conservation laws for differential equations of mathematical physics", Amer. Math. Soc., Providence, RI, 1999,ISBN 0-8218-0958-X.
  • Olver, P. J., "Equivalence, Invariants and Symmetry", Cambridge University Press, 1995,ISBN 0-521-47811-1


Basic concepts
Main results(list)
Maps
Types of
manifolds
Tensors
Vectors
Covectors
Bundles
Connections
Related
Generalizations
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Jet_bundle&oldid=1289752424"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp