Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Jakobid

From Wikipedia, the free encyclopedia

Jakobid
Four jakobid species, showing groove and flagella:Jakoba libera (ventral view),Stygiella incarcerata (ventral view),Reclinomonas americana (dorsal view), andHistiona aroides (ventral view)
Scientific classificationEdit this classification
Domain:Eukaryota
Clade:Diphoda
Clade:Discoba
Class:Jakobea
Cavalier-Smith 1997[1] em. 2003[2]
Order:Jakobida
Cavalier-Smith 1993
Families
Synonyms
  • JacobideaCavalier-Smith 1993
Clade of Eukaryotes

Jakobids are anorder of free-living,heterotrophic,flagellareukaryotes in the supergroupExcavata. They are small (less than 15 μm), and can be found in aerobic and anaerobic environments.[3][4][5] The order Jakobida, believed to bemonophyletic, consists of only twenty species at present, and was classified as a group in 1993.[3][5][6] There is ongoing research into themitochondrial genomes of Jakobids, which are unusually large and bacteria-like, evidence that Jakobids may be important to the evolutionary history of eukaryotes.[4][7]

Molecular phylogenetic evidence suggests strongly that Jakobids are most closely related toHeterolobosea (Percolozoa) andEuglenozoa.[8]

Description

[edit]

Jakobids have two flagella, inserted in the anterior end of the cell, and, like other members of orderExcavata, have a ventral feeding groove and associatedcytoskeleton support.[9] The posterior flagella has a dorsal vane and is aligned within the ventral groove, where it generates a current that the cell uses for food intake.[7][9] Thenucleus is generally in the anterior part of the cell and bears anucleolus. Most known Jakobids have onemitochondrion, again located anteriorly, and different genera have flattened, tubular, or absentcristae. Foodvacuoles are mostly located on the cell posterior, and in most Jakobids theendoplasmic reticulum is distributed throughout the cell.[6]

Thesessile,loricateHistionidae and occasionally free-swimmingJakoba libera (Jakobidae) haveextrusomes under the dorsal membrane that are theorized to be defensive structures.[3][6]

Diagram of a Jakobid showing the internal structure
Representation of a Jakobid

Ecology

[edit]

Jakobids are widely dispersed, having been found in soil, freshwater, and marine habitats, but generally not common.[4][7][6][10] However,environmental DNA surveys suggest that Stygiellidae are abundant in anoxic marine habitats.[6][11] Some are capable of surviving hypersaline and anoxic environments, though the Histionids have only been found in freshwater ecosystems, where they attach themselves to algae or zooplankton.[6] Outside of obligate sessile species, many species of jakobids can attach temporarily to surfaces, using either of the two flagella or the cell body itself.[11]

All known Jakobids are heterotrophic suspension feeders.[4][6] Their primary prey is generally considered to be bacteria, though one species has been observed eating extremely small (< 1 μm) eukaryotic cells.[5][12] Jakobids are generally slow swimmers, with low clearance rates relative to similar organisms.[6]

No study has suggested Jakobids might be pathogenic or toxic.[6]

Mitochondrial DNA

[edit]

Since Jakobids have no current commercial use, most research into Jakobids has focused on their evolutionary significance. Themitochondrial DNA of Jakobids is the most bacteria-like of all known eukaryotic mitochondrial DNA, suggesting that Jakobid mitochondrial genomes might approximate the ancestral mitochondrial genome.[6]

Jakobid mitochondrial DNA is substantially different from most other eukaryotes, especially in terms of the number of genes (nearly 100 in some species) and bacteria-like elements within their genomes.[5][6] Nine of the genes have never been found in eukaryotic mitochondrial DNA. Uniquely, Jakobid mitochondrial genomes code for bacteria-typeRNA polymerase, as opposed to typical eukaryotic mitochondrialRNA polymerase, referred to as “phage-type”, which appears to be viral in origin.[6] This does not necessarily mean that Jakobids are basal to the phylogeny of eukaryotes. While Jakobid mitochondria have genetic features that seem to have developed from bacteria, and apparently lack phage-type RNA, it is possible that other eukaryotic clades lost their bacterial features independently.[13]

Several proposed possibilities might explain the bacterial features of Jakobid mitochondrial DNA. One is that Jakobids diverged very early from the rest of the eukaryotes. This hypothesis depends on whether or not Jakobids are indeed basal to all living eukaryotes, but there is no evidence yet to support that suggestion.[6]

Another hypothesis is that the phage-type RNA polymerase moved from one eukaryote group to another vialateral gene transfer, replacing the bacteria-type enzyme, and simply did not reach the Jakobids. This would not depend on Jakobids being basal to eukaryotes as a whole, but has not been widely studied.[6]

A third possibility is the reverse of the others, suggesting that the phage-type RNA polymerase is the basal one. Under this scenario, Jakobids acquired their bacteria-type RNA polymerase much more recently and that then spread via lateral gene transfer.[6] However, the gene arrangement of Jakobid mitochondrial DNA suggests an ancestral origin of bacteria-type RNA polymerase over a more-recent divergence.[5][6]

One of the proposed scenarios suggests that the common ancestor of eukaryotes had two mitochondrial RNA polymerases, both phage-type and bacteria-type, and Jakobids lost their phage-type polymerase while the rest of the eukaryotes lost the bacteria-type, possibly several times.[6][14] Such a model eliminates the need for Jakobids to be truly basal. One study proposed that the phage-type and bacteria-type polymerases, when present in the same mitochondrion, served different functions, much in the way that the organelles of land plants have two different RNA polymerase enzymes that transcribe different genes.[6]

Taxonomy

[edit]

Jakobida contains five families consisting of mostly free-swimming genera:Jakobidae,Moramonadidae,Andaluciidae, andStygiellidae.[6] The sixth family,Histionidae, is largely populated bysessileloricate genera, and includes the first Jakobids ever described.[6]

Jakobids are amonophyletic group, and are most closely related to theEuglenozoa andHeterolobosea.[5][6][13]

Cladogram of Jakobida[15][16][17]
  • ClassJakobeaCavalier-Smith 1999
    • OrderJakobidaCavalier-Smith 1993
      • Suborder OphirininaYabuki et al. 2018
        • Family AgogoniidaeGalindo et al. 2023
          • GenusAgogoniaGalindo et al. 2023
            • SpeciesA. volutaGalindo et al. 2023
        • Family OphirinidaeYabuki et al. 2018
          • GenusOphirinaYabuki et al. 2018
            • SpeciesO. amphinemaYabuki et al. 2018
            • SpeciesO. chinijaGalindo et al. 2023
      • SuborderAndalucinaCavalier-Smith 2013
        • FamilyAndaluciidaeCavalier-Smith 2013
          • GenusAndaluciaLara et al. 2006
            • SpeciesA. godoyiLara et al. 2006
        • FamilyStygiellidaePánek, Táborský & Čepička 2015[11]
          • GenusVelundellaPánek, Táborský & Čepička 2015
            • SpeciesV. nautaPánek, Táborský & Čepička 2015
            • SpeciesV. trypanoidesPánek, Táborský & Čepička 2015
          • GenusStygiellaPánek, Táborský & Čepička 2015 non Bruand 1853
            • SpeciesS. incarcerata(Bernard, Simpson & Patterson 2000) Pánek, Táborský & Čepička 2015 [Jakoba incarcerataBernard, Simpson & Patterson 2000;Andalucia incarcerata(Bernard, Simpson & Patterson 2000) Lara et al. 2006]
            • SpeciesS. agilisPánek, Táborský & Čepička 2015
            • SpeciesS. crypticaPánek, Táborský & Čepička 2015
            • SpeciesS. adhaerensPánek, Táborský & Čepička 2015
      • Suborder HistoninaCavalier-Smith 1993
        • Species ?Jakoba echidnaO'Kelly 1991
        • Family MoramonadidaeStrassert et al. 2016
          • GenusMoramonasStrassert et al. 2016
            • SpeciesM. marocensisStrassert et al. 2016
          • GenusSeculamonasMarx et al. 2003 nomen nudum
            • SpeciesS. ecuadoriensisMarx et al. 2003 nomen nudum
        • FamilyJakobidaePatterson 1990
          • GenusJakobaPatterson 1990
            • SpeciesJ. bahamiensisBurger & Lang (indeitum)
            • SpeciesJ. libera(Ruinen 1938) Patterson 1990 [Cryptobia liberaRuinen 1938]
        • FamilyHistionidaeFlavin & Nerad 1993
          • GenusHistionaVoigt 1902 [ZachariasiaVoigt 1901 non Lemmermann 1895]
            • Species ?H. planctonicaScourfield 1937
            • SpeciesH. aroidesPascher 1943
            • SpeciesH. velifera(Voigt 1901) Pascher 1943 [Zachariasia veliferaVoigt 1901;Histiona zachariasiiVoigt 1901 nom. illeg.]
          • GenusReclinomonasFlavin & Nerad 1993
            • SpeciesR. americanaFlavin & Nerad 1993
            • SpeciesR. campanula(Penard 1921) Flavin & Nerad 1993 [Histiona campanulaPenard 1921;Stenocodon campanula(Penard 1921) Pascher 1942]
          • GenusStenocodonPascher 1942
            • SpeciesS epiplanktonPascher 1942
          • GenusStomatochonePascher 1942
            • SpeciesS. infundibuliformisPascher 1942
            • SpeciesS. cochlearPascher 1942
            • SpeciesS. excavataPascher 1942
            • SpeciesS. epiplanktonPascher 1942

See also

[edit]

References

[edit]
  1. ^Cavalier-Smith T (1997). "Amoeboflagellates and Mitochondrial Cristae in Eukaryote Evolution: Megasystematics of the New Protozoan Subkingdoms Eozoa and Neozoa".Archiv für Protistenkunde.147:237–258.
  2. ^Cavalier-Smith T (2003)."The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa".International Journal of Systematic and Evolutionary Microbiology.53:1741–1758.doi:10.1099/ijs.0.02548-0.
  3. ^abcO'Kelly, Charles J. (1993). "The Jakobid flagellates: structural features of Jakoba, Reclinomonas, and Histonia and implications for the early diversification of eukaryotes".Journal of Eukaryotic Microbiology.40 (5):627–636.doi:10.1111/j.1550-7408.1993.tb06120.x.S2CID 85938682.
  4. ^abcdStrassert, Jürgen F. H.; Tikhonenov, Denis V.; Pombert, Jean-François; Kolisko, Martin; Tai, Vera; Mylnikov, Alexander P.; Keeling, Patrick J. (2016)."Moramonas marocensis gen. nov., sp. nov.: a jakobid flagellate isolated from desert soil with a bacteria-like, but bloated mitochondrial genome".Open Biology.6 (2): 150239.doi:10.1098/rsob.150239.PMC 4772810.PMID 26887409.
  5. ^abcdefBurger, Gertraud; Gray, Michael W.; Forget, Lise; Lang, B. Franz (2013)."Strikingly Bacteria-Like and Gene-Rich Mitochondrial Genomes throughout Jakobid Protists".Genome Biology and Evolution.5 (2):418–438.doi:10.1093/gbe/evt008.PMC 3590771.PMID 23335123.
  6. ^abcdefghijklmnopqrstuSimpson, Alastair G. B. (2017). "Jakobids". In Archibald, John M.; Simpson, Alastair G. B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Springer, Cham. pp. 973–1003.doi:10.1007/978-3-319-28149-0_6.ISBN 978-3-319-28147-6.
  7. ^abcLara, Enrique; Chatzinotas, Antonis; Simpson, Alastair G. B. (2006). "Andalucia (n. gen.)—the Deepest Branch Within Jakobids (Jakobida; Excavata), Based on Morphological and Molecular Study of a New Flagellate from Soil".Journal of Eukaryotic Microbiology.53 (2):112–120.doi:10.1111/j.1550-7408.2005.00081.x.PMID 16579813.S2CID 19092265.
  8. ^Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (February 2009)."Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"".Proc. Natl. Acad. Sci. U.S.A.106 (10):3859–64.Bibcode:2009PNAS..106.3859H.doi:10.1073/pnas.0807880106.PMC 2656170.PMID 19237557.
  9. ^abSimpson, Alastair G. B.; Patterson, David J. (2001). "On Core Jakobids and Excavate Taxa: The Ultrastructure of Jakoba incarcerata".Journal of Eukaryotic Microbiology.48 (4):480–492.doi:10.1111/j.1550-7408.2001.tb00183.x.PMID 11456326.S2CID 24042909.
  10. ^Lara, Enrique; Berney, Cedric; Ekelund, Flemming; Harms, Hauke; Chatzinotas, Antonis (2007)."Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site"(PDF).Soil Biology and Biochemistry.39 (1):139–148.doi:10.1016/j.soilbio.2006.06.017.
  11. ^abcPánek, Tomáš; Táborský, Petr; Pachiadaki, Maria G.; Hroudová, Miluše; Vlček, Čestmir; Edgcomb, Virginia P.; Čepička, Ivan (2015)."Combined Culture-Based and Culture-Independent Approaches Provide Insights into Diversity of Jakobids, an Extremely Plesiomorphic Eukaryotic Lineage".Frontiers in Microbiology.6: art. 1288.doi:10.3389/fmicb.2015.01288.PMC 4649034.PMID 26635756.
  12. ^Christaki, Urania; Vázquez-Domínguez, Evaristo; Courties, Claude; Lebaron, Phillipe (2005). "Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus andSynechococcus)".Environmental Microbiology.7 (8):1200–1210.doi:10.1111/j.1462-2920.2005.00800.x.PMID 16011757.
  13. ^abRodriguez-Ezpeleta, Naiara; Brinkmann, Henner; Burger, Gertraud; Roger, Andrew J.; Gray, Michael W.; Philippe, Herve; Lang, B. Franz (2007)."Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans".Current Biology.17 (16):1420–1425.doi:10.1016/j.cub.2007.07.036.PMID 17689961.
  14. ^Stechmann, Alexandra; Cavalier-Smith, Thomas (2002). "Rooting the Eukaryote Tree by Using a Derived Gene Fusion".Science.297 (5578):89–91.Bibcode:2002Sci...297...89S.doi:10.1126/science.1071196.PMID 12098695.S2CID 21064445.
  15. ^Yabuki, Akinori; Gyaltshen, Yangtsho; Heiss, Aaron A.; Fujikura, Katsunori; Kim, Eunsoo (2018)."Ophirina amphinema n. gen., n. sp., a New Deeply Branching Discobid with Phylogenetic Afnity to Jakobids".Scientific Reports.8 (16219): 16219.Bibcode:2018NatSR...816219Y.doi:10.1038/s41598-018-34504-6.PMC 6212452.PMID 30385814.
  16. ^Galindo LJ, Prokina K, Torruella G, López-García P, Moreira D (April 2023)."Maturases and Group II Introns in the Mitochondrial Genomes of the Deepest Jakobid Branch".Genome Biology and Evolution.15 (4): evad058.doi:10.1093/gbe/evad058.PMC 10139444.PMID 37029959.
  17. ^Pánek T, Táborský P, Pachiadaki MG, Hroudová M, Vlček Č, Edgcomb VP, Čepička I (2015)."Combined Culture-Based and Culture-Independent Approaches Provide Insights into Diversity of Jakobids, an Extremely Plesiomorphic Eukaryotic Lineage".Frontiers in Microbiology.6: 1288.doi:10.3389/fmicb.2015.01288.PMC 4649034.PMID 26635756.
Eukaryote classification
Amoebozoa
Holomycota
Filozoa
Choanozoa
Haptista
    SAR    
Rhizaria
Alveolata
Myzozoa
Stramenopiles
Bigyra*
Gyrista
Pancryptista
Cryptista
Archaeplastida
(plantssensu lato)
Viridiplantae
(green plants or
plantssensu stricto)
Streptophyta
Discoba
Discicristata
Metamonada*
Malawimonada
Provora
Hemimastigophora
Ancyromonadida
CRuMs
Jakobida
Jakobea
Jakobida
Tsukubamonada
Tsukubea
Tsukubamonadida
Pharyngomonada
Pharyngomonadidea
Tetramitia
Lunosea
Neovahlkampfiea
Eutetramitia
Lyromonadea
Heterolobosea
Postgaardia
Postgaardea
Glycomonada
Diplonemea
Kinetoplastea
Prokinetoplastina
Metakinetoplastina
Euglenida
Petalomonadea
Alistosa
Entosiphonea
Karavia
Spirocuta
Anisonemea
Peranemea
Euglenophyceae
Neolouka
Malawimonadea
Malawimonadida
Planomonada
Planomonadea
Ancyromonadida
Anaeromonada
Anaeromonadea
Fornicata
Carpediemonadea
Eopharyngia
Parabasalia
Pimpavickea
Hypotrichomonadea
Trichomonadea
Spirotrichonymphea
Jakobea
Retrieved from "https://en.wikipedia.org/w/index.php?title=Jakobid&oldid=1262744816"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp