Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

JLO cocycle

From Wikipedia, the free encyclopedia
Cocycle in an entire cyclic cohomology group
This article includes alist of references,related reading, orexternal links,but its sources remain unclear because it lacksinline citations. Please helpimprove this article byintroducing more precise citations.(November 2018) (Learn how and when to remove this message)

Innoncommutative geometry, theJaffe- Lesniewski-Osterwalder (JLO) cocycle (named afterArthur Jaffe, Andrzej Lesniewski, andKonrad Osterwalder) is acocycle in an entirecyclic cohomology group. It is a non-commutative version of the classicChern character of the conventionaldifferential geometry. In noncommutative geometry, the concept of a manifold is replaced by a noncommutative algebraA{\displaystyle {\mathcal {A}}} of "functions" on the putative noncommutative space. The cyclic cohomology of the algebraA{\displaystyle {\mathcal {A}}} contains the information about the topology of that noncommutative space, very much as thede Rham cohomology contains the information about the topology of a conventional manifold.[1][2]

The JLO cocycle is associated with a metric structure of non-commutative differential geometry known as aθ{\displaystyle \theta }-summablespectral triple (also known as aθ{\displaystyle \theta }-summable Fredholm module). It was first introduced in a 1988 paper by Jaffe, Lesniewski, and Osterwalder.[3]

θ{\displaystyle \theta }-summable spectral triples

[edit]

The input to the JLO construction is aθ{\displaystyle \theta }-summable spectral triple. These triples consists of the following data:

(a) AHilbert spaceH{\displaystyle {\mathcal {H}}} such thatA{\displaystyle {\mathcal {A}}} acts on it as an algebra of bounded operators.

(b) AZ2{\displaystyle \mathbb {Z} _{2}}-gradingγ{\displaystyle \gamma } onH{\displaystyle {\mathcal {H}}},H=H0H1{\displaystyle {\mathcal {H}}={\mathcal {H}}_{0}\oplus {\mathcal {H}}_{1}}. We assume that the algebraA{\displaystyle {\mathcal {A}}} is even under theZ2{\displaystyle \mathbb {Z} _{2}}-grading, i.e.aγ=γa{\displaystyle a\gamma =\gamma a}, for allaA{\displaystyle a\in {\mathcal {A}}}.

(c) A self-adjoint (unbounded) operatorD{\displaystyle D}, called theDirac operator such that

(i)D{\displaystyle D} is odd underγ{\displaystyle \gamma }, i.e.Dγ=γD{\displaystyle D\gamma =-\gamma D}.
(ii) EachaA{\displaystyle a\in {\mathcal {A}}} maps the domain ofD{\displaystyle D},Dom(D){\displaystyle \mathrm {Dom} \left(D\right)} into itself, and the operator[D,a]:Dom(D)H{\displaystyle \left[D,a\right]:\mathrm {Dom} \left(D\right)\to {\mathcal {H}}} is bounded.
(iii)tr(etD2)<{\displaystyle \mathrm {tr} \left(e^{-tD^{2}}\right)<\infty }, for allt>0{\displaystyle t>0}.

A classic example of aθ{\displaystyle \theta }-summable spectral triple arises as follows. LetM{\displaystyle M} be a compactspin manifold,A=C(M){\displaystyle {\mathcal {A}}=C^{\infty }\left(M\right)}, the algebra of smooth functions onM{\displaystyle M},H{\displaystyle {\mathcal {H}}} the Hilbert space of square integrable forms onM{\displaystyle M}, andD{\displaystyle D} the standard Dirac operator.

The cocycle

[edit]

Given aθ{\displaystyle \theta }-summable spectral triple, the JLO cocycleΦt(D){\displaystyle \Phi _{t}\left(D\right)} associated to the triple is a sequence

Φt(D)=(Φt0(D),Φt2(D),Φt4(D),){\displaystyle \Phi _{t}\left(D\right)=\left(\Phi _{t}^{0}\left(D\right),\Phi _{t}^{2}\left(D\right),\Phi _{t}^{4}\left(D\right),\ldots \right)}

of functionals on the algebraA{\displaystyle {\mathcal {A}}}, where

Φt0(D)(a0)=tr(γa0etD2),{\displaystyle \Phi _{t}^{0}\left(D\right)\left(a_{0}\right)=\mathrm {tr} \left(\gamma a_{0}e^{-tD^{2}}\right),}
Φtn(D)(a0,a1,,an)=0s1snttr(γa0es1D2[D,a1]e(s2s1)D2[D,an]e(tsn)D2)ds1dsn,{\displaystyle \Phi _{t}^{n}\left(D\right)\left(a_{0},a_{1},\ldots ,a_{n}\right)=\int _{0\leq s_{1}\leq \ldots s_{n}\leq t}\mathrm {tr} \left(\gamma a_{0}e^{-s_{1}D^{2}}\left[D,a_{1}\right]e^{-\left(s_{2}-s_{1}\right)D^{2}}\ldots \left[D,a_{n}\right]e^{-\left(t-s_{n}\right)D^{2}}\right)ds_{1}\ldots ds_{n},}

forn=2,4,{\displaystyle n=2,4,\dots }. The cohomology class defined byΦt(D){\displaystyle \Phi _{t}\left(D\right)} is independent of the value oft{\displaystyle t}

See also

[edit]

References

[edit]
  1. ^Jaffe, Arthur (1997-09-08). "Quantum Harmonic Analysis and Geometric Invariants".arXiv:physics/9709011.
  2. ^Higson, Nigel (2002).K-Theory and Noncommutative Geometry(PDF). Penn State University. pp. Lecture 4. Archived fromthe original(PDF) on 2010-06-24.
  3. ^Jaffe, Arthur; Lesniewski, Andrzej; Osterwalder, Konrad (1988)."Quantum $K$-theory. I. The Chern character".Communications in Mathematical Physics.118 (1):1–14.Bibcode:1988CMaPh.118....1J.doi:10.1007/BF01218474.ISSN 0010-3616.
Retrieved from "https://en.wikipedia.org/w/index.php?title=JLO_cocycle&oldid=1255287253"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp