Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Itanium

From Wikipedia, the free encyclopedia
(Redirected fromItanium 2)
Family of 64-bit Intel microprocessors
Further information on the instruction set architecture, not chip implementations:IA-64
Itanium
General information
LaunchedJune 2001; 24 years ago (2001-06)[a]
DiscontinuedJanuary 30, 2020; 5 years ago (2020-01-30)[1]
Marketed byIntel
Designed byIntel
Hewlett-Packard
Common manufacturer
  • Intel
Performance
Max.CPUclock rate733 MHz to 2.66 GHz
FSB speeds266 MT/s to 667 MT/s
QPI speeds4.8 GT/s to 6.4 GT/s
Data width64 bits
Address width64 bits
Virtual address width64 bits
Cache
L1cacheUp to 32 KB per core (data)
Up to 32 KB per core (instructions)
L2 cacheUp to 256 KB per core (data)
Up to 1 MB per core (instructions)
L3 cacheUp to 32 MB
L4 cache32 MB (Hondo only)
Architecture and classification
ApplicationHigh-end/mission critical servers
High performance computing
High-end workstations
Technology node180 nm to 32 nm
MicroarchitectureP7
Instruction setIA-64
Extensions
Physical specifications
Cores
  • 1, 2, 4 or 8
Memory (RAM)
  • Up to 1.5 TB
  • Up toDDR3 withECC support
Packages
Sockets
Products, models, variants
Core names
  • Merced
  • McKinley
  • Madison 3M/6M/9M
  • Deerfield (Madison LV)
  • Hondo[b]
  • Fanwood (Madison DP)
  • Montecito
  • Montvale
  • Tukwila
  • Poulson
  • Kittson
Models
  • Itanium
  • Itanium 2
  • Itanium 9000 series
  • Itanium 9100 series
  • Itanium 9300 series
  • Itanium 9500 series
  • Itanium 9700 series
Support status
Unsupported

Itanium (/ˈtniəm/;eye-TAY-nee-əm) is a discontinued family of64-bitIntelmicroprocessors that implement theIntel Itanium architecture (formerly called IA-64). The Itanium architecture originated atHewlett-Packard (HP), and was later jointly developed by HP and Intel. Launching in June 2001, Intel initially marketed the processors forenterprise servers andhigh-performance computing systems. In the concept phase, engineers said "we could run circles around PowerPC...we could kill the x86". Early predictions were that IA-64 would expand to the lower-end servers, supplantingXeon, and eventually penetrate into thepersonal computers, eventually to supplantreduced instruction set computing (RISC) andcomplex instruction set computing (CISC) architectures for all general-purpose applications.

When first released in 2001 after a decade of development, Itanium's performance was disappointing compared to better-established RISC and CISC processors. Emulation to run existing x86 applications and operating systems was particularly poor. Itanium-based systems were produced by HP and its successorHewlett Packard Enterprise (HPE) as theIntegrity Servers line, and by several other manufacturers. In 2008, Itanium was the fourth-most deployed microprocessor architecture forenterprise-class systems, behindx86-64,Power ISA, andSPARC.[6]

In February 2017, Intel released the final generation, Kittson, to test customers, and in May began shipping in volume.[7][8] It was only used in mission-critical servers from HPE.

In 2019, Intel announced that new orders for Itanium would be accepted until January 30, 2020, and shipments would cease by July 29, 2021.[1] This took place on schedule.[9]

Itanium never sold well outside enterprise servers and high-performance computing systems, and the architecture was ultimately supplanted by competitor AMD'sx86-64 (also called AMD64) architecture. x86-64 is a compatible extension to the 32-bit x86 architecture, implemented by, for example, Intel's own Xeon line andAMD'sOpteron line. By 2009, most servers were being shipped with x86-64 processors, and they dominate the low cost desktop and laptop markets which were not initially targeted by Itanium.[10] In an article titled "Intel's Itanium is finally dead: The Itanic sunken by the x86 juggernaut" Techspot declared "Itanium's promise ended up sunken by a lack of legacy 32-bit support and difficulties in working with the architecture for writing and maintaining software", while the dream of a single dominantISA would be realized by the AMD64 extensions.[11]

History

[edit]

Development: 1989–2001

[edit]

Inception: 1989–1994

[edit]

In 1989, HP started to research an architecture that would exceed the expected limits of thereduced instruction set computer (RISC) architectures caused by the great increase in complexity needed for executing multipleinstructions per cycle due to the need for dynamicdependency checking and preciseexception handling.[c] HP hiredBob Rau ofCydrome andJosh Fisher ofMultiflow, the pioneers ofvery long instruction word (VLIW) computing. One VLIW instruction word can contain several independentinstructions, which can be executed in parallel without having to evaluate them for independence. Acompiler must attempt to findvalid combinations of instructions that can be executed at the same time, effectively performing the instruction scheduling that conventionalsuperscalar processors must do in hardware at runtime.

HP researchers modified the classic VLIW into a new type of architecture, later namedExplicitly Parallel Instruction Computing (EPIC), which differs by: having template bits which show which instructions are independent inside and between the bundles of three instructions, which enables the explicitly parallel execution of multiple bundles and increasing the processors'issue width without the need to recompile; bypredication of instructions to reduce the need forbranches; and by full interlocking to eliminate thedelay slots. In EPIC the assignment ofexecution units to instructions and the timing of their issuing can be decided by hardware, unlike in the classic VLIW. HP intended to use these features in PA-WideWord, the planned successor to theirPA-RISC ISA. EPIC was intended to provide the best balance between the efficient use of silicon area and electricity, and general-purpose flexibility.[13][14] In 1993 HP held an internal competition to design the best (simulated) microarchitectures of a RISC and an EPIC type, led by Jerry Huck andRajiv Gupta respectively. The EPIC team won, with over double the simulated performance of the RISC competitor.[15]

At the same time Intel was also looking for ways to make better ISAs. In 1989 Intel had launched thei860, which it marketed for workstations, servers, andiPSC andParagon supercomputers. It differed from other RISCs by being able to switch between the normal single instruction per cycle mode, and a mode where pairs of instructions are explicitly defined as parallel so as to execute them in the same cycle without having to do dependency checking. Another distinguishing feature were the instructions for an exposed floating-point pipeline, that enabled the tripling of throughput compared to the conventional floating-point instructions. Both of these features were left largely unused because compilers didn't support them, a problem that later challenged Itanium too. Without them, i860's parallelism (and thus performance) was no better than other RISCs, so it failed in the market. Itanium would adopt a more flexible form of explicit parallelism than i860 had.[16]

In November 1993 HP approached Intel, seeking collaboration on an innovative future architecture.[17][19] At the time Intel was looking to extend x86 to 64 bits in a processor codenamed P7, which they found challenging.[20] Later Intel claimed that four different design teams had explored 64-bit extensions, but each of them concluded that it was not economically feasible.[21] At the meeting with HP, Intel's engineers were impressed when Jerry Huck andRajiv Gupta presented the PA-WideWord architecture they had designed to replacePA-RISC. "When we saw WideWord, we saw a lot of things we had only been looking at doing, already in their full glory", said Intel'sJohn Crawford, who in 1994 became the chief architect of Merced, and who had earlier argued against extending the x86 with P7. HP's Gupta recalled: "I looked Albert Yu [Intel's general manager for microprocessors] in the eyes and showed him we could run circles aroundPowerPC, that we could kill PowerPC, that we could kill the x86."[22] Soon Intel and HP started conducting in-depth technical discussions at an HP office, where each side had six[25] engineers who exchanged and discussed both companies' confidential architectural research. They then decided to use not only PA-WideWord, but also the more experimentalHP Labs PlayDoh as the source of their joint future architecture.[12][26] Convinced of the superiority of the new project, in 1994 Intel canceled their existing plans for P7.

In June 1994 Intel and HP announced their joint effort to make a new ISA that would adopt ideas of Wide Word and VLIW. Yu declared: "If I were competitors, I'd be really worried. If you think you have a future, you don't."[22] On P7's future, Intel said the alliance would impact it, but "it is not clear" whether it would "fully encompass the new architecture".[27][28]Later the same month, Intel said that some of the first features of the new architecture would start appearing on Intel chips as early as the P7, but the full version would appear sometime later.[29]In August 1994EE Times reported that Intel told investors that P7 was being re-evaluated and possibly canceled in favor of the HP processor. Intel immediately issued a clarification, saying that P7 is still being defined, and that HP may contribute to its architecture. Later it was confirmed that the P7 codename had indeed passed to the HP-Intel processor. By early 1996 Intel revealed its new codename,Merced.[30][31]

HP believed that it was no longer cost-effective for individual enterprise systems companies such as itself to develop proprietary microprocessors, so it partnered with Intel in 1994 to develop the IA-64 architecture, derived from EPIC. Intel was willing to undertake the very large development effort on IA-64 in the expectation that the resulting microprocessor would be used by the majority of enterprise systems manufacturers. HP and Intel initiated a large joint development effort with a goal of delivering the first product, Merced, in 1998.[14]

Design and delays: 1994–2001

[edit]

Merced was designed by a team of 500, which Intel later admitted was too inexperienced, with many recent college graduates. Crawford (Intel) was the chief architect, while Huck (HP) held the second position. Early in the development HP and Intel had a disagreement where Intel wanted more dedicated hardware for more floating-point instructions. HP prevailed upon the discovery ofa floating-point hardware bug in Intel'sPentium. When Merced wasfloorplanned for the first time in mid-1996, it turned out to be far too large, "this was a lot worse than anything I'd seen before", said Crawford. The designers had to reduce the complexity (and thus performance) of subsystems, including the x86 unit and cutting the L2 cache to 96 KB.[d] Eventually it was agreed that the size target could only be reached by using the180 nm process instead of the intended250 nm. Later problems emerged with attempts to speed up the critical paths without disturbing the other circuits' speed. Merced wastaped out on 4 July 1999, and in August Intel produced the first complete test chip.[22]

The expectations for Merced waned over time as delays and performance deficiencies emerged, shifting the focus and onus for success onto the HP-led second Itanium design, codenamedMcKinley. In July 1997 the switch to the180 nm process delayed Merced into the second half of 1999.[32] Shortly before the reveal ofEPIC at the Microprocessor Forum in October 1997, an analyst of theMicroprocessor Report said that Itanium would "not show the competitive performance until 2001. It will take the second version of the chip for the performance to get shown".[33] At the Forum, Intel'sFred Pollack originated the "wait for McKinley" mantra when he said that it would double the Merced's performance and would "knock your socks off",[34][35] while using the same 180 nm process as Merced.[36] Pollack also said that Merced's x86 performance would be lower than the fastest x86 processors, and that x86 would "continue to grow at its historical rates".[34] Intel said that IA-64 won't have much presence in the consumer market for 5 to 10 years.[37]

Later it was reported that HP's motivation when starting to design McKinley in 1996 was to have more control over the project so as to avoid the issues affecting Merced's performance and schedule.[38][39] The design team finalized McKinley's project goals in 1997.[40] In late May 1998 Merced was delayed to mid-2000, and by August 1998 analysts were questioning its commercial viability, given that McKinley would arrive shortly after with double the performance, as delays were causing Merced to turn into simply a development vehicle for the Itanium ecosystem. The "wait for McKinley" narrative was becoming prevalent.[41] The same day it was reported that due to the delays, HP would extend its line of PA-RISCPA-8000 series processors from PA-8500 to as far as PA-8900.[42] In October 1998 HP announced its plans for four more generations of PA-RISC processors, with PA-8900 set to reach 1.2 GHz in 2003.[43]

By March 1999 some analysts expected Merced to ship in volume only in 2001, but the volume was widely expected to be low as most customers would wait for McKinley.[38] In May 1999, two months before Merced'stape-out, an analyst said that failure to tape-out before July would result in another delay.[44] In July 1999, upon reports that the first silicon would be made in late August, analysts predicted a delay to late 2000, and came into agreement that Merced would be used chiefly for debugging and testing the IA-64 software. Linley Gwennap ofMPR said of Merced that "at this point, everyone is expecting it's going to be late and slow, and the real advance is going to come from McKinley. What this does is puts a lot more pressure on McKinley and for that team to deliver".[45] By then, Intel had revealed that Merced would be initially priced at $5000.[46] In August 1999 HP advised some of their customers to skip Merced and wait for McKinley.[47] By July 2000 HP told the press that the first Itanium systems would be for niche uses, and that "You're not going to put this stuff near your data center for several years."; HP expected its Itanium systems to outsell the PA-RISC systems only in 2005.[48] The same July Intel told of another delay, due to astepping change to fix bugs. Now only "pilot systems" would ship that year, while the general availability was pushed to the "first half of 2001". Server makers had largely forgone spending on the R&D for the Merced-based systems, instead using motherboards or whole servers of Intel's design. To foster a wide ecosystem, by mid-2000 Intel had provided 15,000 Itaniums in 5,000 systems to software developers and hardware designers.[49] In March 2001 Intel said Itanium systems would begin shipping to customers in the second quarter, followed by a broader deployment in the second half of the year. By then even Intel publicly acknowledged that many customers would wait for McKinley.[50]

Itanium Server Sales forecast history[51][52]

Expectations

[edit]

During development, Intel, HP, and industry analysts predicted that IA-64 would dominate first in 64-bit servers and workstations, then expand to the lower-end servers, supplanting Xeon, and finally penetrate into thepersonal computers, eventually to supplant RISC andcomplex instruction set computing (CISC) architectures for all general-purpose applications, though not replacing x86 "for the foreseeable future" according to Intel.[53][15][54][55][56][57] In 1997-1998, Intel CEOAndy Grove predicted that Itanium would not come to the desktop computers for four of five years after launch, and said "I don't see Merced appearing on a mainstream desktop inside of a decade".[58][15] In contrast, Itanium was expected to capture 70% of the 64-bit server market in 2002.[59] Already in 1998 Itanium's focus on the high end of the computer market was criticized for making it vulnerable to challengers expanding from the lower-end market segments, but many people in the computer industry feared voicing doubts about Itanium in the fear of Intel's retaliation.[15]Compaq andSilicon Graphics decided to abandon further development of theAlpha andMIPS architectures respectively in favor of migrating to IA-64.[60]

Several groups ported operating systems for the architecture, includingMicrosoft Windows,OpenVMS,Linux,HP-UX,Solaris,[61][62][63]Tru64 UNIX,[60] andMonterey/64.[64]The latter three were canceled before reaching the market. By 1997, it was apparent that the IA-64 architecture and the compiler were much more difficult to implement than originally thought, and the delivery timeframe of Merced began slipping.[45]

Intel announced the official name of the processor,Itanium, on October 4, 1999.[65]Within hours, the nameItanic had been coined on aUsenet newsgroup, a reference to theRMSTitanic, the "unsinkable"ocean liner that sank on her maiden voyage in 1912.[66] "Itanic" was then used often byThe Register,[67] and others,[68][69][70] to imply that the multibillion-dollar investment in Itanium—and the early hype associated with it—would be followed by its relatively quick demise.

Itanium (Merced): 2001

[edit]
Itanium (Merced)
Itanium processor
General information
Launched29 May–June 2001
Discontinued10 April 2003[71]
Common manufacturer
  • Intel
Performance
Max.CPUclock rate733  to 800 MHz
FSB speeds266 MT/s
Cache
L2 cache96 KB
L3 cache2 or 4 MB
Physical specifications
Cores
  • 1
Socket

After having sampled 40,000 chips to the partners, Intel launched Itanium on May 29, 2001, with first OEM systems from HP, IBM and Dell shipping to customers in June.[72][73] By then Itanium's performance was not superior to competing RISC and CISC processors.[74]Itanium competed at the low-end (primarily four-CPU and smaller systems) with servers based onx86 processors, and at the high-end withIBM POWER andSun MicrosystemsSPARC processors. Intel repositioned Itanium to focus on the high-end business andHPC computing markets, attempting to duplicate the x86's successful "horizontal" market (i.e., single architecture, multiple systems vendors). The success of this initial processor version was limited to replacing thePA-RISC in HP systems,Alpha in Compaq systems andMIPS inSGI systems, though IBM also delivered a supercomputer based on this processor.[75]POWER and SPARC remained strong, while the32-bit x86 architecture continued to grow into the enterprise space, building on the economies of scale fueled by its enormous installed base.

Only a few thousand systems using the originalMerced Itanium processor were sold, due to relatively poor performance, high cost and limited software availability.[76] Recognizing that the lack of software could be a serious problem for the future, Intel made thousands of these early systems available to independent software vendors (ISVs) to stimulate development. HP and Intel brought the next-generation Itanium 2 processor to the market a year later. Few of the microarchitectural features of Merced would be carried over to all the subsequent Itanium designs, including the 16+16 KB L1 cache size and the 6-wide (two-bundle) instruction decoding.

Itanium 2 (McKinley and Madison): 2002–2006

[edit]
Itanium 2 (McKinley and Madison)
Itanium 2 processor
General information
Launched8 July 2002
Discontinued16 November 2007[80]
Designed byHP and Intel
Product codeMcKinley, Madison, Deerfield, Madison 9M, Fanwood
Performance
Max.CPUclock rate900  to 1667 MHz
FSB speeds400  to 667 MT/s
Cache
L2 cache256 KB
L3 cache1.5–9 MB
Architecture and classification
Technology node180 nm to130 nm
Physical specifications
Cores
  • 1
Socket

TheItanium 2 processor was released in July 2002, and was marketed for enterprise servers rather than for the whole gamut of high-end computing. The first Itanium 2, code-namedMcKinley, was jointly developed by HP and Intel, led by the HP team atFort Collins, Colorado,taping out in December 2000. It relieved many of the performance problems of the original Itanium processor, which were mostly caused by an inefficient memory subsystem by approximately halving the latency and doubling the fill bandwidth of each of the three levels of cache, while expanding the L2 cache from 96 to 256 KB. Floating-point data is excluded from the L1 cache, because the L2 cache's higher bandwidth is more beneficial to typical floating-point applications than low latency. The L3 cache is now integrated on-chip rather than on a separate die, tripling in associativity and doubling in bus width. McKinley also greatly increases the number of possible instruction combinations in a VLIW-bundle and reaches 25% higher frequency, despite having only eight pipeline stages versus Merced's ten.[81][40]

McKinley contains 221 million transistors (of which 25 million are for logic and 181 million for L3 cache), measured 19.5 mm by 21.6 mm (421 mm2) and was fabricated in a 180 nm, bulk CMOS process with six layers of aluminium metallization.[82][83][84] In May 2003 it was disclosed that some McKinley processors can suffer from a critical-path erratum leading to a system's crashing. It can be avoided by lowering the processor frequency to 800 MHz.[85]

In 2003,AMD released theOpteron CPU, which implements its own64-bit architecture calledAMD64. The Opteron gained rapid acceptance in the enterprise server space because it provided an easy upgrade fromx86. Under the influence of Microsoft, Intel responded by implementing AMD's x86-64instruction set architecture instead of IA-64 in itsXeon microprocessors in 2004, resulting in a new industry-widede facto standard.[60]

In 2003, Intel released a new Itanium 2 family member, codenamedMadison, initially with up to 1.5 GHz frequency and 6 MB of L3 cache. TheMadison 9M chip released in November 2004 had 9 MB of L3 cache and frequency up to 1.6 GHz, reaching 1.67 GHz in July 2005. Both chips used a 130 nm process and were the basis of all new Itanium processors until Montecito was released in July 2006, specificallyDeerfield being a low wattageMadison, andFanwood being a version ofMadison 9M for lower-end servers with one or two CPU sockets.

In November 2005, the major Itanium server manufacturers joined with Intel and a number of software vendors to form the Itanium Solutions Alliance to promote the architecture and accelerate the software porting effort.[86]The Alliance announced that its members would invest $10 billion in the Itanium Solutions Alliance by the end of the decade.[87]

Itanium 2 9000 and Itanium 9100: 2006 and 2007

[edit]
9000 and 9100 series
Intel Itanium 2 9000 (heat spreaderremoved)
General information
Launched18 July 2006
Discontinued26 August 2011[88]
Product codeMontecito, Montvale
Performance
Max.CPUclock rate1.4 GHz to 1.67 GHz
FSB speeds400  to 667 MT/s
Cache
L2 cache256 KB (D) + 1 MB (I)
L3 cache6–24 MB
Architecture and classification
Technology node90 nm
Physical specifications
Cores
  • 1 or 2
Socket
Main article:Montecito (processor)

In early 2003, due to the success of IBM's dual-corePOWER4, Intel announced that the first90 nm Itanium processor, codenamedMontecito, would be delayed to 2005 so as to change it into a dual-core, thus merging it with theChivano project.[89][90] In September 2004 Intel demonstrated a working Montecito system, and claimed that the inclusion ofhyper-threading increases Montecito's performance by 10-20% and that its frequency could reach 2 GHz.[91][92] After a delay to "mid-2006" and reduction of the frequency to 1.6 GHz,[93] on July 18 Intel deliveredMontecito (marketed as theItanium 2 9000 series), adual-core processor with aswitch-on-event multithreading and split 256 KB + 1 MB L2 caches that roughly doubled the performance and decreased the energy consumption by about 20 percent.[94] At 596 mm² die size and 1.72 billion transistors it was the largest microprocessor at the time. It was supposed to featureFoxton Technology, a very sophisticated frequency regulator, which failed to pass validation and was thus not enabled for customers.

Intel released theItanium 9100 series, codenamedMontvale, in November 2007, retiring the "Itanium 2" brand.[95] Originally intended to use the65 nm process,[96] it was changed into a fix of Montecito, enabling the demand-based switching (likeEIST) and up to 667 MT/sfront-side bus, which were intended for Montecito, plus a core-levellockstep.[91] Montecito and Montvale were the last Itanium processors in which designHewlett-Packard's engineering team at Fort Collins had a key role, as the team was subsequently transferred to Intel's ownership.[97]

Itanium 9300 (Tukwila): 2010

[edit]
9300 series
General information
Launched8 February 2010
Discontinued2nd quarter of 2014
Performance
Max.CPUclock rate1.33  to 1.73 GHz
Cache
L2 cache256 KB (D) + 512 KB (I)
L3 cache10–24 MB
Architecture and classification
Technology node65 nm
Physical specifications
Cores
  • 2 or 4
Socket
9500 and 9700 series
General information
Launched8 November 2012
Discontinued30 January 2020[98]
Product codePoulson, Kittson
Performance
Max.CPUclock rate1.73  to 2.67 GHz
Cache
L2 cache256 KB (D) + 512 KB (I)
L3 cache20–32 MB
Architecture and classification
Technology node32 nm
Physical specifications
Cores
  • 4 or 8
Socket
Intel Itanium 9300 CPU
Intel Itanium 9300 CPU LGA
Intel Itanium 9300 Socket Intel LGA 1248
Intel Itanium 9300 with cap removed
Main article:Tukwila (processor)

The original code name for the first Itanium with more than two cores was Tanglewood, but it was changed to Tukwila in late 2003 due to trademark issues.[99][100] Intel discussed a "middle-of-the-decade Itanium" to succeed Montecito, achieving ten times the performance of Madison.[101][90] It was being designed by the famedDEC Alpha team and was expected have eight new multithreading-focused cores. Intel claimed "a lot more than two" cores and more than seven times the performance of Madison.[102][103][104] In early 2004 Intel told of "plans to achieve up to double the performance over the Intel Xeon processor family at platform cost parity by 2007".[105] By early 2005 Tukwila was redefined, now having fewer cores but focusing on single-threaded performance and multiprocessor scalability.[106]

In March 2005, Intel disclosed some details of Tukwila, the next Itanium processor after Montvale, to be released in 2007. Tukwila would havefour processor cores and would replace the Itanium bus with a newCommon System Interface, which would also be used by a new Xeon processor.[107] Tukwila was to have a "common platform architecture" with a Xeon codenamedWhitefield,[96] which was canceled in October 2005,[108] when Intel revised Tukwila's delivery date to late 2008.[109] In May 2009, the schedule for Tukwila, was revised again, with the release to OEMs planned for the first quarter of 2010.[110]TheItanium 9300 series processor, codenamedTukwila, was released on February 8, 2010, with greater performance and memory capacity.[111]

The device uses a 65 nm process, includes two to four cores, up to 24 MB on-die caches,Hyper-Threading technology and integrated memory controllers. It implementsdouble-device data correction, which helps to fix memory errors. Tukwila also implementsIntel QuickPath Interconnect (QPI) to replace the Itanium bus-based architecture. It has a peak interprocessor bandwidth of 96 GB/s and a peak memory bandwidth of 34 GB/s. With QuickPath, the processor has integrated memory controllers and interfaces the memory directly, using QPI interfaces to directly connect to other processors and I/O hubs. QuickPath is also used on Intelx86-64 processors using theNehalem microarchitecture, which possibly enabled Tukwila and Nehalem to use the same chipsets.[112]Tukwila incorporates two memory controllers, each of which has two links to Scalable Memory Buffers, which in turn support multipleDDR3DIMMs,[113]much like the Nehalem-based Xeon processor code-namedBeckton.[114]

HP vs. Oracle

[edit]

During the 2012Hewlett-Packard Co. v. Oracle Corp. support lawsuit, court documents unsealed by a Santa Clara County Court judge revealed that in 2008, Hewlett-Packard had paid Intel around $440 million to keep producing and updating Itanium microprocessors from 2009 to 2014. In 2010, the two companies signed another $250 million deal, which obliged Intel to continue making Itanium CPUs for HP's machines until 2017. Under the terms of the agreements, HP had to pay for chips it gets from Intel, while Intel launches Tukwila, Poulson, Kittson, and Kittson+ chips in a bid to gradually boost performance of the platform.[115][116]

Itanium 9500 (Poulson): 2012

[edit]

Intel first mentioned Poulson on March 1, 2005, at the SpringIDF.[117] In June 2007 Intel said that Poulson would use a32 nm process technology, skipping the45 nm process.[118] This was necessary for catching up after Itanium's delays left it at90 nm competing against65 nm and45 nm processors.

AtISSCC 2011, Intel presented a paper called "A 32nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission Critical Servers."[119][120]Analyst David Kanter speculated that Poulson would use a new microarchitecture, with a more advanced form of multithreading that uses up to two threads, to improve performance for single threaded and multithreaded workloads.[121]Some information was also released at the Hot Chips conference.[122][123]

Information presented improvements in multithreading, resiliency improvements (Intel Instruction Replay RAS) and few new instructions (thread priority, integer instruction, cache prefetching, and data access hints).

Poulson was released on November 8, 2012, as theItanium 9500 series processor. It is the follow-on processor to Tukwila. It features eight cores and has a 12-wide issue architecture, multithreading enhancements, and new instructions to take advantage of parallelism, especially in virtualization.[112][124][125]The Poulson L3 cache size is 32 MB and common for all cores, not divided like previously. L2 cache size is 6 MB, 512 I KB, 256 D KB per core.[119] Die size is 544 mm², less than its predecessor Tukwila (698.75 mm²).[126][127]

Intel's Product Change Notification (PCN) 111456-01 lists four models of Itanium 9500 seriesCPU, which was later removed in a revised document.[128] The parts were later listed in Intel's Material Declaration Data Sheets (MDDS) database.[129] Intel later posted Itanium 9500 reference manual.[130]

The models are the following:[128][131]

Processor numberFrequencyCache
95201.73 GHz20MB
95402.13 GHz24MB
95502.40 GHz32MB
95602.53 GHz32MB

Itanium 9700 (Kittson): 2017

[edit]

Intel had committed to at least one more generation after Poulson, first mentioning Kittson on 14 June 2007.[118] Kittson was supposed to be on a 22 nm process and use the sameLGA2011 socket and platform asXeons.[132][133][134] On 31 January 2013 Intel issued an update to their plans for Kittson: it would have the sameLGA1248 socket and 32 nm process as Poulson, thus effectively halting any further development of Itanium processors.[135]

In April 2015, Intel, although it had not yet confirmed formal specifications, did confirm that it continued to work on the project.[136] Meanwhile, the aggressively multicore Xeon E7 platform displaced Itanium-based solutions in the Intel roadmap.[137] EvenHewlett-Packard, the main proponent and customer for Itanium, began sellingx86-basedSuperdome andNonStop servers, and started to treat the Itanium-based versions as legacy products.[138][139]

Intel officially launched theItanium 9700 series processor family on May 11, 2017.[140][8] Kittson has no microarchitecture improvements over Poulson; despite nominally having a different stepping, it is functionally identical with the 9500 series, even having exactly the same bugs, the only difference being the 133 MHz higher frequency of 9760 and 9750 over 9560 and 9550 respectively.[141][142]

Intel announced that the 9700 series would be the last Itanium chips produced.[7][8]

The models are:[143]

Processor numberCoresThreadsFrequencyCache
9720481.73 GHz20 MB
97408162.13 GHz24 MB
9750482.53 GHz32 MB
97608162.66 GHz32 MB

Market share

[edit]

Compared to itsXeon family of server processors, Itanium was never a high-volume product for Intel. Intel does not release production numbers, but one industry analyst estimated that the production rate was 200,000 processors per year in 2007.[144]

According toGartner Inc., the total number of Itanium servers (not processors) sold by all vendors in 2007, was about 55,000 (It is unclear whether clustered servers counted as a single server or not.). This compares with 417,000 RISC servers (spread across all RISC vendors) and 8.4 million x86 servers.IDC reports that a total of 184,000 Itanium-based systems were sold from 2001 through 2007. For the combined POWER/SPARC/Itanium systems market, IDC reports that POWER captured 42% of revenue and SPARC captured 32%, while Itanium-based system revenue reached 26% in the second quarter of 2008.[145]According to an IDC analyst, in 2007, HP accounted for perhaps 80% of Itanium systems revenue.[94]According to Gartner, in 2008, HP accounted for 95% of Itanium sales.[146] HP's Itanium system sales were at an annual rate of $4.4Bn at the end of 2008, and declined to $3.5Bn by the end of 2009,[10]compared to a 35% decline in UNIX system revenue for Sun and an 11% drop for IBM, with an x86-64 server revenue increase of 14% during this period.

In December 2012, IDC released a research report stating that Itanium server shipments would remain flat through 2016, with annual shipment of 26,000 systems (a decline of over 50% compared to shipments in 2008).[147]

Hardware support

[edit]

Systems

[edit]
Server manufacturers' Itanium products
CompanyLast product
namefromtonameCPUs
HP/HPE20012021Integrity1–256
Compaq20012002ProLiant 5901–4
IBM20012005System x4551–16
Dell2001PowerEdge 72501–4
Hitachi20012008BladeSymphony
1000
1–8
Unisys20022009ES7000/one1–32
SGI20012011Altix 40001–2048
Fujitsu2005PRIMEQUEST1–32
Bull2002pre-2015NovaScale 94101–32
NEC20022012nx7700i1–256
Inspur2010pre-2015TS100002–1024
Huawei2012pre-2015??

By 2006, HP manufactured at least 80% of all Itanium systems, and sold 7,200 in the first quarter of 2006.[148]The bulk of systems sold wereenterprise servers and machines for large-scale technical computing, with an average selling price per system in excess of US$200,000. A typical system used eight or more Itanium processors.

By 2012, only a few manufacturers offered Itanium systems, includingHP,Bull,NEC,Inspur andHuawei. In addition,Intel offered a chassis that could be used bysystem integrators to build Itanium systems.[149]

By 2015, only HP supplied Itanium-based systems.[136] When HP split in late 2015, Itanium systems (branded asIntegrity)[150] were handled byHewlett Packard Enterprise (HPE), with a major update in 2017 (Integrity i6, and HP-UX 11i v3 Update 16). HPE also supports a few other operating systems, includingWindows up to Server 2008 R2,Linux,OpenVMS andNonStop. Itanium is not affected bySpectre orMeltdown.[151]

Chipsets

[edit]

Prior to the 9300-series (Tukwila), chipsets were needed to connect to the main memory and I/O devices, as thefront-side bus to thechipset was the sole operational connection to the processor.[e] Two generations of buses existed: the originalItanium processor system bus (a.k.a.Merced bus) had a 64 bit data width and 133 MHz clock withDDR (266 MT/s), being soon superseded by the 128-bit 200 MHz DDR (400 MT/s)Itanium 2 processor system bus (a.k.a.McKinley bus), which later reached 533 and 667 MT/s. Up to four CPUs per single bus could be used, but prior to the 9000-series the bus speeds of over 400 MT/s were limited to up to two processors per bus.[152][153] As no Itanium chipset could connect to more than four sockets, high-end servers needed multiple interconnected chipsets.

The "Tukwila" Itanium processor model had been designed to share a common chipset with the Intel Xeon processor EX (Intel's Xeon processor designed for four processor and larger servers). The goal was to streamline system development and reduce costs for server OEMs, many of which develop both Itanium- and Xeon-based servers. However, in 2013, this goal was pushed back to be "evaluated for future implementation opportunities".[154]

In the times before on-chip memory controllers andQPI, enterprise server manufacturers differentiated their systems by designing and developing chipsets that interface the processor to memory, interconnections, and peripheral controllers. "Enterprise server" referred to the then-lucrative market segment of high-end servers with highreliability, availability and serviceability and typically 16+ processor sockets, justifying their pricing by having a custom system-level architecture with their own chipsets at its heart, with capabilities far beyond what two-socket "commodity servers" could offer. Development of a chipset costs tens of millions of dollars and so represented a major commitment to the use of Itanium.

Neither Intel nor IBM would develop Itanium 2 chipsets to support newer technologies such asDDR2 orPCI Express.[155]Before "Tukwila" moved away from the FSB, chipsets supporting such technologies were manufactured by all Itanium server vendors, such as HP, Fujitsu, SGI, NEC, and Hitachi.

Intel

[edit]

The first generation of Itanium received no vendor-specific chipsets, only Intel's 460GX consisting of ten distinct chips. It supported up to four CPUs and 64 GB of memory at 4.2 GB/s, which is twice the system bus's bandwidth. Addresses and data were handled by two different chips. 460GX had anAGP X4 graphics bus, two 64-bit 66 MHzPCI buses and configurable 33 MHz dual 32-bit or single 64-bit PCI bus(es).[156]

There were many custom chipset designs for Itanium 2, but many smaller vendors chose to use Intel's E8870 chipset. It supports 128 GB ofDDR SDRAM at 6.4 GB/s. It was originally designed forRambusRDRAMserial memory, but when RDRAM failed, Intel added four DDR SDRAM-to-RDRAM converter chips to the chipset.[157] When Intel had previously made such a converter for Pentium III chipsets 820 and 840, it drastically cut performance.[158][159] E8870 provides eight 133 MHzPCI-X buses (4.2 GB/s total because of bottlenecks) and aICH4 hub with sixUSB 2.0 ports.Two E8870 can be linked together by two E8870SP Scalability Port Switches, each containing a 1MB (~200,000 cache lines)snoop filter, to create an 8-socket system with double the memory and PCI-X capacity, but still only one ICH4. Further expansion to 16 sockets was planned.[160][161][162] In 2004 Intel revealed plans for its next Itanium chipset, codenamedBayshore, to supportPCI-e andDDR2 memory, but canceled it the same year.[163][155]

Hewlett-Packard

[edit]

HP has designed four different chipsets for Itanium 2: zx1, sx1000, zx2 and sx2000. All support 4 sockets per chipset, but sx1000 and sx2000 support interconnection of up to 16 chipsets to create up to a 64 socket system. As it was developed in collaboration with Itanium 2's development, booting the first Itanium 2 in February 2001,[164] zx1 became the first Itanium 2 chipset available and later in 2004 also the first to support 533 MT/s FSB. In its basic two-chip version it directly provides four channels ofDDR-266 memory, giving 8.5 GB/s of bandwidth and 32 GB of capacity (though 12 DIMM slots).[165] In versions with memory expander boards memory bandwidth reaches 12.8 GB/s, while the maximum capacity for the initial two-board 48 DIMM expanders was 96 GB, and the later single-board 32 DIMM expander up to 128 GB. The memory latency increases by 25 nanoseconds from 80 ns due to the expanders. Eight independent links went to the PCI-X and other peripheral devices (e.g.AGP in workstations), totaling 4 GB/s.[166][167]

HP's first high-end Itanium chipset was sx1000, launched in mid-2003 with theIntegrity Superdome flagship server.It has two independent front-side buses, each bus supporting two sockets, giving 12.8 GB/s of combined bandwidth from the processors to the chipset. It has four links to data-only memory buffers and supports 64 GB of HP-designed 125 MHz memory at 16 GB/s. The above components form a system board called acell. Two cells can be directly connected together to create an 8-socketglueless system. To connect four cells together, a pair of 8-portedcrossbar switches is needed (adding 64ns to inter-cell memory accesses), while four such pairs of crossbar switches are needed for the top-end system of 16 cells (64 sockets), giving 32 GB/s ofbisection bandwidth. Cells maintain cache coherence through in-memorydirectories, which causes the minimum memory latency to be 241 ns. The latency to the most remote (NUMA) memory is 463 ns. The per-cell bandwidth to the I/O subsystems is 2 GB/s, despite the presence of 8 GB/s worth of PCI-X buses in each I/O subsystem.[168][169][170]

HP launched sx2000 in March 2006 to succeed sx1000. Its two FSBs operate at 533 MT/s. It supports up to 128 GB of memory at 17 GB/s. The memory is of HP's custom design, using theDDR2 protocol, but twice as tall as the standard modules and with redundant address and control signal contacts. For the inter-chipset communication, 25.5 GB/s is available on each sx2000 through its threeserial links that can connect to a set of threeindependentcrossbars, which connect to other cells or up to 3 other sets of 3 crossbars. The multi-cell configurations are the same as with sx1000, except the parallelism of the sets of crossbars has been increased from 2 to 3. The maximum configuration of 64 sockets has 72 GB/s of sustainablebisection bandwidth. The chipset's connection to its I/O module is now serial with an 8.5 GB/s peak and 5.5 GB/s sustained bandwidth, the I/O module having either 12PCI-X buses at up to 266 MHz, or 6 PCI-X buses and 6PCIe 1.1 ×8 slots. It is the last chipset to support HP'sPA-RISC processors (PA-8900).[171]

HP launched the first zx2-based servers in September 2006. zx2 can operate the FSB at 667 MT/s with two CPUs or 533 MT/s with four CPUs. It connects to theDDR2 memory either directly, supporting 32 GB at up to 14.2 GB/s, or through expander boards, supporting up to 384 GB at 17 GB/s. The minimum open-page latency is 60 to 78 ns. 9.8 GB/s are available through eight independent links to the I/O adapters, which can include PCIe ×8 or 266 MHz PCI-X.[172][173]

Others

[edit]

In May 2003, IBM launched the XA-64 chipset for Itanium 2. It used many of the same technologies as the first two generations of XA-32 chipsets forXeon, but by the time of the third gen XA-32 IBM had decided to discontinue its Itanium products. XA-64 supported 56 GB ofDDR SDRAM in 28 slots at 6.4 GB/s, though due to bottlenecks only 3.2 GB/s could go to the CPU and other 2 GB/s to devices for a 5.2 GB/s total. The CPU's memory bottleneck was mitigated by an off-chip 64 MBDRAM L4 cache, which also worked as asnoop filter in multi-chipset systems. The combined bandwidth of the fourPCI-X buses and other I/O is bottlenecked to 2 GB/s per chipset. Two or four chipsets can be connected to make an 8 or 16 socket system.[174]

SGI'sAltix supercomputers and servers used the SHUB (Super-Hub) chipset, which supports two Itanium 2 sockets. The initial version usedDDR memory through four buses for up to 12.8 GB/s bandwidth, and up to 32 GB of capacity across 16 slots. A 2.4 GB/sXIO channel connected to a module with up to six 64-bit 133 MHzPCI-X buses. SHUBs can be interconnected by the dual 6.4 GB/sNUMAlink4 link planes to create a 512-socket cache-coherent single-image system. A cache for the in-memorycoherence directory saves memory bandwidth and reduces latency. The latency to the local memory is 132 ns, and each crossing of a NUMAlink4 router adds 50 ns. I/O modules with four 133 MHz PCI-X buses can connect directly to the NUMAlink4 network.[175][176][177][178] SGI's second-generation SHUB 2.0 chipset supported up to 48 GB ofDDR2 memory, 667 MT/s FSB, and could connect to I/O modules providingPCI Express.[179][180] It supports only four local threads, so when having two dual-core CPUs per chipset,Hyper-Threading must be disabled.[181]

Software support

[edit]

Unix

[edit]
  • HP-UX 11 (supported until 2025)

BSD

[edit]
  • NetBSD (a tier II port[182] that "is a work-in-progress effort to port NetBSD to the Itanium family of processors. Currently no formal release is available."[183])
  • FreeBSD (unsupported since 31 October 2018)

Linux

[edit]

The Trillian Project was an effort by an industry consortium to port theLinux kernel to the Itanium processor. The project started in May 1999 with the goal of releasing the distribution in time for the initial release of Itanium, then scheduled for early 2000.[184] By the end of 1999, the project includedCaldera Systems,CERN,Cygnus Solutions,Hewlett-Packard,IBM,Intel,Red Hat,SGI,SuSE,TurboLinux andVA Linux Systems.[185] The project released the resulting code in February 2000.[184] The code then became part of themainline Linux kernel more than a year before the release of the first Itanium processor. The Trillian project was able to do this for two reasons:

  • thefree andopen sourceGCC compiler had already been enhanced to support the Itanium architecture.[186][187]
  • a free and open source simulator had been developed to simulate an Itanium processor on an existing computer.[188]

After the successful completion of Project Trillian, the resulting Linux kernel was used by all of the manufacturers of Itanium systems (HP,IBM,Dell,SGI,Fujitsu,Unisys,Hitachi, andGroupe Bull). With the notable exception of HP, Linux is either the primary OS or the only OS the manufacturer supports for Itanium. Ongoing free and open source software support for Linux on Itanium subsequently coalesced atGelato.

Distribution support

[edit]

In 2005, Fedora Linux started adding support for Itanium[189] and Novell added support for SUSE Linux.[190] In 2007,CentOS added support for Itanium in a new release.[191]

  • Debian (official support was dropped in Debian 8; unofficial support available through Debian Ports until June 2024[192])
  • EPIC Slack - an unofficial port ofSlackware - specifically supportsIA-64 (and hence Itanium) since its release in May 2024.[193]
  • Gentoo Linux[194] (releases before August 2024)[195]
  • Red Hat Enterprise Linux (unsupported since RHEL 6, had support in RHEL 5 until 2017, which supported other platforms until November 30, 2020)
  • SUSE Linux 11 (supported until 2019, for other platforms SUSE 11 was supported until 2022).
  • T2 SDE supports Itanium in itsIA-64 port.[196]

Deprecation

[edit]

In 2009, Red Hat dropped Itanium support in Enterprise Linux 6.[197] Ubuntu 10.10 dropped support for Itanium.[198] In 2021, Linus Torvalds marked the Itanium code as orphaned. Torvalds said: "HPE no longer accepts orders for new Itanium hardware, and Intel stopped accepting orders a year ago. While intel [sic] is still officially shipping chips until July 29, 2021, it's unlikely that any such orders actually exist.It's dead, Jim."[199][200]

Support for Itanium was removed in Linux 6.7[201][202] and is since then maintainedout-of-tree.[203][204]

Microsoft Windows

[edit]

OpenVMS

[edit]
Main article:OpenVMS § Port to Intel Itanium

In 2001,Compaq announced that OpenVMS would be ported to the Itanium architecture.[205] This led to the creation of the V8.x releases of OpenVMS, which support both Itanium-basedHPE Integrity Servers andDEC Alpha hardware.[206] Since the Itanium porting effort began, ownership of OpenVMS transferred from Compaq to HP in 2001, and then to VMS Software Inc. (VSI) in 2014.[207] Noteworthy releases include:

  • V8.0 (2003) - First pre-production release of OpenVMS on Itanium available outside HP.[206]
  • V8.2 (2005) - First production-grade release of OpenVMS on Itanium.[206]
  • V8.4 (2010) - Final release of OpenVMS supported by HP. Support ended on December 31, 2020.[208]
  • V8.4-2L3 (2021) - Final release of OpenVMS on Itanium supported by VSI. Support ends on December 31, 2035.[209]

Support for Itanium has been dropped in the V9.x releases of OpenVMS, which run on x86-64 only.[209]

NonStop OS

[edit]

NonStop OS was ported fromMIPS-based hardware to Itanium in 2005.[210] NonStop OS was later ported to x86-64 in 2015. Sales of Itanium-based NonStop hardware ended in 2020, with support ending in 2025.[211][212]

Compiler

[edit]

GNU Compiler Collection deprecated support for IA-64 in GCC 10, after Intel announced the planned phase-out of this ISA.[213]LLVM (Clang) dropped Itanium support in version 2.6.[214]

However, Itanium's C++ ABI continues to be the ABI used for both GCC and LLVM on most CPU architectures.[215]

Virtualization and emulation

[edit]

HP sells avirtualization technology for Itanium calledIntegrity Virtual Machines.

Emulation is a technique that allows a computer to execute binary code that was compiled for a different type of computer. Before IBM's acquisition ofQuickTransit in 2009, application binary software forIRIX/MIPS andSolaris/SPARC could run via type of emulation called "dynamic binary translation" on Linux/Itanium. Similarly, HP implemented a method to execute PA-RISC/HP-UX on the Itanium/HP-UX via emulation, to simplify migration of its PA-RISC customers to the radically different Itanium instruction set. Itanium processors can also run the mainframe environmentGCOS fromGroupe Bull and severalx86 operating systems viainstruction set simulators.

Competition

[edit]
Area chart showing the representation of different families of micro-
processors in theTOP500 ranking list ofsupercomputers (1993–2019)

Itanium was aimed at theenterprise server andhigh-performance computing (HPC) markets. Other enterprise- and HPC-focused processor lines includeOracle's andFujitsu'sSPARC processors andIBM'sPower microprocessors. Measured by quantity sold, Itanium's most serious competition came fromx86-64 processors includingIntel's ownXeon line andAMD'sOpteron line. Since 2009, most servers were being shipped with x86-64 processors.[10]

In 2005, Itanium systems accounted for about 14% of HPC systems revenue, but the percentage declined as the industry shifted to x86-64 clusters for this application.[216]

An October 2008Gartner report on the Tukwila processor stated that "...the future roadmap for Itanium looks as strong as that of any RISC peer like Power or SPARC."[217]

Supercomputers and high-performance computing

[edit]

An Itanium-based computer first appeared on the list of theTOP500supercomputers in November 2001.[75] The best position ever achieved by anItanium 2 based system in the list was No. 2, achieved in June 2004, whenThunder (Lawrence Livermore National Laboratory) entered the list with an Rmax of 19.94 Teraflops. In November 2004,Columbia entered the list at No. 2 with 51.8 Teraflops, and there was at least one Itanium-based computer in the top 10 from then until June 2007. The peak number of Itanium-based machines on the list occurred in the November 2004 list, at 84 systems (16.8%); by June 2012, this had dropped to one system (0.2%),[218] and no Itanium system remained on the list in November 2012.

Processors

[edit]

Released processors

[edit]
Itanium 2 mx2 'Hondo' (top)
Itanium 2 mx2 'Hondo' (bottom)

The Itanium processors show a progression in capability. Merced was a proof of concept. McKinley dramatically improved the memory hierarchy and allowed Itanium to become reasonably competitive. Madison, with the shift to a 130 nm process, allowed for enough cache space to overcome the major performance bottlenecks. Montecito, with a 90 nm process, allowed for a dual-core implementation and a major improvement in performance per watt. Montvale added three new features: core-level lockstep, demand-based switching andfront-side bus frequency of up to 667 MHz.

CodenameprocessReleasedClockL2Cache/
core
L3Cache/
processor
Busdies/
dev.
cores/
die
TDP/
dev.
Comments
Itanium
Merced180 nm2001-05-29733 MHz96 KB1 MB

2 MB

266 MHz111162 or 4 MB off-die L3 cache
800 MHz1302 or 4 MB off-die L3 cache
Itanium 2
McKinley180 nm2002-07-08900 MHz256 KB1.5 MB400 MHz1190HW branchlong
1 GHz100
3 MB
Madison130 nm2003-06-301.3 GHz3 MB97
1.4 GHz4 MB91
1.5 GHz6 MB107
2003-09-081.4 GHz1.5 MB91
2004-04-133 MB 
1.6 GHz99
Deerfield2003-09-081.0 GHz1.5 MB55Low voltage
Hondo[219]2004-061.1 GHz4 MB21170Not a product of Intel, but ofHP. 32 MB L4
Fanwood2004-11-081.3 GHz3 MB1162Low voltage
1.6 GHz99 
533 MHz
Madison 9M1.5 GHz4 MB400 MHz122
1.6 GHz6 MB
9 MB
2005-07-051.67 GHz6 MB667 MHz
9 MB
Itanium 2 9000 series
Montecito90 nm2006-07-181.4–
1.6 GHz
256 KB (D)+
1 MB (I)
6–24 MB400–
533 MHz
1275–104Virtualization, Multithread, no HW IA-32
Itanium 9100 series
Montvale90 nm2007-10-311.42–
1.66 GHz
256 KB (D)+
1 MB (I)
8–24 MB400–
667 MHz
11–275–104Core-level lockstep, demand-based switching
Itanium 9300 series
Tukwila65 nm2010-02-081.33–
1.73 GHz
256 KB (D)+
512 KB (I)
10–24 MBQPI with
4.8GT/s
12–4130–185A new point-to-point processor interconnect, theQPI,
replacing theFSB.Turbo Boost
Itanium 9500 series
Poulson32 nm2012-11-08
[220]
1.73–
2.53 GHz
256 KB (D)+
512 KB (I)
20–32 MBQPI with
6.4GT/s
14–8130–170Doubled issue width (from 6 to 12 instructions per cycle),
Instruction Replay technology, Dual-domain hyperthreading[221][124][222]
Itanium 9700 series
Kittson32 nm2017-05-11
[8]
1.73–
2.66 GHz
256 KB (D)+
512 KB (I)
20–32 MBQPI with
6.4GT/s
14–8130–170No architectural improvements over Poulson,
5 % higher clock for the top model
CodenameprocessReleasedClockL2 Cache/
core
L3 Cache/
processor
Busdies/
dev.
cores/
die
watts/
dev.
Comments
List of Intel Itanium processors

Market reception

[edit]

High-end server market

[edit]
HP zx6000system board with dual Itanium 2 processors
Itanium 2 in 2003

When first released in 2001, Itanium's performance was disappointing compared to better-establishedRISC andCISC processors.[56][57] Emulation to run existing x86 applications and operating systems was particularly poor, with one benchmark in 2001 reporting that it was equivalent at best to a 100 MHz Pentium in this mode (1.1 GHz Pentiums were on the market at that time).[223]Itanium failed to make significant inroads againstIA-32 or RISC, and suffered further following the arrival ofx86-64 systems which offered greater compatibility with older x86 applications.

In a 2009 article on the history of the processor — "How the Itanium Killed the Computer Industry" — journalistJohn C. Dvorak reported "This continues to be one of the great fiascos of the last 50 years".[224] Tech columnistAshlee Vance commented that the delays and underperformance "turned the product into a joke in the chip industry".[146] In an interview,Donald Knuth said "The Itanium approach...was supposed to be so terrific—until it turned out that the wished-for compilers were basically impossible to write."[225]

BothRed Hat andMicrosoft announced plans to drop Itanium support in their operating systems due to lack of market interest;[226][227] however, otherLinux distributions such asGentoo andDebian remain available for Itanium. On March 22, 2011,Oracle Corporation announced that it would no longer develop new products for HP-UX on Itanium, although it would continue to provide support for existing products.[228] Following this announcement, HP sued Oracle for breach of contract, arguing that Oracle had violated conditions imposed during settlement over Oracle's hiring of former HP CEOMark Hurd as its co-CEO, requiring the vendor to support Itanium on its software "until such time as HP discontinues the sales of its Itanium-based servers",[229] and that the breach had harmed its business. In 2012, a court ruled in favor of HP, and ordered Oracle to resume its support for Itanium. In June 2016,Hewlett Packard Enterprise (the corporate successor to HP's server business) was awarded $3 billion in damages from the lawsuit.[230][231] Oracle unsuccessfully appealed the decision to the California Court of Appeal in 2021.[232]

A former Intel official reported that the Itanium business had become profitable for Intel in late 2009.[233] By 2009, the chip was almost entirely deployed on servers made by HP, which had over 95% of the Itanium server market share,[146] making the main operating system for ItaniumHP-UX. On March 22, 2011, Intel reaffirmed its commitment to Itanium with multiple generations of chips in development and on schedule.[234]

Other markets

[edit]
HP zx6000, an Itanium 2-basedUnixworkstation

Although Itanium did attain limited success in the niche market of high-end computing, Intel had originally hoped it would find broader acceptance as a replacement for the originalx86 architecture.[235]

AMD chose a different direction, designing the less radicalx86-64, a 64-bit extension to the existing x86 architecture, which Microsoft then supported, forcing Intel to introduce the same extensions in its own x86-based processors.[236] These designs can run existing 32-bit applications at native hardware speed, while offering support for 64-bit memory addressing and other enhancements to new applications.[146] This architecture has now become the predominant 64-bit architecture in the desktop and portable market. Although some Itanium-based workstations were initially introduced by companies such asSGI, they are no longer available.

See also

[edit]

Notes

[edit]
  1. ^Itanium was launched on 29 May,[2][3][4][5] but the computers containing it shipped to customers in June.
  2. ^Hondo is an HP product, not an Intel product
  3. ^The size of the needed dependency-checking circuitry increasesquadratically with the issue width.[12][13]
  4. ^For comparison the 180nm Pentium III Xeon MP had a 2 MB on-die L2 cache.
  5. ^ the processor supported TAP (JTAG) andSMBus for debugging and system configuration

References

[edit]
  1. ^ab"Select Intel Itanium Processors and Intel Scalable Memory Buffer, PCN 116733-00, Product Discontinuance, End of Life"(PDF). Intel. January 30, 2019.Archived(PDF) from the original on May 22, 2020. RetrievedMay 20, 2020.
    (January 30, 2020 was the last date for placing an order, all shipped no later than July 29, 2021).
  2. ^"Intel officially launches 64-bit Itanium chip".Computerworld. 29 May 2001.
  3. ^Fordahl, Matthew (30 May 2001)."Intel, HP Launch New Processor".ABC News.
  4. ^Bekker, Scott (29 May 2001)."Intel Launches Itanium: OEMs Unveil Systems".RCP Mag.
  5. ^Kerridge, Suzanna (18 May 2001)."Intel opens up about forthcoming Itanium family".ZDNet.
  6. ^Morgan, Timothy (May 27, 2008)."The Server Biz Enjoys the X64 Upgrade Cycle in Q1".IT Jungle. Archived fromthe original on March 3, 2016. RetrievedOctober 29, 2008.
  7. ^abDavis, Lisa M. (May 11, 2017)."The Evolution of Mission Critical Computing".Intel. Archived fromthe original on September 8, 2018. RetrievedMay 11, 2017....the 9700 series will be the last Intel Itanium processor.
  8. ^abcdShah, Agam (May 11, 2017)."Intel's Itanium, once destined to replace x86 processors in PCs, hits end of line".PC World.Archived from the original on March 15, 2019. RetrievedMay 20, 2020.
  9. ^Sharwood, Simon (July 30, 2021)."The Register just found 300-odd Itanium CPUs on eBay".The Register.Archived from the original on September 12, 2021. RetrievedSeptember 12, 2021.
  10. ^abcMorgan, Timothy Prickett (February 24, 2010)."Gartner report card gives high marks to x64, blades".The Register. RetrievedNovember 25, 2022.
  11. ^Lee, Matthew (August 2021)."Intel's Itanium is finally dead: The Itanic sunken by the x86 juggernaut". Techspot. Retrieved26 March 2023.
  12. ^abDeMone, Paul (27 October 1999)."HP's Struggle For Simplicity Ends at Intel".Real World Tech.
  13. ^abSmotherman, Mark."Understanding EPIC Architectures and Implementations"(PDF).Clemson University. Retrieved5 June 2022.
  14. ^ab"Inventing Itanium: How HP Labs Helped Create the Next-Generation Chip Architecture".HP Labs. June 2001. RetrievedMarch 23, 2007.
  15. ^abcdMarkoff, John (5 April 1998)."Inside Intel, The Future is Riding on the Merced Chip".The New York Times, republised byThe Jerusalem Post.
  16. ^DeMone, Paul (25 January 2000)."Intel's History Lesson".Real World Tech.
  17. ^abDeMone, Paul (14 March 2001)."Countdown to IA-64".Real World Tech.
  18. ^Smotherman, Mark."Who are the Computer Architects?".Clemson University. See the sections "Independence architecture" and "Wintel".
  19. ^Alpert, Donald (July 2003)."Intel Itanium Processor (Merced)". Alpert was the chief architect of the original P7 and the top engineering manager of Merced[18]
  20. ^DeMone, Paul (3 March 2000)."What's Up With Willamette? (Part 1)".Real World Tech.
  21. ^Kanellos, Michael (21 February 2003)."Intel takes slow road to 64-bit PC chips".CNET.
  22. ^abcHamilton, David (28 May 2001)."Intel gambles with Itanium".ZDNet.
  23. ^Britt, Russ (1 January 2000)."The birth of a new processor".EDN.
  24. ^Smotherman, Mark."Historical background for EPIC instruction set architectures".Clemson University. Retrieved3 June 2022.
  25. ^[17][23] (TheACM committee with 5 people from each side[24] was probably a different entity.)
  26. ^Kathail, Vinod; Schlansker, Michael S.; Rau, B. Ramakrishna."HPL-PD Architecture Specification: Version 1.1"(PDF).HP Laboratories. Archived fromthe original(PDF) on 2024-02-04. Retrieved2023-07-05.
  27. ^Hecht, Jeff (18 June 1994)."Technology: Intel opts for simpler, speedier chips".New Scientist.
  28. ^Bozman, Jean S. (13 June 1994)."Chip alliance shakes ground".Computerworld. David House had approved the project, but later severely criticized it.
  29. ^Babcock, Charles (25 July 1994)."Silicon marriage: HP/Intel venture".Computerworld.
  30. ^DeMone, Paul (14 March 2001)."Countdown to IA-64".Real World Tech. Has a typo (P5) in the graphic.
  31. ^Crothers, Brooke (29 January 1996)."Intel aims to bring multimedia to the masses".InfoWorld.
  32. ^"Merced "Will Be Out Late 1999," Says Hewlett-Packard".Tech Monitor. Computer Business Review. 18 July 1997.Archived from the original on 13 February 2024.
  33. ^Kanellos, Michael (6 October 1997)."Intel late to 64-bit computing".CNET.Archived from the original on Jun 27, 2022.
  34. ^abKanellos, Michael (14 October 1997)."Intel, HP unveil EPIC technology".CNET.Archived from the original on Aug 18, 2022.
  35. ^DeMone, Paul (27 October 1999)."HP's Struggle For Simplicity Ends at Intel".Real World Tech. p. 3.Archived from the original on Oct 31, 2023.
  36. ^Gwennap, Linley (27 October 1997)."Intel, HP Make EPIC Disclosure"(PDF).Microprocessor Report. Vol. 11, no. 14.Archived(PDF) from the original on Oct 31, 2023.
  37. ^Corcoran, Elizabeth (15 October 1997)."Chipmakers unveil works in progress".The Washington Post.Archived from the original on 13 February 2024.
  38. ^abRobertson, Chiyo (17 March 1999)."Merced: Worth the wait? What of McKinley?".ZDNet.
  39. ^Matsumoto, Craig (8 October 1998)."Intel outlines road to McKinley processor".EE Times.
  40. ^ab"Inside the Intel Itanium 2 Processor: a Hewlett Packard Technical White Paper". 17 July 2002.CiteSeerX 10.1.1.96.8209.
  41. ^Kanellos, Michael (6 August 1998)."Is Merced doomed?".CNET.
  42. ^"INTEL'S MERCED COULD BE ECLIPSED BY MCKINLEY FOLLOW-ON".Tech Monitor. 6 August 1998.
  43. ^Shankland, Stephen; Kanellos, Michael (13 October 1998)."HP has two-pronged chip plan".CNET. Archived fromthe original on 2000-12-03.
  44. ^Gary, Gregory (3 May 1999)."IA 64 Update: Part 1 of 2".EDN.
  45. ^abShankland, Stephen (8 July 1999)."Intel's Merced chip may slip further".CNET. Archived fromthe original on 2000-06-05.
  46. ^Hamblen, Matt (12 July 1999)."Intel: No Forced March to Merced".Computerworld.
  47. ^Shankland, Stephen (19 August 1999)."HP upgrade path bypasses Merced chip".CNET. Archived fromthe original on 2000-08-19.
  48. ^Shankland, Stephen (11 July 2000)."HP moves slowly into world of Intel 64-bit processors".CNET. Archived fromthe original on 2001-02-10.
  49. ^Shankland, Stephen; Kanellos, Michael (July 18, 2000)."Intel pushes back schedule for Itanium chip".CNET. Archived fromthe original on 2001-04-13.
  50. ^Shankland, Stephen (1 March 2001)."Intel draws out Itanium arrival".CNET. Archived fromthe original on 2001-04-13.
  51. ^"Mining Itanium".CNet News. December 7, 2005. Archived fromthe original on June 11, 2018. RetrievedMarch 19, 2007.
  52. ^Shankland, Stephen (February 14, 2006)."Analyst firm offers rosy view of Itanium".CNET News.Archived from the original on June 24, 2016. RetrievedMarch 20, 2007.
  53. ^Halfhill, Tom R. (December 1997)."Beyond Pentium II".Byte. Archived fromthe original on 2000-03-02.
  54. ^Connor, Deni (1 March 1999)."Intel's Merced will coexist with 32-bit chips".Network World.
  55. ^Knorr, Eric (10 September 2001)."Upgrading your server: A look at the Itanium".ZDNet.
  56. ^abDe Gelas, Johan (November 9, 2005)."Itanium–Is there light at the end of the tunnel?".AnandTech. Archived fromthe original on May 3, 2012. RetrievedMarch 23, 2007.
  57. ^abTakahashi, Dean (May 8, 2009)."Exit interview: Retiring Intel chairman Craig Barrett on the industry's unfinished business".VentureBeat.Archived from the original on April 21, 2018. RetrievedMay 17, 2009.
  58. ^Nash, Kim S. (6 July 1998)."Behind the Merced Mystique".Computerworld.
  59. ^Yu, Elleen (25 November 1998)."IA-64 to overtake RISC".ARN. Archived fromthe original on 29 January 2023. Retrieved16 August 2022.
  60. ^abc"Itanium: A cautionary tale".Tech News on ZDNet. December 7, 2005.Archived from the original on August 2, 2020. RetrievedJanuary 1, 2019.
  61. ^Vijayan, Jaikumar (September 1, 1999)."Solaris for IA-64 coming this fall".Computerworld. Archived fromthe original on January 15, 2000.
  62. ^Wolfe, Alexander (September 2, 1999)."Core-logic efforts under way for Merced".EE Times.Archived from the original on December 17, 2019. RetrievedDecember 17, 2019.
  63. ^"Sun Introduces Solaris Developer Kit for Intel to Speed Development of Applications On Solaris; Award-winning Sun Tools Help ISVs Easily Develop for Solaris on Intel Today".Business Wire. March 10, 1998. Archived fromthe original on August 5, 2016. RetrievedJune 6, 2016....developers can quickly develop applications today that will be compatible with and can easily be tuned for Solaris on Merced.
  64. ^Shankland, Stephen (September 17, 1999)."Next-generation chip passes key milestone".CNET News.
  65. ^Kanellos, Michael (October 4, 1999)."Intel names Merced chip Itanium".CNET. RetrievedApril 30, 2007.
  66. ^Finstad, Kraig (October 4, 1999)."Re:Itanium".Newsgroupcomp.sys.mac.advocacy. RetrievedMay 20, 2020.
  67. ^Sherriff, Pete (October 28, 1999)."AMD vs Intel – our readers write".The Register. RetrievedNovember 25, 2022.
  68. ^Berlind, David (November 30, 2001)."Interpreting McNealy's lexicon".ZDNet Tech Update.Archived from the original on September 4, 2019. RetrievedMarch 19, 2007.
  69. ^Demerjian, Charlie (July 18, 2006)."Itanic shell game continues".The Inquirer. Archived from the original on March 5, 2016. RetrievedFebruary 27, 2016.
  70. ^Morgenson, Gretchen (October 19, 2003)."Fawning Analysts Betray Investors".The New York Times.Archived from the original on October 11, 2012. RetrievedJanuary 1, 2019.
  71. ^"Product Change Notification"(PDF). Intel. Archived fromthe original(PDF) on 2004-07-19.
  72. ^Niccolai, James (IDG News Service) (29 May 2001)."Intel officially launches 64-bit Itanium chip".Computerworld. Retrieved30 March 2022.
  73. ^"Server makers tout Itanium models".ZDNet. Retrieved30 March 2022.
  74. ^Linley Gwennap (June 4, 2001)."Itanium era dawns".EE Times.Archived from the original on December 17, 2019. RetrievedDecember 17, 2019.
  75. ^ab"Titan Cluster Itanium 800 MHz".TOP500 web site. Archived fromthe original on September 25, 2006. RetrievedMay 16, 2007.
  76. ^Michael Kanellos (December 11, 2001)."Itanium sales off to a slow start".CNET News. RetrievedJuly 4, 2023.
  77. ^"Product Change Notification"(PDF). Intel. Archived fromthe original(PDF) on 2004-07-19.
  78. ^"Product Change Notification"(PDF). Intel. Archived fromthe original(PDF) on 2006-03-13.
  79. ^"Product Change Notification"(PDF). Intel.
    Warning: forced download. Retrieved28 April 2022.
  80. ^McKinley: 16 April 2004[77]
    Madison 6M: 28 July 2006[78]
    Madison 9M: 16 November 2007[79]
  81. ^Hammond, Gary; Naffziger, Sam."Next Generation Itanium™ Processor Overview"(PDF). Archived fromthe original(PDF) on 6 July 2003.
  82. ^Naffzinger, Samuel D.; Colon-Bonet, Glenn T.; Fischer, Timothy; Riedlinger, Reid; Sullivan, Thomas J.; Grutkowski, Tom (November 2002)."The implementation of the Itanium 2 microprocessor"(PDF).IEEE Journal of Solid-State Circuits.37 (11):1448–1460.Bibcode:2002IJSSC..37.1448N.doi:10.1109/JSSC.2002.803943. Archived fromthe original(PDF) on 2003-03-22.
  83. ^Soltis, Don; Gibson, Mark."Itanium® 2 Processor Microarchitecture Overview"(PDF).Hot Chips. Archived fromthe original(PDF) on 31 May 2005.
  84. ^Naffziger, Samuel; Hammond, Gary."The Implementation of the Next-Generation 64b Itanium Microprocessor"(PDF). Archived fromthe original(PDF) on 29 October 2004.
  85. ^Krazit, Tom (12 May 2003)."Intel details Itanium 2 bug".Computerworld. Retrieved30 March 2022.
  86. ^"Itanium Solutions Alliance".ISA web site. Archived from the original on September 8, 2008. RetrievedMay 16, 2007.
  87. ^Scott, Bilepo (January 26, 2006)."Computing Leaders Announce Strategy for New Era of Mission Critical Computing".Itanium Solutions Alliance Press Release. Archived fromthe original on January 11, 2012. RetrievedOctober 16, 2008.
  88. ^"Intel server processors to be discontinued in 2012".CPU-World. Retrieved28 April 2022.
  89. ^Kanellos, Michael."Intel accelerates Itanium schedule".CNET. Retrieved3 April 2022.
  90. ^abShankland, Stephen; Kanellos, Michael (9 July 2003)."Intel's summer of servers".The Globe and Mail. Retrieved27 April 2022.
  91. ^abKanellos, Michael."Intel fills in more details on Itanium family".CNET. Retrieved3 April 2022.
  92. ^Wilson, Derek."Intel Developer Forum Fall 2004: Day 1 Keynote".AnandTech. Archived fromthe original on September 17, 2021. Retrieved28 April 2022.
  93. ^Shankland, Stephen."Intel pushes back Itanium chips, revamps Xeon".CNET. Retrieved3 April 2022.
  94. ^abNiccolai, James (May 20, 2008)."'Tukwila' Itanium servers due early next year, Intel says".Computerworld. RetrievedSeptember 26, 2022.
  95. ^Gonsalves, Antone (November 1, 2007)."Intel Unveils Seven Itanium Processors".InformationWeek. Archived fromthe original on March 10, 2012. RetrievedNovember 6, 2007.
  96. ^ab"Intel Shares Findings, Platform Plans To Better Guide Businesses Through 'Transformation'". Intel.
  97. ^"Intel Strengthens Investment In Intel® Itanium® Architecture With Hiring Of HP Design Team".
  98. ^Shilov, Anton."Intel to Discontinue Itanium 9700 'Kittson' Processor, the Last of the Itaniums".AnandTech. Archived fromthe original on February 1, 2019. Retrieved28 April 2022.
  99. ^Kanellos, Michael."Intel changes code name of future Itanium".CNET. Retrieved4 July 2023.
  100. ^McMillan, Robert (18 December 2003)."Trademark flap prompts Intel to rename Tanglewood".InfoWorld. Retrieved31 March 2022.
  101. ^Vance, Ashlee."Tanglewood to run 10x faster than Madison".The Register. Retrieved27 April 2022.
  102. ^McMillan, Robert (17 September 2003)."FALL IDF: Intel readies 8-core, 16-core Itanium 2".InfoWorld. Retrieved31 March 2022.
  103. ^Shankland, Stephen."'Tanglewood' to top Intel chip show".CNET. Retrieved31 March 2022.
  104. ^McMillan, Robert."Itanium 2 Montecito to be multithreaded".Computer Weekly. Retrieved31 March 2022.
  105. ^"Intel Outlines Platform Innovations For More Manageable, Balanced And Secure Enterprise Computing". Intel.
  106. ^Shankland, Stephen."Intel to spotlight new Itanium: 'Poulson'".CNET. Retrieved31 March 2022.
  107. ^Merritt, Rick (March 2, 2005)."Intel preps HyperTransport competitor for Xeon, Itanium CPUs".EE Times.Archived from the original on December 17, 2019. RetrievedDecember 17, 2019.
  108. ^Vance, Ashlee."Intel's Xeon chip kill is result of chaos in India".The Register. Retrieved28 April 2022.
  109. ^Shankland, Stephen (October 24, 2005)."Intel pushes back Itanium chips, revamps Xeon".ZDNet News.Archived from the original on August 2, 2020. RetrievedJanuary 1, 2019.
  110. ^Demerjian, Charlie (May 21, 2009)."Tukwila delayed until 2010".The Inquirer. Archived from the original on May 23, 2009. RetrievedMay 21, 2009.
  111. ^Burt, Jeff (February 8, 2010)."New Intel Itanium Offers Greater Performance, Memory Capacity".eWeek.
  112. ^abTan, Aaron (June 15, 2007)."Intel updates Itanium line with 'Kittson'".ZDNet. RetrievedJune 15, 2007.
  113. ^Stokes, Jon (February 5, 2009)."Intel delays quad Itanium to boost platform memory capacity".ars technica.Archived from the original on January 22, 2012. RetrievedFebruary 5, 2009.
  114. ^Ng, Jansen (February 10, 2009)."Intel Aims for Efficiency With New Server Roadmap".DailyTech. Archived fromthe original on February 13, 2009. RetrievedFebruary 10, 2009.
  115. ^"HP Paid Intel $690 Million to Keep Itanium Alive - Court Findings". Archived fromthe original on March 4, 2016.
  116. ^Robert McMillan (February 1, 2012)."HP Paid Intel $690 Million To Keep Itanium On Life Support".Wired.Archived from the original on March 6, 2014. RetrievedMarch 7, 2017.
  117. ^"Intel Platforms, Technologies To Drive Enterprise Advances". Intel. Retrieved31 March 2022.
  118. ^abBoslet, Mark (15 June 2007)."Intel to employ advanced technology on server chips".The Mercury News. Retrieved26 February 2022.
  119. ^abRiedlinger, Reid J.; Bhatia, Rohit; Biro, Larry; Bowhill, Bill; Fetzer, Eric; Gronowski, Paul; Grutkowski, Tom (February 24, 2011). "A 32nm 3.1 billion transistor 12-wide-issue Itanium® processor for mission-critical servers".2011 IEEE International Solid-State Circuits Conference. 2011 IEEE International Solid-State Circuits Conference. pp. 84–86.doi:10.1109/ISSCC.2011.5746230.ISBN 978-1-61284-303-2.
  120. ^"ISSCC 2011"(PDF). Archived fromthe original(PDF) on December 1, 2017. RetrievedNovember 17, 2017.
  121. ^Kanter, David (November 17, 2010)."New Itanium Microarchitecture at ISSCC 2011".Real World Tech. RetrievedJuly 4, 2023.
  122. ^"Itanium Poulson Update — Greater Parallelism, New Instruction Replay & More: Catch the details from Hotchips!". August 19, 2011.Archived from the original on June 27, 2018. RetrievedNovember 17, 2017.
  123. ^"Intel Itanium Hotchips 2011 Overview". 18 August 2011.Archived from the original on 14 February 2012. RetrievedJanuary 23, 2012.
  124. ^abKanter, David (May 18, 2011)."Poulson: The Future of Itanium Servers". Real World Tech.Archived from the original on November 2, 2012. RetrievedNovember 9, 2012.
  125. ^"Hot Chips Poulson Disclosure Factsheet"(PDF).Intel press release. August 19, 2011. Archived fromthe original(PDF) on March 24, 2012. RetrievedAugust 19, 2011.
  126. ^Merrit, Rick (November 23, 2010)."Researchers carve CPU into plastic foil".EE Times.Archived from the original on December 17, 2019. RetrievedDecember 17, 2019.
  127. ^O'Brien, Terrence (August 22, 2011)."Intel talks up next-gen Itanium: 32nm, 8-core Poulson".Engadget.Archived from the original on April 21, 2018. RetrievedApril 30, 2012.
  128. ^ab"Unreleased Intel Itanium 9500-series CPUs spotted".Archived from the original on 2017-11-22. Retrieved2012-08-02.
  129. ^"Spotted 9500-series CPUs confirmed to be "Poulson" Itaniums".Archived from the original on 2017-10-06. Retrieved2012-08-02.
  130. ^"Intel publishes Itanium 9500 reference manual".Archived from the original on 2017-10-08. Retrieved2012-08-02.
  131. ^"Products formerly Poulson".Intel® ARK (Product Specs).Archived from the original on May 18, 2017. RetrievedMay 31, 2017.
  132. ^Wheeler, Bob."Tocking Itanium".The Linley Group. Retrieved26 February 2022.
  133. ^Skaugen, Kirk."IDF2011 Intel Developer Forum"(PDF). slide 21. Intel. Retrieved26 February 2022.
  134. ^Nist, Pauline."More than just another Itanium chip". Intel. Archived fromthe original on 8 August 2020. Retrieved26 February 2022.
  135. ^"Intel® Itanium® Processors Update". Archived fromthe original on 9 November 2016.
  136. ^abShilov, Anton (April 17, 2015)."Intel still committed to make new Itanium processors".kitguru.net. RetrievedJuly 4, 2023.KitGuru Says: Even though it is highly likely that "Kittson" chips will be released, it does not seem that Intel and HP actually want to invest R&D money in boosting performance of IA-64 chips. As a result, it looks like the best thing "Kittson" will offer will be a 20 per cent performance improvement over current gen offerings.
  137. ^Shah, Agam (February 19, 2014)."Intel's new Xeon server chip pushes Itanium closer to death's door".pcworld.com. PC World.Archived from the original on January 26, 2016. RetrievedJanuary 13, 2016.
  138. ^Shilov, Anton."HP: mission-critical servers business improves as Itanium fades away".Kitguru. Retrieved30 March 2022.
  139. ^Shah, Agam (2 December 2014)."HP sees HP-UX sticking around for 10 years".Computerworld. Retrieved30 March 2022.
  140. ^"Intel® Itanium® Processor".Intel. RetrievedMay 15, 2017.
  141. ^"Intel® Itanium® Processor 9300, 9500 and 9700 Series Specification Update"(PDF). Intel.Archived(PDF) from the original on 11 November 2020.
  142. ^Cutress, Ian (May 11, 2017)."Intel's Itanium Takes One Last Breath: Itanium 9700 Series CPUs Released". Anandtech. Archived fromthe original on May 11, 2017. RetrievedMay 11, 2017.
  143. ^"Products formerly Kittson".Intel® ARK (Product Specs).Archived from the original on August 4, 2019. RetrievedMay 15, 2017.
  144. ^Patrizio, Andy (October 12, 2007)."Intel Plows Forward With Itanium".InternetNews.com. Archived fromthe original on April 22, 2018. RetrievedOctober 18, 2007.
  145. ^IDC World Wide Server Tracker, Q2'08
  146. ^abcdVance, Ashlee (February 9, 2009)."Ten Years After First Delay, Intel's Itanium Is Still Late".The New York Times.Archived from the original on July 10, 2011. RetrievedApril 1, 2010.
  147. ^"Intel shifts gears on Itanium, raising questions about the server chip's future".Archived from the original on 2013-06-15. Retrieved2013-08-04.
  148. ^Vance, Ashlee (June 1, 2006)."HP grabs 90% of 'industry standard' Itanic market".The Register. RetrievedNovember 25, 2022.
  149. ^"Intel Server System SR9000MK4U Technical Product Specification".Intel web site. January 2007.Archived from the original on February 8, 2009. RetrievedApril 14, 2007.
  150. ^Aleksandar, Kostovic (2021-07-31)."Itanium Waves Goodbye As Intel Delivers Last Shipments of Now Forgotten Processor Family".Tom's Hardware. Retrieved2022-11-29.
  151. ^"Not Vulnerable - Intel Itanium/Secure64 SourceT - Secure 64".Secure 64. January 9, 2018.Archived from the original on October 4, 2018. RetrievedOctober 4, 2018.
  152. ^"Intel® Itanium® 2 Processor Datasheet"(PDF). Intel. p. 9. Archived fromthe original(PDF) on 21 June 2006.
  153. ^"Dual-Core Intel® Itanium® 2 Processor 9000 Series Datasheet"(PDF). Intel. p. 9. Archived fromthe original(PDF) on 7 June 2011.
  154. ^Morgan, Timothy Prickett."Remember that Xeon E7-Itanium convergence? FUHGEDDABOUDIT".The Register. RetrievedNovember 25, 2022.
  155. ^abShankland, Stephen (February 25, 2005)."Sources: IBM ditching Itanium altogether".CNET News. RetrievedJuly 4, 2023.
  156. ^"Intel 460GX Chipset Datasheet"(PDF). Intel. Archived fromthe original(PDF) on 23 July 2004.
  157. ^Mueller, Scott; Soper, Mark Edward; Sosinsky, Barrie (2006).Upgrading and Repairing Servers. Pearson Education.ISBN 0-13-279698-8. Retrieved6 April 2022.
  158. ^Shimpi, Anand Lal."Intel's 820 Chipset - Performance using SDRAM".AnandTech. Archived fromthe original on July 29, 2011. Retrieved6 April 2022.
  159. ^Shimpi, Anand Lal."Rambus DRAM Part 2: Performance".AnandTech. Archived fromthe original on April 19, 2011. Retrieved6 April 2022.
  160. ^Briggs, Fayé; et al. (7 August 2002). "Intel 870: a building block for cost-effective, scalable servers".IEEE Micro.22 (2 (March–April)):36–47.CiteSeerX 10.1.1.140.2915.doi:10.1109/MM.2002.997878.S2CID 3201355.
  161. ^"Intel® E8870 Scalable Node Controller (SNC) Datasheet"(PDF). Intel. Archived fromthe original(PDF) on 1 July 2004.
  162. ^"Intel® E8870IO Server I/O Hub (SIOH) Datasheet"(PDF). Intel. Archived fromthe original(PDF) on 6 July 2003.
  163. ^"Intel Outlines Platform Innovations For More Manageable, Balanced And Secure Enterprise Computing". Intel. Retrieved7 April 2022.
  164. ^"Overview of the new Itanium® 2-based HP servers rx2600 and rx5670: how HP is putting Intel® Itanium 2 processors to work"(PDF). Hewlett-Packard. p. 17. Archived fromthe original(PDF) on 19 March 2003.
  165. ^"HP Integrity rx2620 Server"(PDF). Archived fromthe original(PDF) on 29 October 2006.
  166. ^"HP Integrity rx4640-8 Server"(PDF). Archived fromthe original(PDF) on 14 March 2006.
  167. ^"HP Integrity rx5670 Server summary". Archived fromthe original on 9 December 2004.
  168. ^Turner, Vernon; Rau, Shane."HP's sx1000 Chipset: Innovation Atop Standardization"(PDF).IDC (sponsored by HP). Archived fromthe original(PDF) on 1 June 2005.
  169. ^"Meet the HP Integrity Superdome: A white paper from HP"(PDF). Archived fromthe original(PDF) on 31 July 2004.
  170. ^"Itanium®–based midrange servers from HP— the HP Integrity rx7620-16 and rx8620-32 Servers"(PDF). Archived fromthe original(PDF) on 9 May 2005.
  171. ^"User Service Guide HP Integrity Superdome/sx2000 and HP 9000 Superdome/sx2000 Servers".Hewlett-Packard. September 2009 – via Internet Archive.
  172. ^"Overview of the HP Integrity rx2660, rx3600, and rx6600 Servers"(PDF).Archived(PDF) from the original on 2017-03-06.
  173. ^"HP Integrity systems Family guide"(PDF). Archived fromthe original(PDF) on 8 July 2022. Retrieved24 May 2022.
  174. ^"IBM Eserver xSeries 455 Planning and Installation Guide"(PDF). IBM/Lenovo. Retrieved6 April 2022.
  175. ^Woodacre, Michael; Robb, Derek; Roe, Dean; Feind, Karl."The SGI® Altix 3000 Global Shared-Memory Architecture"(PDF).sgi.com. Archived fromthe original(PDF) on 2006-03-14.
  176. ^Vogelsang, Reiner."SGI® Altix™ Hardware Architecture"(PDF). Retrieved25 April 2022.
  177. ^"SGI® Altix™ 350 System User's Guide"(PDF). Archived fromthe original(PDF) on 2016-01-21.
  178. ^"SGI® Altix® 3000 Servers and Superclusters"(PDF). Archived fromthe original(PDF) on 2006-03-14.
  179. ^"SGI® Altix® 4700 Servers and Supercomputers"(PDF). Archived fromthe original(PDF) on 2005-11-24.
  180. ^Vogelsang, Reiner."SGI® Altix™ Hardware Architecture"(PDF). Retrieved4 July 2023.
  181. ^"SGI® L1 and L2 Controller Software User's Guide"(PDF). Archived fromthe original(PDF) on 2015-12-03.
  182. ^"Platforms Supported by NetBSD".www.netbsd.org.Archived from the original on 2021-02-27. Retrieved2021-03-02.
  183. ^"NetBSD/ia64".wiki.netbsd.org.Archived from the original on 2018-04-27. Retrieved2021-03-02.
  184. ^abSabbagh, Dan (3 Feb 2000)."Trillian releases Linux code for Itanium".vnunet.com. Archived fromthe original on 30 September 2007. Retrieved2007-03-20.
  185. ^"Leading Linux Distributors Join the Trillian Project".Red Hat (Press release). December 20, 1999. Retrieved2007-03-20.
  186. ^"Did you know Origins were gonna have Merced?".forums.irixnet.org. Retrieved2025-11-11.
  187. ^"GCC 4.2 Release Series — Changes, New Features, and Fixes - GNU Project".gcc.gnu.org. Retrieved2025-11-11.
  188. ^"IATO simulation environment".
  189. ^Shankland, Stephen (22 March 2005)."Fedora for Itanium taking baby steps".CNET. Retrieved2023-07-04.
  190. ^Connor, Deni (2005-01-06)."Novell releases SuSE Linux for HP Itanium servers".Network World.Archived from the original on 2021-10-29. Retrieved2021-10-14.
  191. ^"CentOS 5 Linux released".IT PRO. 14 April 2007.Archived from the original on 2021-10-29. Retrieved2021-10-14.
  192. ^"Debian Ports". Retrieved2024-10-27.
  193. ^"Slackware for IA-64 is here! Get E P I C !". 2024-05-15. Retrieved2025-01-26.
  194. ^"Project:IA-64".Archived from the original on 2018-09-16. Retrieved2015-07-12.The Gentoo/IA-64 Project works to keep Gentoo the most up to date and fastest IA-64 distribution available.
  195. ^"Summary of Gentoo Council meeting 2024-07-21". Retrieved2024-08-15.The Council members agreed on deprecated ia64 arch
  196. ^"T2 24.12 "Sky's the Limit!"". 2024-12-19. Retrieved2025-01-26.Support and stability was improved for SPARC64, Intel Itanium IA-64, Sony PS3, [...]
  197. ^Ricknäs, Mikael (2009-12-21)."Red Hat to drop Itanium support in Enterprise Linux 6".Computerworld.Archived from the original on 2021-10-28. Retrieved2021-10-14.
  198. ^Clark, Jack."SPARC and Itanium support discontinued in Ubuntu 10.10".ZDNet.Archived from the original on 2021-10-29. Retrieved2021-10-14.
  199. ^Anderson, Tim."'It's dead, Jim': Torvalds marks Intel Itanium processors as orphaned in Linux kernel".The Register.Archived from the original on 2021-10-29. Retrieved2021-10-14.
  200. ^"kernel/git/torvalds/linux.git - Linux kernel source tree".kernel.org.Archived from the original on 2021-11-03. Retrieved2021-10-14.
  201. ^"kernel/git/next/linux-next.git - The linux-next integration testing tree".git.kernel.org. Retrieved2023-09-18.
  202. ^"Linux 6.7 Set To Drop Support For Itanium IA-64".www.phoronix.com. Retrieved2023-09-18.
  203. ^"linux-ia64".GitHub. RetrievedOctober 1, 2024.Maintenance and development of the Linux operating system for Intel Itanium architecture (IA-64)
  204. ^"EPIC Linux". RetrievedOctober 1, 2024.
  205. ^"Compaq OpenVMS Times"(PDF). January 2002. Archived fromthe original(PDF) on March 2, 2006.
  206. ^abcClair Grant (June 2005)."Porting OpenVMS to HP Integrity Servers"(PDF).OpenVMS Technical Journal.6.Archived(PDF) from the original on 2021-11-22. Retrieved2021-11-22.
  207. ^Patrick Thibodeau (July 31, 2014)."HP gives OpenVMS new life".Computerworld.Archived from the original on 2021-10-30. Retrieved2021-10-21.
  208. ^"OpenVMS Roadmap". HPE. July 2019.Archived from the original on 2021-11-22. Retrieved2021-11-22.
  209. ^ab"OpenVMS – A guide to the strategy and roadmap".VSI. Retrieved2025-05-13.
  210. ^"HPE NonStop OS". HPE. April 2018.Archived from the original on 2021-11-22. Retrieved2021-11-22.
  211. ^"HPE NonStop family of systems"(PDF). HPE. May 2021.Archived(PDF) from the original on 2022-01-21. Retrieved2021-11-22.
  212. ^Prashanth Kamath U (2019-07-30)."News from HPE's NonStop Enterprise Division".The Connection.Archived from the original on 2021-11-22. Retrieved2021-11-22.
  213. ^"Intel Itanium IA-64 Support To Be Deprecated By GCC 10, Planned Removal In GCC 11".Phoronix.Archived from the original on 2020-07-11. Retrieved2020-07-09.
  214. ^"Remove the IA-64 backend. · llvm/llvm-project@1715115 · GitHub".GitHub. Jul 24, 2009.
  215. ^"ABI Policy and Guidelines".gcc.gnu.org. Retrieved2025-11-11.
  216. ^Novakovic, Nebojsa (September 25, 2008)."Supercomputing now dominated by X86 architecture".The Inquirer. Archived from the original on September 27, 2008. RetrievedSeptember 27, 2008.
  217. ^Butler, Andrew (October 3, 2008)."Preparing for Tukwila: The Next Generation of Intel's Itanium Processor Family". Archived fromthe original on February 14, 2009. RetrievedOctober 21, 2008.
  218. ^"Processor Generation / Itanium 2 Montecito".TOP500 web site. RetrievedJune 6, 2022. Select "June 2012" and "Processor Generation"
  219. ^Vance, Ashlee (May 6, 2004)."HP rides Hondo to super-sized Itanium servers".The Register. RetrievedNovember 25, 2022.
  220. ^"New Intel Itanium Processor 9500 Delivers Breakthrough Capabilities for Mission-Critical Computing" (Press release). Intel. Archived fromthe original on November 12, 2012. RetrievedNovember 9, 2012.
  221. ^Shilov, Anton."Intel Launches Eight-Core Itanium 9500 "Poulson" Mission-Critical Server Processor". X-bit Labs. Archived fromthe original on November 10, 2012. RetrievedNovember 9, 2012.
  222. ^Undy, Steve."WHITE PAPER Intel Itanium Processor 9500 Series"(PDF). Intel. Archived fromthe original(PDF) on June 16, 2013. RetrievedNovember 9, 2012.
  223. ^Orlowski, Andrew (January 23, 2001)."Benchmarks – Itanic 32bit emulation is 'unusable'. No kidding — slower than a P100".The Register. RetrievedNovember 25, 2022.
  224. ^Dvorak, John C. (January 26, 2009)."How the Itanium Killed the Computer Industry".PC Mag. Archived fromthe original on June 8, 2012. RetrievedApril 15, 2012.
  225. ^Knuth, Donald E. (April 25, 2008)."Interview with Donald Knuth". InformIT.Archived from the original on February 23, 2021. RetrievedApril 1, 2010.
  226. ^Reger, Dan (April 2, 2010)."Windows Server 2008 R2 to Phase Out Itanium".Windows Server Blog.Archived from the original on June 13, 2018. RetrievedJuly 29, 2018.
  227. ^Morgan, Timothy Prickett (December 18, 2009)."Red Hat pulls plug on Itanium with RHEL 6".The Register. RetrievedNovember 25, 2022.
  228. ^Nystedt, Dan (March 22, 2011)."Oracle stops developing software for Intel's Itanium Chips".PC World.Archived from the original on December 30, 2021. RetrievedDecember 30, 2021.
  229. ^"HP wins judgment in Itanium suit against Oracle".Ars Technica. August 2012.Archived from the original on November 12, 2020. RetrievedJuly 1, 2016.
  230. ^"HP awarded $3B in damages from Oracle over Itanium database cancelation".Ars Technica. July 2016.Archived from the original on November 8, 2020. RetrievedJuly 1, 2016.
  231. ^"Oracle Loses $3 Million Verdict For Ditching HP Itanium Chip".Bloomberg.com. 30 June 2016.Archived from the original on 2016-07-01. RetrievedJuly 1, 2016.
  232. ^Brittain, Blake (15 June 2021)."Oracle loses bid to upend HP's $3 billion win".Reuters.Archived from the original on 2021-07-09. RetrievedJuly 7, 2021.
  233. ^Vance, Ashlee (May 21, 2009)."A Decade Later, Intel's Itanium Chip Makes a Profit".The New York Times.Archived from the original on November 4, 2011. RetrievedApril 7, 2010.
  234. ^Darling, Patrick (March 23, 2011)."Intel Reaffirms Commitment to Itanium".Chip Shots. Intel. Archived fromthe original on March 27, 2020. RetrievedMay 20, 2020.
  235. ^Manek Dubash (July 20, 2006)."Will Intel abandon the Itanium?".Techworld. Archived fromthe original on February 19, 2011. RetrievedDecember 19, 2010.Once touted by Intel as a replacement for the x86 product line, expectations for Itanium have been throttled well back.
  236. ^Demerjian, Charlie (September 26, 2003)."Why Intel's Prescott will use AMD64 extensions".The Inquirer. Archived from the original on October 10, 2009. RetrievedOctober 7, 2009.

External links

[edit]
Wikimedia Commons has media related toItanium.
Lists
Microarchitectures
IA-32 (32-bit x86)
x86-64 (64-bit)
x86ULV
Current products
x86-64 (64-bit)
Discontinued
BCD oriented (4-bit)
pre-x86 (8-bit)
Earlyx86 (16-bit)
x87 (externalFPUs)
8/16-bit databus
8087 (1980)
16-bit databus
80C187
80287
80387SX
32-bit databus
80387DX
80487
IA-32 (32-bit x86)
x86-64 (64-bit)
Other
Related
Models
Architecture
Instruction set
architectures
Types
Instruction
sets
Execution
Instruction pipelining
Hazards
Out-of-order
Speculative
Parallelism
Level
Multithreading
Flynn's taxonomy
Processor
performance
Types
By application
Systems
on chip
Hardware
accelerators
Word size
Core count
Components
Functional
units
Logic
Registers
Control unit
Datapath
Circuitry
Power
management
Related
Products
Personal computers
Desktops
Laptops
Workstations and servers
Mobile devices
Printing and imaging
Microprocessors
Computer buses
Other hardware
Services
CEOs
Assets
Acquisitions
Spin-offs
Related
  • Asterisk (*) denotes product lines continued byHP Inc.
  • Double asterisk (**) denotes product lines and companies now property ofHewlett Packard Enterprise
  • Dagger (†) denotes assets or companies divested and sold off
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Itanium&oldid=1321620429#Itanium_2_(McKinley_and_Madison):_2002–2006"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp