Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of tungsten

From Wikipedia, the free encyclopedia

Isotopes oftungsten (74W)
Main isotopesDecay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
180W0.120%1.59×1018 y[1]α176Hf
181Wsynth120.96 dε181Ta
182W26.5%stable
183W14.3%stable
184W30.6%stable
185Wsynth75.1 dβ185Re
186W28.4%stable
187Wsynth23.81 hβ187Re
188Wsynth69.77 dβ188Re
Standard atomic weightAr°(W)

Naturally occurringtungsten (74W) consists of fiveisotopes. Four are consideredstable (182W,183W,184W, and186W) and one is slightlyradioactive,180W, with an extremely longhalf-life of(1.59±0.05)×1018 years.[1] This results in about twoalpha decays of180W per gram of natural tungsten per year, so for most practical purposes,180W can be considered stable. The other naturally occurring isotopes are also capable of alpha decay and so onlyobservationally stable.

Artificialradioisotopes of tungsten have been observed from156W to197W, the most stable of which are181W with a half-life of 120.96 days,185W with a half-life of 75.1 days,188W with a half-life of 69.77 days and178W with a half-life of 21.6 days. All of the remainingradioactive isotopes have half-lives less than one day, and most of these less than 8 minutes. The most stable knownmeta state is179m1W with half-life 6.40 minutes.

List of isotopes

[edit]

Nuclide
[n 1]
ZNIsotopic mass(Da)[4]
[n 2][n 3]
Half-life[5]
[n 4][n 5]
Decay
mode
[5]
[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity[5]
[n 9][n 5]
Natural abundance(mole fraction)
Excitation energyNormal proportion[5]Range of variation
156W[6]7482157+57
−34
 ms
β+156Ta0+
157W[7]7483156.97886(43)#275(40) msβ+157Ta(7/2−)
158W7484157.97457(32)#1.43(18) msα154Hf0+
158mW1889(8) keV143(19) μsα154Hf(8+)
159W7485158.97270(32)#8.2(7) msα (82%)155Hf7/2−#
160W7486159.96851(16)90(5) msα (87%)156Hf0+
β+ (13%)160Ta
161W7487160.96725(22)#409(16) msα (73%)157Hf7/2−#
β+ (27%)161Ta
162W7488161.963500(19)1.19(12) sβ+ (54.8%)162Ta0+
α (45.2%)158Hf
163W7489162.962524(63)2.63(9) sβ+ (86%)163Ta7/2−
α (14%)159Hf
163mW480.3(7) keV154(3) nsIT163W13/2+
164W7490163.958952(10)6.3(2) sβ+ (96.2%)164Ta0+
α (3.8%)160Hf
165W7491164.958281(28)5.1(5) sβ+165Ta(5/2−)
166W7492165.955032(10)19.2(6) sβ+ (99.97%)166Ta0+
α (0.035%)162Hf
167W7493166.954811(20)19.9(5) sβ+ (99.96%)167Ta(5/2−)
α (0.04%)163Hf
168W7494167.951805(14)50.9(19) sβ+ (99.97%)168Ta0+
α (0.032%)164Hf
169W7495168.951779(17)74(6) sβ+169Ta5/2−#
170W7496169.949231(14)2.42(4) minβ+(99%)170Ta0+
171W7497170.949451(30)2.38(4) minβ+171Ta(5/2−)
172W7498171.947292(30)6.6(9) minβ+172Ta0+
173W7499172.947689(30)7.6(2) minβ+173Ta5/2−
174W74100173.946079(30)33.2(21) minβ+174Ta0+
174m1W2267.8(4) keV158(3) nsIT174W8−
174m2W3515.6(4) keV128(8) nsIT174W12+
175W74101174.946717(30)35.2(6) minβ+175Ta(1/2−)
175mW234.96(15) keV216(6) nsIT175W(7/2+)
176W74102175.945634(30)2.5(1) hEC176Ta0+
177W74103176.946643(30)132.4(20) minβ+177Ta1/2−
178W74104177.945886(16)21.6(3) dEC178Ta0+
178mW6572.7(3) keV220(10) nsIT178W25+
179W74105178.947079(16)37.05(16) minβ+179Ta7/2−
179m1W221.91(3) keV6.40(7) minIT (99.71%)179W1/2−
β+ (0.29%)179Ta
179m2W1631.90(8) keV390(30) nsIT179W21/2+
179m3W3348.41(14) keV750(80) nsIT179W35/2−
180W[n 10]74106179.9467133(15)1.59(5)×1018 y[1]α176Hf0+0.0012(1)
180m1W1529.05(4) keV5.47(9) msIT180W8−
180m2W3264.7(3) keV2.33(19) μsIT180W14−
181W74107180.9482187(16)120.956(19) dEC181Ta9/2+
181m1W365.55(13) keV14.59(15) μsIT181W5/2−
181m2W1653.0(3) keV200(13) nsIT181W21/2+
182W74108181.94820564(80)Observationally Stable[n 11]0+0.2650(16)
182mW2230.65(14) keV1.3(1) μsIT182W10+
183W74109182.95022442(80)Observationally Stable[n 12]1/2−0.1431(4)
183mW309.492(4) keV5.30(8) sIT183W11/2+
184W74110183.95093318(79)Observationally Stable[n 13]0+0.3064(2)
184m1W1284.997(8) keV8.33(18) μsIT184W5−
184m2W4127.7(5) keV188(38) nsIT184W(14+)
185W74111184.95342121(79)75.1(3) dβ185Re3/2−
185mW197.383(23) keV1.597(4) minIT185W11/2+
186W74112185.9543651(13)Observationally Stable[n 14]0+0.2843(19)
186m1W1517.2(6) keV18(1) μsIT186W7−
186m2W3542.8(21) keV2.0(2) sIT186W16+
187W74113186.9571612(13)23.809(25) hβ187Re3/2−
187mW410.06(4) keV1.54(13) μs[8]IT187W11/2+
188W74114187.9584883(33)69.77(5) dβ188Re0+
188mW1926.7(8) keV109.5(35) nsIT188W8−
189W74115188.96156(22)#11.6(2) minβ189Re9/2−#
190W74116189.963104(38)30.0(15) minβ190Re0+
190m1W1743.6(10) keV111(17) nsIT190W8+
190m2W1840.6(14) keV166(6) μsIT190W10−
191W74117190.966531(45)14# s
[>300 ns]
3/2−#
191mW235(10)# keV340(14) nsIT191W9/2−#
192W74118191.96820(22)#40# s
[>300 ns]
0+
193W74119192.97188(22)#30# s
[>300 ns]
1/2−#
194W74120193.97380(32)#20# s
[>300 ns]
0+
195W74121194.97774(32)#30# s
[>160 ns]
3/2−#
196W74122195.97988(43)#25# s
[>300 ns]
0+
197W74123196.98404(43)#1# s
[>300 ns]
5/2−#
This table header & footer:
  1. ^mW – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    α:Alpha decay
    β+:Positron emission
    EC:Electron capture
    β:Beta decay
    IT:Isomeric transition
  7. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^Bold symbol as daughter – Daughter product is stable.
  9. ^( ) spin value – Indicates spin with weak assignment arguments.
  10. ^Primordialradionuclide
  11. ^Believed to undergo α decay to178Hf with a half-life over 7.7×1021 y
  12. ^Believed to undergo α decay to179Hf with a half-life over 6.70×1020 y
  13. ^Believed to undergo α decay to180Hf with a half-life over 8.9×1021 y
  14. ^Believed to undergo α decay to182Hf with a half-life over 8.2×1021 y, or ββ decay to186Os with a half-life over 4.1×1018 y

See also

[edit]

Daughter products other than tungsten

References

[edit]
  1. ^abcMünster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J. -C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A. (May 2014). "Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA".Journal of Cosmology and Astroparticle Physics (05).arXiv:1403.5114.Bibcode:2014JCAP...05..018M.doi:10.1088/1475-7516/2014/05/018. 018.
  2. ^"Standard Atomic Weights: Tungsten".CIAAW. 1991.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  6. ^Briscoe, A. D.; Page, R. D.; Uusitalo, J.; et al. (2023)."Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides160Os and156W".Physics Letters B.47 (138310).doi:10.1016/j.physletb.2023.138310.hdl:10272/23933.
  7. ^Bianco, L.; Page, R. D.; Darby, I. G.; et al. (7 June 2010)."Discovery of157W and161Os"(PDF).Physics Letters B.690 (1):15–18.Bibcode:2010PhLB..690...15B.doi:10.1016/j.physletb.2010.04.056.ISSN 0370-2693.S2CID 117121162. Retrieved11 June 2023.
  8. ^Chen, J. L.; Watanabe, H.; Walker, P. M.; et al. (2025). "Direct observation ofβ andγ decay from a high-spin long-lived isomer in187Ta".Physical Review C.111 (014304).arXiv:2501.02848.doi:10.1103/PhysRevC.111.014304.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_tungsten&oldid=1308013593"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp