| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technetium (43Tc) is one of the two elements withZ < 83 that have no stableisotopes; the other such element ispromethium.[2] It is primarily artificial, with only trace quantities existing in nature produced byspontaneous fission (there are an estimated2.5×10−13 grams of99Tc per gram ofpitchblende)[3] orneutron capture bymolybdenum. The element was first obtained in 1936 from bombardedmolybdenum, the first artificial element to be produced. The most stableradioisotopes are97Tc (half-life of 4.21 million years),98Tc (half-life: 4.2 million years), and99Tc (half-life: 211,100 years). Given that their stated uncertainties are 16 and 30 times their difference, the half-lives of97Tc and98Tc are statistically indistinguishable.
Thirty-three other radioisotopes have been characterized withatomic masses ranging from85Tc to120Tc. Those with half-lives more than an hour have masses 93 to 96.
Technetium also has numerousmeta states.97mTc is the most stable, with a half-life of 91.1 days (0.097 MeV), followed by95mTc (half-life: 62.0 days, 0.039 MeV) and99mTc (half-life: 6.01 hours, 0.143 MeV).99mTc emits onlygamma rays while decaying to99Tc.
For isotopes lighter than98Tc, the primarydecay mode iselectron capture toisotopes of molybdenum. For the heavier isotopes, the primary mode isbeta emission toisotopes of ruthenium, with the exception that98Tc and100Tc can decay both by beta emission and electron capture.
Technetium-99m is the technetium isotope employed in thenuclear medicine industry. Its low-energyisomeric transition, which yields a gamma-ray at ~140.5 keV, is ideal for imaging usingSingle Photon Emission Computed Tomography (SPECT). Several technetium isotopes, such as94mTc,95Tc, and96Tc, which are produced via (p,n) reactions using acyclotron onmolybdenum targets, have also been identified as potentialPositron Emission Tomography (PET) or gamma-emitting agents for medical imaging.[4][5][6] Technetium-101 has been produced using aD-D fusion-basedneutron generator from the100Mo(n,γ)101Mo reaction on natural molybdenum and subsequentbeta-minus decay of101Mo to101Tc. Despite its shorter half-life (14.22 minutes),101Tc exhibits unique decay characteristics suitable for radioisotope diagnostic ortherapeutic procedures, where it has been proposed that its implementation, as a supplement for dual-isotopic imaging or replacement for99mTc, could be performed by on-site production and dispensing at the point of patient care.[7]
Technetium-99 is the most common and most readily available isotope, as it is a majorfission product from fission ofactinides likeuranium andplutonium with afission product yield of 6% or more, and in fact the most significantlong-lived fission product. Lighter isotopes of technetium are almost never produced in fission because the initial fission products normally have a higher neutron/proton ratio than is stable for their mass range, and therefore undergobeta decay until reaching the ultimate product. Beta decay of fission products of mass 98 and lower, or 100, stops at stable (or very long-lived) isotopes of lower atomic number and does not reach technetium. For greater masses, the technetium isotopes are very short-lived and quickly undergo further beta decay. Therefore, the technetium inspent nuclear fuel is practically all99Tc. In the presence offast neutrons a small amount of98
Tc will be produced by (n,2n) "knockout" reactions. Ifnuclear transmutation of fission-derived technetium, or technetium wastes from medical applications, is desired, fast neutrons are therefore not desirable as the long lived98
Tc increases rather than reducing the longevity of the radioactivity in the material.[citation needed]
One gram of99Tc produces6.2×108 disintegrations a second (that is, 0.62 GBq/g).[8]
Technetium has noprimordial isotopes and does not occur in nature in significant quantities, and thus astandard atomic weight cannot be given.
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[9] [n 2][n 3] | Half-life[1] | Decay mode[1] [n 4] | Daughter isotope [n 5][n 6] | Spin and parity[1] [n 7][n 8] | Isotopic abundance | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 8] | |||||||||||||||||||
| 86Tc | 43 | 43 | 85.94464(32)# | 55(7) ms | β+ | 86Mo | (0+) | ||||||||||||
| 86mTc | 1524(10) keV | 1.10(12) μs | IT | 86Tc | (6+) | ||||||||||||||
| 87Tc | 43 | 44 | 86.9380672(45) | 2.14(17) s | β+ | 87Mo | 9/2+# | ||||||||||||
| β+,p (<0.7%) | 86Nb | ||||||||||||||||||
| 87mTc | 71(1) keV | 647(24) ns | IT | 87Tc | 7/2+# | ||||||||||||||
| 88Tc | 43 | 45 | 87.9337942(44) | 6.4(8) s | β+ | 88Mo | (2+) | ||||||||||||
| 88m1Tc | 70(3) keV | 5.8(2) s | β+ | 88Mo | (6+) | ||||||||||||||
| 88m2Tc | 95(1) keV | 146(12) ns | IT | 88Tc | (4+) | ||||||||||||||
| 89Tc | 43 | 46 | 88.9276486(41) | 12.8(9) s | β+ | 89Mo | (9/2+) | ||||||||||||
| 89mTc | 62.6(5) keV | 12.9(8) s | β+ | 89Mo | (1/2−) | ||||||||||||||
| 90Tc | 43 | 47 | 89.9240739(11) | 49.2(4) s | β+ | 90Mo | (8+) | ||||||||||||
| 90mTc | 144.0(17) keV | 8.7(2) s | β+ | 90Mo | 1+ | ||||||||||||||
| 91Tc | 43 | 48 | 90.9184250(25) | 3.14(2) min | β+ | 91Mo | (9/2)+ | ||||||||||||
| 91mTc | 139.3(3) keV | 3.3(1) min | β+ (99%) | 91Mo | (1/2)− | ||||||||||||||
| 92Tc | 43 | 49 | 91.9152698(33) | 4.25(15) min | β+ | 92Mo | (8)+ | ||||||||||||
| 92m1Tc | 270.09(8) keV | 1.03(6) μs | IT | 92Tc | (4+) | ||||||||||||||
| 92m2Tc | 529.42(13) keV | <0.1 μs | IT | 92Tc | (3+) | ||||||||||||||
| 92m3Tc | 711.33(15) keV | <0.1 μs | IT | 92Tc | 1+ | ||||||||||||||
| 93Tc | 43 | 50 | 92.9102451(11) | 2.75(5) h | β+ | 93Mo | 9/2+ | ||||||||||||
| 93m1Tc | 391.84(8) keV | 43.5(10) min | IT (77.4%) | 93Tc | 1/2− | ||||||||||||||
| β+ (22.6%) | 93Mo | ||||||||||||||||||
| 93m2Tc | 2185.16(15) keV | 10.2(3) μs | IT | 93Tc | (17/2)− | ||||||||||||||
| 94Tc | 43 | 51 | 93.9096523(44) | 293(1) min | β+ | 94Mo | 7+ | ||||||||||||
| 94mTc | 76(3) keV | 52(1) min | β+ (>99.82%) | 94Mo | (2)+ | ||||||||||||||
| IT (<0.18%) | 94Tc | ||||||||||||||||||
| 95Tc | 43 | 52 | 94.9076523(55) | 19.258(26) h | β+ | 95Mo | 9/2+ | ||||||||||||
| 95mTc | 38.91(4) keV | 61.96(24) d | β+ (96.1%) | 95Mo | 1/2− | ||||||||||||||
| IT (3.9%) | 95Tc | ||||||||||||||||||
| 96Tc | 43 | 53 | 95.9078667(55) | 4.28(7) d | β+ | 96Mo | 7+ | ||||||||||||
| 96mTc | 34.23(4) keV | 51.5(10) min | IT (98.0%) | 96Tc | 4+ | ||||||||||||||
| β+ (2.0%) | 96Mo | ||||||||||||||||||
| 97Tc | 43 | 54 | 96.9063607(44) | 4.21(16)×106 y | EC | 97Mo | 9/2+ | ||||||||||||
| 97mTc | 96.57(6) keV | 91.1(6) d | IT (96.06%) | 97Tc | 1/2− | ||||||||||||||
| EC (3.94%) | 97Mo | ||||||||||||||||||
| 98Tc | 43 | 55 | 97.9072112(36) | 4.2(3)×106 y | β− (99.71%) | 98Ru | 6+ | ||||||||||||
| EC (0.29%)[10] | 98Mo | ||||||||||||||||||
| 98mTc | 90.77(16) keV | 14.7(5) μs | IT | 98Tc | (2,3)− | ||||||||||||||
| 99Tc[n 9] | 43 | 56 | 98.90624968(97) | 2.111(12)×105 y | β− | 99Ru | 9/2+ | trace | |||||||||||
| 99mTc[n 10][n 11] | 142.6836(11) keV | 6.0066(2) h | IT | 99Tc | 1/2− | ||||||||||||||
| β− (0.0037%) | 99Ru | ||||||||||||||||||
| 100Tc | 43 | 57 | 99.9076527(15) | 15.46(19) s | β− | 100Ru | 1+ | ||||||||||||
| EC (0.0018%) | 100Mo | ||||||||||||||||||
| 100m1Tc | 200.67(4) keV | 8.32(14) μs | IT | 100Tc | (4)+ | ||||||||||||||
| 100m2Tc | 243.95(4) keV | 3.2(2) μs | IT | 100Tc | (6)+ | ||||||||||||||
| 101Tc | 43 | 58 | 100.907305(26) | 14.22(1) min | β− | 101Ru | 9/2+ | ||||||||||||
| 101mTc | 207.526(20) keV | 636(8) μs | IT | 101Tc | 1/2− | ||||||||||||||
| 102Tc | 43 | 59 | 101.9092072(98) | 5.28(15) s | β− | 102Ru | 1+ | ||||||||||||
| 102mTc[n 12] | 50(50)# keV | 4.35(7) min | β− | 102Ru | (4+) | ||||||||||||||
| 103Tc | 43 | 60 | 102.909174(11) | 54.2(8) s | β− | 103Ru | 5/2+ | ||||||||||||
| 104Tc | 43 | 61 | 103.911434(27) | 18.3(3) min | β− | 104Ru | (3−) | ||||||||||||
| 104m1Tc | 69.7(2) keV | 3.5(3) μs | IT | 104Tc | (5−) | ||||||||||||||
| 104m2Tc | 106.1(3) keV | 400(20) ns | IT | 104Tc | 4# | ||||||||||||||
| 105Tc | 43 | 62 | 104.911662(38) | 7.64(6) min | β− | 105Ru | (3/2−) | ||||||||||||
| 106Tc | 43 | 63 | 105.914357(13) | 35.6(6) s | β− | 106Ru | (1,2)(+#) | ||||||||||||
| 107Tc | 43 | 64 | 106.9154584(93) | 21.2(2) s | β− | 107Ru | (3/2−) | ||||||||||||
| 107m1Tc | 30.1(1) keV | 3.85(5) μs | IT | 107Tc | (1/2+) | ||||||||||||||
| 107m2Tc | 65.72(14) keV | 184(3) ns | IT | 107Tc | (5/2+) | ||||||||||||||
| 108Tc | 43 | 65 | 107.9184935(94) | 5.17(7) s | β− | 108Ru | (2)+ | ||||||||||||
| 109Tc | 43 | 66 | 108.920254(10) | 905(21) ms | β− (99.92%) | 109Ru | (5/2+) | ||||||||||||
| β−,n (0.08%) | 108Ru | ||||||||||||||||||
| 110Tc | 43 | 67 | 109.923741(10) | 900(13) ms | β− (99.96%) | 110Ru | (2+,3+) | ||||||||||||
| β−, n (0.04%) | 109Ru | ||||||||||||||||||
| 111Tc | 43 | 68 | 110.925899(11) | 350(11) ms | β− (99.15%) | 111Ru | 5/2+# | ||||||||||||
| β−, n (0.85%) | 110Ru | ||||||||||||||||||
| 112Tc | 43 | 69 | 111.9299417(59) | 323(6) ms | β− (98.5%) | 112Ru | (2+) | ||||||||||||
| β−, n (1.5%) | 111Ru | ||||||||||||||||||
| 112mTc | 352.3(7) keV | 150(17) ns | IT | 112Tc | |||||||||||||||
| 113Tc | 43 | 70 | 112.9325690(36) | 152(8) ms | β− (97.9%) | 113Ru | 5/2+# | ||||||||||||
| β−, n (2.1%) | 112Ru | ||||||||||||||||||
| 113mTc | 114.4(5) keV | 527(16) ns | IT | 113Tc | 5/2−# | ||||||||||||||
| 114Tc | 43 | 71 | 113.93709(47) | 121(9) ms | β− (98.7%) | 114Ru | 5+# | ||||||||||||
| β−, n (1.3%) | 113Ru | ||||||||||||||||||
| 114mTc[n 12] | 160(430) keV | 90(20) ms | β− (98.7%) | 114Ru | 1+# | ||||||||||||||
| β−, n (1.3%) | 113Ru | ||||||||||||||||||
| 115Tc | 43 | 72 | 114.94010(21)# | 78(2) ms | β− | 115Ru | 5/2+# | ||||||||||||
| 116Tc | 43 | 73 | 115.94502(32)# | 57(3) ms | β− | 116Ru | 2+# | ||||||||||||
| 117Tc | 43 | 74 | 116.94832(43)# | 44.5(30) ms | β− | 117Ru | 5/2+# | ||||||||||||
| 118Tc | 43 | 75 | 117.95353(43)# | 30(4) ms | β− | 118Ru | 2+# | ||||||||||||
| 119Tc | 43 | 76 | 118.95688(54)# | 22(3) ms | β− | 119Ru | 5/2+# | ||||||||||||
| 120Tc | 43 | 77 | 119.96243(54)# | 21(5) ms | β− | 120Ru | 3+# | ||||||||||||
| 121Tc | 43 | 78 | 120.96614(54)# | 22(6) ms | β− | 121Ru | 5/2+# | ||||||||||||
| 122Tc | 43 | 79 | 121.97176(32)# | 13# ms [>550 ns] | 1+# | ||||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
Technetium andpromethium are unusual light elements in that they have no stable isotopes. Using theliquid drop model for atomic nuclei, one can derive a semiempirical formula for the binding energy of a nucleus. This formula predicts a "valley of beta stability" along whichnuclides do not undergo beta decay. Nuclides that lie "up the walls" of the valley tend to beta decay towards the center (by emitting an electron, emitting apositron, or capturing an electron). For a fixed number of nucleonsA, the binding energies lie on one or moreparabolas, with the most stable nuclide at the bottom. One can have more than one parabola because isotopes with an even number of protons and an even number of neutrons are more stable than isotopes with an odd number of neutrons and an odd number of protons. A single beta decay then transforms one into the other. When there is only one parabola, there can be only one stable isotope lying on that parabola. When there are two parabolas, that is, when the number of nucleons is even, it can happen (rarely) that there is a stable nucleus with an odd number of neutrons and an odd number of protons (although this happens only in five instances:2H,6Li,10B,14N and180mTa). However, if this happens, there can be no stable isotope with an even number of neutrons and an even number of protons (180 is an exception, and180mTa is suspected not to be truly stable).
For technetium (Z = 43), the valley of beta stability is centered at around 98 nucleons. However, for every number of nucleons from 94 to 102, there is already at least one stable nuclide of eithermolybdenum (Z = 42) orruthenium (Z = 44), and theMattauch isobar rule states that two adjacentisobars cannot both be stable.[11] For the isotopes with odd numbers of nucleons, this immediately rules out a stable isotope of technetium, since there can be only one stable nuclide with a fixed odd number of nucleons. For the isotopes with an even number of nucleons, since technetium has an odd number of protons, any isotope must also have an odd number of neutrons. In such a case, the presence of a stable nuclide having the same number of nucleons and an even number of protons rules out the possibility of a stable nucleus.[11][12]
Daughter products other than technetium