Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of technetium

From Wikipedia, the free encyclopedia

Isotopes oftechnetium (43Tc)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
95mTcsynth62.0 dβ+95Mo
IT95Tc
96Tcsynth4.28 dβ+96Mo
97Tcsynth4.21×106 yε97Mo
97mTcsynth91.1 dIT97Tc
ε97Mo
98Tcsynth4.2×106 yβ98Ru
ε98Mo
99Tctrace2.111×105 yβ99Ru
99mTcsynth6.01 hIT99Tc
β99Ru

Technetium (43Tc) is one of the two elements withZ < 83 that have no stableisotopes; the other such element ispromethium.[2] It is primarily artificial, with only trace quantities existing in nature produced byspontaneous fission (there are an estimated2.5×10−13 grams of99Tc per gram ofpitchblende)[3] orneutron capture bymolybdenum. The element was first obtained in 1936 from bombardedmolybdenum, the first artificial element to be produced. The most stableradioisotopes are97Tc (half-life of 4.21 million years),98Tc (half-life: 4.2 million years), and99Tc (half-life: 211,100 years). Given that their stated uncertainties are 16 and 30 times their difference, the half-lives of97Tc and98Tc are statistically indistinguishable.

Thirty-three other radioisotopes have been characterized withatomic masses ranging from85Tc to120Tc. Those with half-lives more than an hour have masses 93 to 96.

Technetium also has numerousmeta states.97mTc is the most stable, with a half-life of 91.1 days (0.097 MeV), followed by95mTc (half-life: 62.0 days, 0.039 MeV) and99mTc (half-life: 6.01 hours, 0.143 MeV).99mTc emits onlygamma rays while decaying to99Tc.

For isotopes lighter than98Tc, the primarydecay mode iselectron capture toisotopes of molybdenum. For the heavier isotopes, the primary mode isbeta emission toisotopes of ruthenium, with the exception that98Tc and100Tc can decay both by beta emission and electron capture.

Technetium-99m is the technetium isotope employed in thenuclear medicine industry. Its low-energyisomeric transition, which yields a gamma-ray at ~140.5 keV, is ideal for imaging usingSingle Photon Emission Computed Tomography (SPECT). Several technetium isotopes, such as94mTc,95Tc, and96Tc, which are produced via (p,n) reactions using acyclotron onmolybdenum targets, have also been identified as potentialPositron Emission Tomography (PET) or gamma-emitting agents for medical imaging.[4][5][6] Technetium-101 has been produced using aD-D fusion-basedneutron generator from the100Mo(n,γ)101Mo reaction on natural molybdenum and subsequentbeta-minus decay of101Mo to101Tc. Despite its shorter half-life (14.22 minutes),101Tc exhibits unique decay characteristics suitable for radioisotope diagnostic ortherapeutic procedures, where it has been proposed that its implementation, as a supplement for dual-isotopic imaging or replacement for99mTc, could be performed by on-site production and dispensing at the point of patient care.[7]

Technetium-99 is the most common and most readily available isotope, as it is a majorfission product from fission ofactinides likeuranium andplutonium with afission product yield of 6% or more, and in fact the most significantlong-lived fission product. Lighter isotopes of technetium are almost never produced in fission because the initial fission products normally have a higher neutron/proton ratio than is stable for their mass range, and therefore undergobeta decay until reaching the ultimate product. Beta decay of fission products of mass 98 and lower, or 100, stops at stable (or very long-lived) isotopes of lower atomic number and does not reach technetium. For greater masses, the technetium isotopes are very short-lived and quickly undergo further beta decay. Therefore, the technetium inspent nuclear fuel is practically all99Tc. In the presence offast neutrons a small amount of98
Tc
will be produced by (n,2n) "knockout" reactions. Ifnuclear transmutation of fission-derived technetium, or technetium wastes from medical applications, is desired, fast neutrons are therefore not desirable as the long lived98
Tc
increases rather than reducing the longevity of the radioactivity in the material.[citation needed]

One gram of99Tc produces6.2×108 disintegrations a second (that is, 0.62 GBq/g).[8]

Technetium has noprimordial isotopes and does not occur in nature in significant quantities, and thus astandard atomic weight cannot be given.

List of isotopes

[edit]

Nuclide
[n 1]
ZNIsotopic mass(Da)[9]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5][n 6]
Spin and
parity[1]
[n 7][n 8]
Isotopic
abundance
Excitation energy[n 8]
86Tc434385.94464(32)#55(7) msβ+86Mo(0+)
86mTc1524(10) keV1.10(12) μsIT86Tc(6+)
87Tc434486.9380672(45)2.14(17) sβ+87Mo9/2+#
β+,p (<0.7%)86Nb
87mTc71(1) keV647(24) nsIT87Tc7/2+#
88Tc434587.9337942(44)6.4(8) sβ+88Mo(2+)
88m1Tc70(3) keV5.8(2) sβ+88Mo(6+)
88m2Tc95(1) keV146(12) nsIT88Tc(4+)
89Tc434688.9276486(41)12.8(9) sβ+89Mo(9/2+)
89mTc62.6(5) keV12.9(8) sβ+89Mo(1/2−)
90Tc434789.9240739(11)49.2(4) sβ+90Mo(8+)
90mTc144.0(17) keV8.7(2) sβ+90Mo1+
91Tc434890.9184250(25)3.14(2) minβ+91Mo(9/2)+
91mTc139.3(3) keV3.3(1) minβ+ (99%)91Mo(1/2)−
92Tc434991.9152698(33)4.25(15) minβ+92Mo(8)+
92m1Tc270.09(8) keV1.03(6) μsIT92Tc(4+)
92m2Tc529.42(13) keV<0.1 μsIT92Tc(3+)
92m3Tc711.33(15) keV<0.1 μsIT92Tc1+
93Tc435092.9102451(11)2.75(5) hβ+93Mo9/2+
93m1Tc391.84(8) keV43.5(10) minIT (77.4%)93Tc1/2−
β+ (22.6%)93Mo
93m2Tc2185.16(15) keV10.2(3) μsIT93Tc(17/2)−
94Tc435193.9096523(44)293(1) minβ+94Mo7+
94mTc76(3) keV52(1) minβ+ (>99.82%)94Mo(2)+
IT (<0.18%)94Tc
95Tc435294.9076523(55)19.258(26) hβ+95Mo9/2+
95mTc38.91(4) keV61.96(24) dβ+ (96.1%)95Mo1/2−
IT (3.9%)95Tc
96Tc435395.9078667(55)4.28(7) dβ+96Mo7+
96mTc34.23(4) keV51.5(10) minIT (98.0%)96Tc4+
β+ (2.0%)96Mo
97Tc435496.9063607(44)4.21(16)×106 yEC97Mo9/2+
97mTc96.57(6) keV91.1(6) dIT (96.06%)97Tc1/2−
EC (3.94%)97Mo
98Tc435597.9072112(36)4.2(3)×106 yβ (99.71%)98Ru6+
EC (0.29%)[10]98Mo
98mTc90.77(16) keV14.7(5) μsIT98Tc(2,3)−
99Tc[n 9]435698.90624968(97)2.111(12)×105 yβ99Ru9/2+trace
99mTc[n 10][n 11]142.6836(11) keV6.0066(2) hIT99Tc1/2−
β (0.0037%)99Ru
100Tc435799.9076527(15)15.46(19) sβ100Ru1+
EC (0.0018%)100Mo
100m1Tc200.67(4) keV8.32(14) μsIT100Tc(4)+
100m2Tc243.95(4) keV3.2(2) μsIT100Tc(6)+
101Tc4358100.907305(26)14.22(1) minβ101Ru9/2+
101mTc207.526(20) keV636(8) μsIT101Tc1/2−
102Tc4359101.9092072(98)5.28(15) sβ102Ru1+
102mTc[n 12]50(50)# keV4.35(7) minβ102Ru(4+)
103Tc4360102.909174(11)54.2(8) sβ103Ru5/2+
104Tc4361103.911434(27)18.3(3) minβ104Ru(3−)
104m1Tc69.7(2) keV3.5(3) μsIT104Tc(5−)
104m2Tc106.1(3) keV400(20) nsIT104Tc4#
105Tc4362104.911662(38)7.64(6) minβ105Ru(3/2−)
106Tc4363105.914357(13)35.6(6) sβ106Ru(1,2)(+#)
107Tc4364106.9154584(93)21.2(2) sβ107Ru(3/2−)
107m1Tc30.1(1) keV3.85(5) μsIT107Tc(1/2+)
107m2Tc65.72(14) keV184(3) nsIT107Tc(5/2+)
108Tc4365107.9184935(94)5.17(7) sβ108Ru(2)+
109Tc4366108.920254(10)905(21) msβ (99.92%)109Ru(5/2+)
β,n (0.08%)108Ru
110Tc4367109.923741(10)900(13) msβ (99.96%)110Ru(2+,3+)
β, n (0.04%)109Ru
111Tc4368110.925899(11)350(11) msβ (99.15%)111Ru5/2+#
β, n (0.85%)110Ru
112Tc4369111.9299417(59)323(6) msβ (98.5%)112Ru(2+)
β, n (1.5%)111Ru
112mTc352.3(7) keV150(17) nsIT112Tc
113Tc4370112.9325690(36)152(8) msβ (97.9%)113Ru5/2+#
β, n (2.1%)112Ru
113mTc114.4(5) keV527(16) nsIT113Tc5/2−#
114Tc4371113.93709(47)121(9) msβ (98.7%)114Ru5+#
β, n (1.3%)113Ru
114mTc[n 12]160(430) keV90(20) msβ (98.7%)114Ru1+#
β, n (1.3%)113Ru
115Tc4372114.94010(21)#78(2) msβ115Ru5/2+#
116Tc4373115.94502(32)#57(3) msβ116Ru2+#
117Tc4374116.94832(43)#44.5(30) msβ117Ru5/2+#
118Tc4375117.95353(43)#30(4) msβ118Ru2+#
119Tc4376118.95688(54)#22(3) msβ119Ru5/2+#
120Tc4377119.96243(54)#21(5) msβ120Ru3+#
121Tc4378120.96614(54)#22(6) msβ121Ru5/2+#
122Tc4379121.97176(32)#13# ms
[>550 ns]
1+#
This table header & footer:
  1. ^mTc – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  5. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^Long-lived fission product
  10. ^Fission product
  11. ^Used in medicine
  12. ^abOrder of ground state and isomer is uncertain.

Stability of technetium isotopes

[edit]
See also:Beta-decay stable isobars

Technetium andpromethium are unusual light elements in that they have no stable isotopes. Using theliquid drop model for atomic nuclei, one can derive a semiempirical formula for the binding energy of a nucleus. This formula predicts a "valley of beta stability" along whichnuclides do not undergo beta decay. Nuclides that lie "up the walls" of the valley tend to beta decay towards the center (by emitting an electron, emitting apositron, or capturing an electron). For a fixed number of nucleonsA, the binding energies lie on one or moreparabolas, with the most stable nuclide at the bottom. One can have more than one parabola because isotopes with an even number of protons and an even number of neutrons are more stable than isotopes with an odd number of neutrons and an odd number of protons. A single beta decay then transforms one into the other. When there is only one parabola, there can be only one stable isotope lying on that parabola. When there are two parabolas, that is, when the number of nucleons is even, it can happen (rarely) that there is a stable nucleus with an odd number of neutrons and an odd number of protons (although this happens only in five instances:2H,6Li,10B,14N and180mTa). However, if this happens, there can be no stable isotope with an even number of neutrons and an even number of protons (180 is an exception, and180mTa is suspected not to be truly stable).

For technetium (Z = 43), the valley of beta stability is centered at around 98 nucleons. However, for every number of nucleons from 94 to 102, there is already at least one stable nuclide of eithermolybdenum (Z = 42) orruthenium (Z = 44), and theMattauch isobar rule states that two adjacentisobars cannot both be stable.[11] For the isotopes with odd numbers of nucleons, this immediately rules out a stable isotope of technetium, since there can be only one stable nuclide with a fixed odd number of nucleons. For the isotopes with an even number of nucleons, since technetium has an odd number of protons, any isotope must also have an odd number of neutrons. In such a case, the presence of a stable nuclide having the same number of nucleons and an even number of protons rules out the possibility of a stable nucleus.[11][12]

See also

[edit]

Daughter products other than technetium

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Atomic weights of the elements 2011 (IUPAC Technical Report)"(PDF).IUPAC. p. 1059(13). RetrievedAugust 11, 2014. – Elements marked with a * have no stable isotope: 43, 61, and 83 and up.
  3. ^Icenhower, J.P.; Martin, W.J.; Qafoku, N.P.; Zachara, J.M. (2008). The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment (Report). Pacific Northwest National Laboratory: U.S. Department of Energy. p. 2.1.
  4. ^Bigott, H. M.; Mccarthy, D. W.; Wüst, F. R.; Dahlheimer, J. L.; Piwnica-Worms, D. R.; Welch, M. J. (2001). "Production, processing and uses of 94mTc".Journal of Labelled Compounds and Radiopharmaceuticals.44 (S1):S119 –S121.doi:10.1002/jlcr.2580440141.ISSN 1099-1344.
  5. ^Morley, Thomas; Benard, Francois; Schaffer, Paul; Buckley, Kenneth; Hoehr, Cornelia; Gagnon, Katherine; McQuarrie, Steve; Kovacs, Michael; Ruth, Thomas (2011-05-01)."Simple, rapid production of Tc-94m".Journal of Nuclear Medicine.52 (supplement 1): 290.ISSN 0161-5505.
  6. ^Hayakawa, Takehito; Hatsukawa, Yuichi; Tanimori, Toru (January 2018)."95g Tc and 96g Tc as alternatives to medical radioisotope 99m Tc".Heliyon.4 (1) e00497.Bibcode:2018Heliy...400497H.doi:10.1016/j.heliyon.2017.e00497.ISSN 2405-8440.PMC 5766687.PMID 29349358.
  7. ^Mausolf, Edward J.; Johnstone, Erik V.; Mayordomo, Natalia; Williams, David L.; Guan, Eugene Yao Z.; Gary, Charles K. (September 2021)."Fusion-Based Neutron Generator Production of Tc-99m and Tc-101: A Prospective Avenue to Technetium Theranostics".Pharmaceuticals.14 (9): 875.doi:10.3390/ph14090875.PMC 8467155.PMID 34577575.
  8. ^The Encyclopedia of the Chemical Elements, p. 693, "Toxicology", paragraph 2
  9. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  10. ^Elchine, D.; Müller, M.; Schiffer, M.; Strub, E. (2025). "Electron-capture decay of98Tc".Physical Review C.112 (044317).doi:10.1103/y5d7-85w5.
  11. ^abJohnstone, E.V.; Yates, M.A.; Poineau, F.; Sattelberger, A.P.; Czerwinski, K.R. (2017)."Technetium, the first radioelement on the periodic table".Journal of Chemical Education.94 (3):320–326.Bibcode:2017JChEd..94..320J.doi:10.1021/acs.jchemed.6b00343.OSTI 1368098.
  12. ^Radiochemistry and Nuclear Chemistry
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_technetium&oldid=1318680540"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp