Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of osmium

From Wikipedia, the free encyclopedia

Isotopes ofosmium (76Os)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
184Os0.02%1.12×1013 y[2]α180W
185Ossynth92.95 dε185Re
186Os1.59%2.0×1015 yα182W
187Os1.96%stable
188Os13.2%stable
189Os16.1%stable
190Os26.3%stable
191Ossynth14.99 dβ191Ir
192Os40.8%stable
193Ossynth29.83 hβ193Ir
194Ossynth6 yβ194Ir
Standard atomic weightAr°(Os)

Osmium (76Os) has seven naturally occurringisotopes, five of which are stable:187Os,188Os,189Os,190Os, and (most abundant)192Os. The other natural isotopes,184Os, and186Os, have extremely longhalf-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well.187Os is the daughter of187Re (half-life 4.12×1010 years) and is most often measured in an187Os/188Os ratio. This ratio, as well as the187Re/188Os ratio, have been used extensively in dating terrestrial as well asmeteoricrocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of themantle roots of continentalcratons. However, the most notable application of Os in dating has been in conjunction withiridium, to analyze the layer ofshocked quartz along theCretaceous–Paleogene boundary that marks the extinction of thedinosaurs 66 million years ago. Isotopically pure192Os, were it available, would be the densest stable material on earth at 22.80 grams per cubic centimeter.

There are also 31 artificialradioisotopes,[5] the longest-lived of which is194Os with a half-life of six years; all others have half-lives under 93 days. There are also ten knownnuclear isomers, the longest-lived of which is191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive orobservationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Uses of osmium isotopes

[edit]

The isotopic ratio of osmium-187 and osmium-188 (187Os/188Os) can be used as a window into geochemical changes throughout the ocean's history.[6] The average marine187Os/188Os ratio in oceans is 1.06.[6] This value represents a balance of the continental derived riverine inputs of Os with a187Os/188Os ratio of ~1.3, and themantle/extraterrestrial inputs with a187Os/188Os ratio of ~0.13.[6] Being a descendant of187Re,187Os can beradiogenically formed by beta decay.[7] This decay has actually pushed the187Os/188Os ratio of the Bulk silicate earth (Earth minus thecore) by 33%.[8] This is what drives the difference in the187Os/188Os ratio we see between continental materials and mantle material.Crustal rocks have a much higher level of Re, which slowly degrades into187Os driving up the ratio.[7] Within the mantle however, the uneven response of Re and Os results in these mantle, and melted materials being depleted in Re, and do not allow for them to accumulate187Os like the continental material.[7] The input of both materials in the marine environment results in the observed187Os/188Os of the oceans and has fluctuated greatly over the history of our planet. These changes in the isotopic values of marine Os can be observed in themarine sediment that is deposited, and eventuallylithified in that time period.[9] This allows for researchers to make estimates on weathering fluxes, identifying flood basalt volcanism, and impact events that may have caused some of our largest mass extinctions. The marine sediment Os isotope record has been used to identify and corroborate the impact of the K-T boundary for example.[10] The impact of this ~10 km asteroid massively altered the187Os/188Os signature of marine sediments at that time. With the average extraterrestrial187Os/188Os of ~0.13 and the huge amount of Os this impact contributed (equivalent to 600,000 years of present-day riverine inputs) lowered the global marine187Os/188Os value of ~0.45 to ~0.2.[6]

Os isotope ratios may also be used as a signal of anthropogenic impact.[11] The same187Os/188Os ratios that are common in geological settings may be used to gauge the addition of anthropogenic Os through things likecatalytic converters.[11] While catalytic converters have been shown to drastically reduce the emission of NOx and CO, they are introducingplatinum group elements (PGE) such as Os, to the environment.[11] Other sources of anthropogenic Os include combustion offossil fuels, smeltingchromium ore, and smelting of somesulfide ores. In one study, the effect of automobile exhaust on the marine Os system was evaluated. Automobile exhaust187Os/188Os has been recorded to be ~0.2 (similar to extraterrestrial and mantle derived inputs) which is heavily depleted (3, 7). The effect of anthropogenic Os can be seen best by comparing aquatic Os ratios and local sediments or deeper waters. Impacted surface waters tend to have depleted values compared to deep ocean and sediments beyond the limit of what is expected from cosmic inputs.[11] This increase in effect is thought to be due to the introduction of anthropogenic airborne Os into precipitation.

The long half-life of184Os with respect to alpha decay to180W has been proposed as aradiometric dating method for osmium-rich rocks or fordifferentiation of a planetary core.[2][12][13]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[14]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 9]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
160Os[15]768497+97
−32
 μs
α156W0+
160mOs[15]1844(18) keV41+15
−9
 μs
α156W8+
161Os7685160.98905(43)#0.64(6) msα157W(7/2–)
162Os7686161.98443(32)#2.1(1) msα158W0+
163Os7687162.98246(32)#5.7(5) msα159W7/2–
β+ ?163Re
164Os7688163.97807(16)21(1) msα (96%)160W0+
β+ (4%)164Re
165Os7689164.97665(22)#71(3) msα (90%)161W(7/2–)
β+ (10%)165Re
166Os7690165.972698(19)213(5) msα (83%)162W0+
β+ (17%)166Re
167Os7691166.971552(87)839(5) msα (51%)163W7/2–
β+ (49%)167Re
167mOs434.3(11) keV0.672(7) μsIT167Os13/2+
168Os7692167.967799(11)2.1(1) sβ+ (57%)168Re0+
α (43%)164W
169Os7693168.967018(28)3.46(11) sβ+ (86.3%)169Re(5/2–)
α (13.7%)165W
170Os7694169.963579(10)7.37(18) sβ+ (90.5%)170Re0+
α (9.5%)166W
171Os7695170.963180(20)8.3(2) sβ+ (98.20%)171Re(5/2−)
α (1.80%)167W
172Os7696171.960017(14)19.2(9) sβ+ (98.81%)172Re0+
α (1.19%)168W
173Os7697172.959808(16)22.4(9) sβ+ (99.6%)173Re5/2–
α (0.4%)169W
174Os7698173.957063(11)44(4) sβ+ (99.98%)174Re0+
α (.024%)170W
175Os7699174.956945(13)1.4(1) minβ+175Re(5/2−)
176Os76100175.954770(12)3.6(5) minβ+176Re0+
177Os76101176.954958(16)3.0(2) minβ+177Re1/2−
178Os76102177.953253(15)5.0(4) minβ+178Re0+
179Os76103178.953816(17)6.5(3) minβ+179Re1/2–
179m1Os145.41(12) keV~500 nsIT179Os(7/2)–
179m2Os243.0(8) keV783(14) nsIT179Os(9/2)+
180Os76104179.952382(17)21.5(4) minβ+180Re0+
181Os76105180.953247(27)105(3) minβ+181Re1/2−
181m1Os49.20(14) keV2.7(1) minβ+181Re7/2−
181m2Os156.91(15) keV262(6) nsIT181Os9/2+
182Os76106181.952110(23)21.84(20) hEC182Re0+
182m1Os1831.4(3) keV780(70) μsIT182Os8–
182m2Os7049.5(4) keV150(10) nsIT182Os25+
183Os76107182.953125(53)13.0(5) hβ+183Re9/2+
183mOs170.73(7) keV9.9(3) hβ+ (85%)183Re1/2−
IT (15%)183Os
184Os[n 10]76108183.95249292(89)1.12(23)×1013 yα[n 11]180W0+2(2)×10−4
185Os76109184.95404597(89)92.95(9) dEC185Re1/2−
185m1Os102.37(11) keV3.0(4) μsIT185Os7/2−
185m2Os275.53(12) keV0.78(5) μsIT185Os11/2+
186Os[n 10]76110185.95383757(82)2.0(11)×1015 yα182W0+0.0159(64)
187Os[n 12]76111186.95574957(79)Observationally Stable[n 13]1/2−0.0196(17)
187m1Os100.45(4) keV112(6) nsIT187Os7/2−
187m2Os257.10(7) keV231(2) μsIT187Os11/2+
188Os[n 12]76112187.95583729(79)Observationally Stable[n 14]0+0.1324(27)
189Os76113188.95814595(72)Observationally Stable[n 15]3/2−0.1615(23)
189mOs30.82(2) keV5.81(10) hIT189Os9/2−
190Os76114189.95844544(70)Observationally Stable[n 16]0+0.2626(20)
190mOs1705.7(1) keV9.86(3) minIT190Os10−
191Os76115190.96092811(71)14.99(2) dβ191Ir9/2−
191mOs74.382(3) keV13.10(5) hIT191Os3/2−
192Os76116191.9614788(25)Observationally Stable[n 17]0+0.4078(32)
192m1Os2015.40(11) keV5.94(9) sIT192Os10−
β?192Ir
192m2Os4580.3(10) keV205(7) nsIT192Os(20+)
193Os76117192.9641496(25)29.830(18) hβ193Ir3/2−
193mOs315.6(3) keV121(28) nsIT193Os(9/2−)
194Os76118193.9651794(26)6.0(2) yβ194Ir0+
195Os76119194.968318(60)6.5(11) minβ195Ir(3/2−)
195mOs427.8(3) keV47(3) sIT195Os(13/2+)
β?195Ir
196Os76120195.969643(43)34.9(2) minβ196Ir0+
197Os76121196.97308(22)#93(7) sβ197Ir5/2−#
198Os76122197.97466(22)#125(28) sβ198Ir0+
199Os76123198.97824(22)#6(3) sβ199Ir5/2−#
200Os76124199.98009(32)#7(4) sβ200Ir0+
201Os76125200.98407(32)#3# s [>300ns]β?201Ir1/2−#
202Os76126201.98655(43)#2# s [>300ns]β?202Ir0+
203Os76127202.99220(43)#300# ms [>300ns]β?203Ir9/2+#
β n?202Ir
This table header & footer:
  1. ^mOs – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition


    p:Proton emission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  10. ^abprimordialradionuclide
  11. ^Theorized to also undergo β+β+ decay to184W
  12. ^abUsed inrhenium-osmium dating
  13. ^Believed to undergo α decay to183W with a half-life over 3.2×1015 years
  14. ^Believed to undergo α decay to184W with a half-life over 3.3×1018 years
  15. ^Believed to undergo α decay to185W with a half-life over 3.3×1015 years
  16. ^Believed to undergo α decay to186W with a half-life over 1.2×1019 years
  17. ^Believed to undergo α decay to188W or ββ decay to192Pt with a half-life over 5.3×1019 years

See also

[edit]

Daughter products other than osmium

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^abPeters, Stefan T.M.; Münker, Carsten; Becker, Harry; Schulz, Toni (April 2014). "Alpha-decay of184Os revealed by radiogenic180W in meteorites: Half life determination and viability as geochronometer".Earth and Planetary Science Letters.391:69–76.doi:10.1016/j.epsl.2014.01.030.
  3. ^"Standard Atomic Weights: Osmium".CIAAW. 1991.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^Flegenheimer, Juan (2014)."The mystery of the disappearing isotope".Revista Virtual de Química.6 (4):1139–1142.doi:10.5935/1984-6835.20140073.
  6. ^abcdPeucker-Ehrenbrink, B.; Ravizza, G. (2000). "The marine osmium isotope record".Terra Nova.12 (5):205–219.Bibcode:2000TeNov..12..205P.doi:10.1046/j.1365-3121.2000.00295.x.S2CID 12486288.
  7. ^abcEsser, Bradley K.; Turekian, Karl K. (1993)."The osmium isotopic composition of the continental crust".Geochimica et Cosmochimica Acta.57 (13):3093–3104.Bibcode:1993GeCoA..57.3093E.doi:10.1016/0016-7037(93)90296-9.
  8. ^Hauri, Erik H. (2002)."Osmium Isotopes and Mantle Convection"(PDF).Philosophical Transactions: Mathematical, Physical and Engineering Sciences.360 (1800):2371–2382.Bibcode:2002RSPTA.360.2371H.doi:10.1098/rsta.2002.1073.JSTOR 3558902.PMID 12460472.S2CID 18451805.
  9. ^Lowery, Christopher;Morgan, Joanna; Gulick, Sean; Bralower, Timothy; Christeson, Gail (2019)."Ocean Drilling Perspectives on Meteorite Impacts".Oceanography.32:120–134.doi:10.5670/oceanog.2019.133.
  10. ^Selby, D.; Creaser, R. A. (2005). "Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes".Science.308 (5726):1293–1295.Bibcode:2005Sci...308.1293S.doi:10.1126/science.1111081.PMID 15919988.S2CID 41419594.
  11. ^abcdChen, C.; Sedwick, P. N.; Sharma, M. (2009)."Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination".Proceedings of the National Academy of Sciences.106 (19):7724–7728.Bibcode:2009PNAS..106.7724C.doi:10.1073/pnas.0811803106.PMC 2683094.PMID 19416862.
  12. ^Cook, David L.; Kruijer, Thomas S.; Leya, Ingo; Kleine, Thorsten (September 2014). "Cosmogenic180W variations in meteorites and re-assessment of a possible184Os–180W decay system".Geochimica et Cosmochimica Acta.140:160–176.doi:10.1016/j.gca.2014.05.013.
  13. ^Cook, David L.; Smith, Thomas; Leya, Ingo; Hilton, Connor D.; Walker, Richard J.; Schönbächler, Maria (September 2018)."Excess180W in IIAB iron meteorites: Identification of cosmogenic, radiogenic, and nucleosynthetic components".Earth Planet Sci Lett.503:29–36.doi:10.1016/j.epsl.2018.09.021.PMC 6398611.
  14. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  15. ^abBriscoe, A. D.; Page, R. D.; Uusitalo, J.; et al. (2023)."Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides160Os and156W".Physics Letters B.47 (138310).doi:10.1016/j.physletb.2023.138310.hdl:10272/23933.


Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_osmium&oldid=1294267567"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp