Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of iridium

From Wikipedia, the free encyclopedia
(Redirected fromIridium-191)

Isotopes ofiridium (77Ir)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
191Ir37.3%stable
192Irsynth73.827 dβ192Pt
ε192Os
192m2Irsynth241 yIT192Ir
193Ir62.7%stable
Standard atomic weightAr°(Ir)

There are two naturalisotopes ofiridium (77Ir), and 37radioisotopes, the most stable radioisotope being192Ir with ahalf-life of 73.83 days, and manynuclear isomers, the most stable of which is192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive orobservationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.[4]

List of isotopes

[edit]


Nuclide[5]
[n 1]
ZNIsotopic mass(Da)[6]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance(mole fraction)
Excitation energy[n 4]Normal proportionRange of variation
164Ir[7]7787163.99220(44)#<0.5 μsp?163Os2−#
164mIr270(110)# keV70(10) μsp (96%)163Os9+#
α (4%)160mRe
165Ir7788164.98752(23)#1.20+0.82
−0.74
 μs
[8]
p164Os(1/2+)
165mIr[9]~255 keV340(40) μsp (88%)164Os(11/2−)
α (12%)161mRe
166Ir7789165.98582(22)#10.5(22) msα (93%)162Re(2−)
p (7%)165Os
166mIr172(6) keV15.1(9) msα (98.2%)162Re(9+)
p (1.8%)165Os
167Ir7790166.981665(20)35.2(20) msα (48%)163Re1/2+
p (32%)166Os
β+ (20%)167Os
167mIr175.3(22) keV30.0(6) msα (80%)163Re11/2−
β+ (20%)167Os
p (.4%)166Os
168Ir7791167.97988(16)#161(21) msα164Re(2-)
β+ (rare)168Os
168mIr50(100)# keV125(40) msα164Re(9+)
169Ir7792168.976295(28)780(360) ms
[640+460
−240
 ms
]
α165Re(1/2+)
β+ (rare)169Os
169mIr154(24) keV308(22) msα (72%)165Re(11/2−)
β+ (28%)169Os
170Ir7793169.97497(11)#910(150) ms
[870+180
−120
 ms
]
β+ (64%)170Oslow#
α (36%)166Re
170mIr160(50)# keV440(60) msα (36%)166Re(8+)
β+170Os
IT170Ir
171Ir7794170.97163(4)3.6(10) s
[3.2+13
−7
 s
]
α (58%)167Re1/2+
β+ (42%)171Os
171mIr180(30)# keV1.40(10) s(11/2−)
172Ir7795171.970610(30)4.4(3) sβ+ (98%)172Os(3+)
α (2%)168Re
172mIr280(100)# keV2.0(1) sβ+ (77%)172Os(7+)
α (23%)168Re
173Ir7796172.967502(15)9.0(8) sβ+ (93%)173Os(3/2+,5/2+)
α (7%)169Re
173mIr253(27) keV2.20(5) sβ+ (88%)173Os(11/2−)
α (12%)169Re
174Ir7797173.966861(30)7.9(6) sβ+ (99.5%)174Os(3+)
α (.5%)170Re
174mIr193(11) keV4.9(3) sβ+ (99.53%)174Os(7+)
α (.47%)170Re
175Ir7798174.964113(21)9(2) sβ+ (99.15%)175Os(5/2−)
α (.85%)171Re
176Ir7799175.963649(22)8.3(6) sβ+ (97.9%)176Os
α (2.1%)172Re
177Ir77100176.961302(21)30(2) sβ+ (99.94%)177Os5/2−
α (.06%)173Re
178Ir77101177.961082(21)12(2) sβ+178Os
179Ir77102178.959122(12)79(1) sβ+179Os(5/2)−
180Ir77103179.959229(23)1.5(1) minβ+180Os(4,5)(+#)
181Ir77104180.957625(28)4.90(15) minβ+181Os(5/2)−
182Ir77105181.958076(23)15(1) minβ+182Os(3+)
183Ir77106182.956846(27)57(4) minβ+ ( 99.95%)183Os5/2−
α (.05%)179Re
184Ir77107183.95748(3)3.09(3) hβ+184Os5−
184m1Ir225.65(11) keV470(30) μs3+
184m2Ir328.40(24) keV350(90) ns(7)+
185Ir77108184.95670(3)14.4(1) hβ+185Os5/2−
186Ir77109185.957946(18)16.64(3) hβ+186Os5+
186mIr0.8(4) keV1.92(5) hβ+186Os2−
IT (rare)186Ir
187Ir77110186.957363(7)10.5(3) hβ+187Os3/2+
187m1Ir186.15(4) keV30.3(6) msIT187Ir9/2−
187m2Ir433.81(9) keV152(12) ns11/2−
188Ir77111187.958853(8)41.5(5) hβ+188Os1−
188mIr970(30) keV4.2(2) msIT188Ir7+#
β+ (rare)188Os
189Ir77112188.958719(14)13.2(1) dEC189Os3/2+
189m1Ir372.18(4) keV13.3(3) msIT189Ir11/2−
189m2Ir2333.3(4) keV3.7(2) ms(25/2)+
190Ir77113189.9605460(18)11.7511(20) d[10]EC190Os4−
β+ (<0.002%)[10]
190m1Ir26.1(1) keV1.120(3) hIT190Ir(1)−
190m2Ir36.154(25) keV>2 μs(4)+
190m3Ir376.4(1) keV3.087(12) hEC (91.4%)[10]190Os(11)−
IT (8.6%)[10]190Ir
191Ir77114190.9605940(18)Observationally Stable[n 9]3/2+0.373(2)
191m1Ir171.24(5) keV4.94(3) sIT191Ir11/2−
191m2Ir2120(40) keV5.5(7) s
192Ir77115191.9626050(18)73.827(13) dβ (95.24%)192Pt4+
EC (4.76%)192Os
192m1Ir56.720(5) keV1.45(5) minIT (98.25%)192Ir1−
β (1.75%)192Pt
192m2Ir168.14(12) keV241(9) yIT192Ir(11−)
193Ir77116192.9629264(18)Observationally Stable[n 10]3/2+0.627(2)
193mIr80.240(6) keV10.53(4) dIT193Ir11/2−
194Ir77117193.9650784(18)19.28(13) hβ194Pt1−
194m1Ir147.078(5) keV31.85(24) msIT194Ir(4+)
194m2Ir370(70) keV171(11) d(10,11)(−#)
195Ir77118194.9659796(18)2.5(2) hβ195Pt3/2+
195mIr100(5) keV3.8(2) hβ (95%)195Pt11/2−
IT (5%)195Ir
196Ir77119195.96840(4)52(1) sβ196Pt(0−)
196mIr210(40) keV1.40(2) hβ (99.7%)196Pt(10,11−)
IT196Ir
197Ir77120196.969653(22)5.8(5) minβ197Pt3/2+
197mIr115(5) keV8.9(3) minβ (99.75%)197Pt11/2−
IT (.25%)197Ir
198Ir77121197.97228(21)#8(1) sβ198Pt
199Ir77122198.97380(4)7(5) sβ199Pt3/2+#
199mIr130(40)# keV235(90) nsIT199Ir11/2−#
200Ir77123199.976800(210)#43(6) sβ200Pt(2-, 3-)
201Ir77124200.978640(210)#21(5) sβ201Pt(3/2+)
202Ir77125201.981990(320)#11(3) sβ202Pt(2-)
202mIr2000(1000)# keV3.4(0.6) μsIT202Ir
This table header & footer:
  1. ^mIr – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition


    p:Proton emission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^Believed to undergo α decay to187Re
  10. ^Believed to undergo α decay to189Re

Iridium-192

[edit]
Main article:Iridium-192

Iridium-192 (symbol192Ir) is a radioactiveisotope ofiridium, with ahalf-life of 73.83 days.[11] It decays by emitting beta (β) particles and gamma (γ) radiation. About 96% of192Ir decays occur via emission of β and γ radiation, leading to192Pt. Some of the β particles are captured by other192Ir nuclei, which are then converted to192Os. Electron capture is responsible for the remaining 4% of192Ir decays.[12] Iridium-192 is normally produced by neutron activation of natural-abundance iridium metal.[13]

Iridium-192 is a very stronggamma ray emitter, with a gamma dose-constant of approximately 1.54μSv·h−1·MBq−1 at 30 cm, and a specific activity of 341TBq·g−1 (9.22kCi·g−1).[14][15] There are seven principal energy packets produced during its disintegration process ranging from just over 0.2 to about 0.6 MeV.

The192m2Ir isomer is unusual, both for its long half-life for an isomer, and that said half-life greatly exceeds that of the ground state of the same isotope.

References

[edit]
  1. ^Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Iridium".CIAAW. 2017.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays".European Physical Journal A.55 (8): 140–1–140–7.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.ISSN 1434-601X.S2CID 201664098.
  5. ^Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017)."The NUBASE2016 evaluation of nuclear properties"(PDF).Chinese Physics C.41 (3): 030001.Bibcode:2017ChPhC..41c0001A.doi:10.1088/1674-1137/41/3/030001.
  6. ^Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017)."The AME2016 atomic mass evaluation (II). Tables, graphs, and references"(PDF).Chinese Physics C.41 (3):030003-1 –030003-442.doi:10.1088/1674-1137/41/3/030003.
  7. ^Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014)."α decay of the π h 11 / 2 isomer in Ir 164".Physical Review C.89 (6): 064309.Bibcode:2014PhRvC..89f4309D.doi:10.1103/PhysRevC.89.064309.ISSN 0556-2813. Retrieved21 June 2023.
  8. ^Hilton, Joshua Ben."Decays of new nuclides 169Au, 170Hg, 165Pt and the ground state of 165Ir discovered using MARA". University of Liverpool.ProQuest 2448649087. Retrieved21 June 2023.
  9. ^Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014)."α decay of the π h 11 / 2 isomer in Ir 164".Physical Review C.89 (6): 064309.Bibcode:2014PhRvC..89f4309D.doi:10.1103/PhysRevC.89.064309.ISSN 0556-2813. Retrieved21 June 2023.
  10. ^abcdJaniak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of190Ir".Physical Review C.110 (014306).doi:10.1103/PhysRevC.110.014306.
  11. ^"Radioisotope Brief: Iridium-192 (Ir-192)". Retrieved20 March 2012.
  12. ^Baggerly, Leo L. (1956).The radioactive decay of Iridium-192(PDF) (Ph.D. thesis). Pasadena, Calif.: California Institute of Technology. pp. 1, 2, 7.doi:10.7907/26VA-RB25.
  13. ^"Isotope Supplier: Stable Isotopes and Radioisotopes from ISOFLEX - Iridium-192".www.isoflex.com. Retrieved2017-10-11.
  14. ^Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C (2002).Radionuclide and Radiation Protection Data Handbook(PDF).Radiation Protection Dosimetry. Vol. 98, no. 1 (2nd ed.). Ashford, Kent: Nuclear Technology Publishing. pp. 9–168.doi:10.1093/OXFORDJOURNALS.RPD.A006705.ISBN 1870965876.PMID 11916063.S2CID 123447679. Archived fromthe original(PDF) on 2019-08-22.
  15. ^Unger, L M; Trubey, D K (May 1982).Specific Gamma-Ray Dose Constants for Nuclides Important to Dosimetry and Radiological Assessment(PDF) (Report). Oak Ridge National Laboratory. Archived fromthe original(PDF) on 22 March 2018.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_iridium&oldid=1254380277#Iridium-191"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp