Ipomoea tricolor seeds containsLSA andLSH among other alkaloids due to the presence of a symbiotic fungusPeriglandula ipomoeae, which produces them.[2]
It is anherbaceousannual orperennial twiningliana growing to 2–4 m (7–13 ft) tall. Theleaves are spirally arranged, 3–7 cm (1–3 in) long with a 1.5–6 cm (1⁄2–2+1⁄2 in) long petiole. Theflowers are trumpet-shaped, 4–9 cm (2–4 in) in diameter, most commonly blue with a white to golden yellow centre.
I. tricolor and many rarer species of morning glory, containergoline alkaloids, predominantlyergine. Some supermarkets have stopped carryingI. tricolor seeds because of this.
In cultivation, the species is very commonly grown misnamed asIpomoea violacea, which is actually a different, though related, species.[3][4]I. tricolor does not tolerate temperatures below 5 °C (41 °F), and so in temperate regions is usually grown as anannual. It is in any case a relatively short-lived plant. It prefers a warm, sheltered, sunny position such as a south- or west-facing wall.
Ingesting any part of the plant may cause discomfort.[5]
Numerouscultivars ofI. tricolor with different flower colours have been selected for use asornamental plants; widely grown examples include:
Ipomoea tricolor has phytotoxic effects which inhibit seedling growth in weeds. In Mexico, farmers promote the growth ofI. tricolor as a cover plant. It prevents weeds and unwanted plants from growing. When it is time to plant crops, this plant is incorporated into the soil. Although it is toxic to weeds, it does not affect crops such as sugarcane.[7]
It is rumored thatI. tricolor seeds are coated with a chemical that induces sickness so as to dissuade people from using them as a drug, but this is probably a rumor that stems from several factors:
-I. tricolor seeds, by themselves, induce sickness as a result of glycoresins[8][9] and the very ergolines that are desired by users.[10]
- Such is done to other commonly available substances that can induce effects, specificallygas dusters and acetone (which have bitterant added) and denatured alcohol.
- Chemical coatings are added to garden seeds to prevent fungal growth (e.g. neonicotinoids, Thiram, and ApronMaxx®).
- Packets ofI. tricolor seeds are known to have a warning that the seeds are toxic.
Methyl mercury type compounds have been specified in the rumors, but a 1964 article conveys that such compounds were only used in the past and that the majority "insecticide" at the time of publication was "quite an innocuous substance."[11] There's no evidence that the seeds are coated with a chemical deterrent.
InIpomoea tricolor 'Heavenly Blue', the colour of the flower changes during blossom according to an increase invacuolar pH.[12][13][14] This shift, from red to blue, is induced by chemical modifications affecting theanthocyanin molecules present in the petals.
^Brickell, Christopher, ed. (2008).The Royal Horticultural Society A-Z Encyclopedia of Garden Plants. United Kingdom: Dorling Kindersley. p. 570.ISBN9781405332965.
^Steiner, Ulrike, and Eckhard Leistner. "Ergoline alkaloids in convolvulaceous host plants originate from epibiotic clavicipitaceous fungi of the genus Periglandula."Fungal Ecology 5.3 (2012): 316-321. Available at:[1]
^Eich, Eckart (2008).Solanaceae and Convolvulaceae: Secondary Metabolites. Berlin, Heidelberg: Springer Berlin Heidelberg.doi:10.1007/978-3-540-74541-9.ISBN978-3-540-74540-2 “Such a confusing example resulting in numerous false repetitions in studies of other authors has happened already in the first ergoline paper onIpomoea tricolor Cav. whose seeds are known as “badoh negro”: Together with this correct synonym the species was incorrectly calledI. violacea L. (Hofmann 1964) instead ofI. violaceaauct., non L. This is of importance sinceI. violacea L. is the currently accepted name of a differentIpomoea species,I. tuba (Schlecht.) G.Don (Austin and Huáman 1996).” 4.2.3 Occurrence in the Convolvulaceae (p. 224){{cite book}}: CS1 maint: postscript (link)
^Bendz, Gerd; Santesson, Johan, eds. (2013-10-14) [1973].Chemistry in Botanical Classification: Medicine and Natural Sciences: Medicine and Natural Sciences. Elsevier.ISBN978-0-323-16251-7 “Among the most striking characteristics of the family is the occurrence of rows of secretory cells with milky, resinous contents. Resin glycosides are among the most important chemical characteristics of the family. The occurrence of tropine alkaloids in Convolvulus species and lysergic acid type alkaloids in Ipomoea and Rivea species as well as a wide distribution of cinnamic acid derivatives and coumarins are also noteworthy. The last two groups of compounds are common to both the Convolvulaceae and Solanaceae families.” The Chemistry of Resin Glycosides of the Convolvulaceae Family (H. Wagner), p. 235{{cite book}}: CS1 maint: postscript (link)
^Schardl, Christopher L.; Panaccione, Daniel G.; Tudzynski, Paul (2006),"Chapter 2 Ergot Alkaloids – Biology and Molecular Biology",The Alkaloids: Chemistry and Biology,63, Elsevier:45–86,doi:10.1016/s1099-4831(06)63002-2,ISBN978-0-12-469563-4,PMID17133714, retrieved2024-11-30 “Clavines are thought to contribute substantially to convulsive ergotism, sinceC. fusiformis ergots, which possess clavines, but no1 or lysergyl amides, cause convulsive symptoms (26). However, the ergopeptines are known to produce similar symptoms, and are also thought to cause gangrenous ergotism (6). The occurrence of convulsive ergotism without dry gangrene suggests that other clavine or lysergyl alkaloids are involved, or that individual effects of specific ergopeptines may give clinically different syndromes (6).” II. Through the Ages: A History of Ergot Alkaloid Use, Abuse, and Poisoning, p. 50{{citation}}: CS1 maint: postscript (link)
^Ingram, Albert L. (1964-12-28)."Morning Glory Seed Reaction".JAMA.190 (13):1133–1134.doi:10.1001/jama.1964.03070260045019.ISSN0098-7484.PMID14212309 “It has been suggested6 that the insecticide coating on the morning glory seed might be promoting adverse side effects that have been noted. The majority of commercial seeds are treated with N-tri-chlorete which is a fungicide and seed protectant having a tolerance of 100 parts per million.8 Thus, this is quite an inocuous product from the toxicologic point of view and would require ingestion of quantities beyond the capacity of the stomach to absorb, in amounts found as a seed coater, to be considered lethal.9 Symptoms involving the nervous system would be lacking if we were dealing only with the effects of this fungicide. Formerly, compounds containing mercury were used extensively as fungicides and there is the possibility that some seeds so treated might pose a toxicologic danger if ingested. This is considered unlikely as the newer seed protectants have been in use for a considerably longer period than the current morning glory fad.” “It would seem then, that both the psychological and physiological effects observed in the ingestion of the seed of the morning glory reside in the alkaloids of the seed and not the seed protectant. The LSD-like reaction is most likely due to the LSD-like alkaloids for no pure LSD has as yet been isolated from the seed. As all compounds occurring in the morning glory seed have not been studied intensively enough to inspire confidence in their respective roles, they cannot yet be considered for scientific experimental use much less be used irresponsibly in excitement-seeking self-experimentation.” (Comment, p. 1134) 6. Cohen, S.: Suicide Following Morning Glory Seed Ingestion, Amer J Psychiat 120:1024-1025 (April) 1964. 8. Frear, D.E.H.: Pesticide Handbook, State College, Pa: College Science Publishers, 1963, p 8. 9. Frear, D.E.H.: Personal communication to the author, July, 1964. JAMA, Dec 28, 1964 • Vol 190, No 13{{cite journal}}: CS1 maint: postscript (link)