Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Intel Core (microarchitecture)

From Wikipedia, the free encyclopedia
Intel processor microarchitecture
For Intel processors branded asIntel Core, seeIntel Core.

Intel Core
General information
LaunchedJune 26, 2006; 19 years ago (June 26, 2006) (Xeon)
July 27, 2006; 18 years ago (July 27, 2006) (Core 2)
Performance
Max.CPUclock rate933 MHz to 3.5 GHz
FSB speeds533 MT/s to 1600 MT/s
Cache
L1cache64 KB per core
L2 cache0.5 to 6 MB per two cores
L3 cache8 MB to 16 MB shared (Xeon 7400)
Architecture and classification
Technology node65 nm to45 nm
MicroarchitectureCore
Instruction setx86-16,IA-32,x86-64
Extensions
Physical specifications
Transistors
Cores
  • 1–4 (2-6 Xeon)
Sockets
Products, models, variants
Model
History
PredecessorsNetBurst
Enhanced Pentium M (P6)
SuccessorsPenryn (tick)
(a version of Core)
Nehalem (tock)
Support status
Unsupported

TheIntel Core microarchitecture (provisionally referred to asNext Generation Micro-architecture,[1] and developed asMerom)[2] is a multi-coreprocessormicroarchitecture launched byIntel in mid-2006. It is a major evolution over theYonah, the previous iteration of theP6 microarchitecture series which started in 1995 withPentium Pro. It also replaced theNetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficientpipeline designed for highclock rate. In early 2004, Prescott needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift todual/multi-core CPUs. On May 7, 2004, Intel confirmed the cancellation of the next NetBurst,Tejas and Jayhawk.[3] Intel had been developing Merom, the 64-bit evolution of thePentium M, since 2001,[2] and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.[a]

The first processors that used this architecture were code-named 'Merom', 'Conroe', and 'Woodcrest'; Merom is for mobile computing, Conroe is for desktop systems, and Woodcrest is for servers and workstations. While architecturally identical, the three processor lines differ in the socket used, bus speed, and power consumption. The first Core-based desktop and mobile processors were brandedCore 2, later expanding to the lower-endPentium Dual-Core,Pentium andCeleron brands; while server and workstation Core-based processors were brandedXeon.

Features

[edit]

The Core microarchitecture returned to lowerclock rates and improved the use of both available clock cycles and power when compared with the precedingNetBurst microarchitecture of thePentium 4 andD-branded CPUs.[4] The Core microarchitecture provides more efficient decoding stages, execution units,caches, andbuses, reducing thepower consumption of Core 2-branded CPUs while increasing their processing capacity. Intel's CPUs have varied widely in power consumption according to clock rate, architecture, and semiconductor process, shown in theCPU power dissipation tables.

Like the last NetBurst CPUs, Core based processors feature multiple cores and hardware virtualization support (marketed asIntel VT-x), andIntel 64 andSSSE3. However, Core-based processors do not have thehyper-threading technology as in Pentium 4 processors. This is because the Core microarchitecture is based on theP6 microarchitecture used by Pentium Pro, II, III, and M.

The L1 cache of the Core microarchitecture at 64 KB L1 cache/core (32 KB L1 Data + 32 KB L1 Instruction) is as large as in Pentium M, up from 32 KB on Pentium II / III (16 KB L1 Data + 16 KB L1 Instruction). The consumer version also lacks an L3 cache as in the Gallatin core of the Pentium 4 Extreme Edition, though it is exclusively present in high-end versions of Core-based Xeons. Both an L3 cache and hyper-threading were reintroduced again to consumer line in theNehalem microarchitecture.

Roadmap

[edit]
Main article:Intel Tick-Tock
Intel CPU core roadmaps fromP6 to Panther Lake
Atom (ULV)Node namePentium/Core
Microarch.StepMicroarch.Step
600 nmP6Pentium Pro
(133 MHz)
500 nmPentium Pro
(150 MHz)
350 nmPentium Pro
(166–200 MHz)
Klamath
250 nmDeschutes
KatmaiNetBurst
180 nmCoppermineWillamette
130 nmTualatinNorthwood
Pentium MBaniasNetBurst(HT)NetBurst(×2)
90 nmDothanPrescottPrescott‑2MSmithfield
TejasCedarmill (Tejas)
65 nmYonahNehalem (NetBurst)Cedar MillPresler
CoreMerom4 cores on mainstream desktop,DDR3 introduced
BonnellBonnell45 nmPenryn
NehalemNehalemHT reintroduced, integratedMC, PCH
L3-cache introduced, 256KB L2-cache/core
Saltwell32 nmWestmereIntroduced GPU on same package andAES-NI
Sandy BridgeSandy BridgeOn-die ring bus, no more non-UEFI motherboards
SilvermontSilvermont22 nmIvy Bridge
HaswellHaswellFully integrated voltage regulator
Airmont14 nmBroadwell
SkylakeSkylakeDDR4 introduced on mainstream desktop
GoldmontGoldmontKaby Lake
Coffee Lake6 cores on mainstream desktop
Amber LakeMobile-only
Goldmont PlusGoldmont PlusWhiskey LakeMobile-only
Coffee Lake Refresh8 cores on mainstream desktop
Comet Lake10 cores on mainstream desktop
Sunny CoveCypress Cove (Rocket Lake)Backported Sunny Cove microarchitecture for 14nm
TremontTremont10 nmSkylakePalm Cove (Cannon Lake)Mobile-only
Sunny CoveSunny Cove (Ice Lake)512 KB L2-cache/core
Willow Cove (Tiger Lake)Xe graphics engine
GracemontGracemontIntel 7
(10nm ESF)
Golden CoveGolden Cove (Alder Lake)Hybrid, DDR5, PCIe 5.0
Raptor Cove (Raptor Lake)
CrestmontCrestmontIntel 4Redwood CoveMeteor LakeMobile-only
NPU,chiplet architecture
SkymontSkymontTSMC N3BLion CoveLunar LakeLow power mobile only (9-30W)
Arrow Lake
Intel 3Arrow Lake-U
DarkmontDarkmontIntel 18ACougar CovePanther Lake
  • Strike-through indicates cancelled processors
  • Bold names are microarchitectures
  • Italic names are future processors

Technology

[edit]
Intel Core microarchitecture

While the Core microarchitecture is a major architectural revision, it is based in part on thePentium M processor family designed by Intel Israel.[5] Thepipeline of Core/Penryn is 14 stages long[6] – less than half ofPrescott's. Penryn's successorNehalem has a two cycles higher branch misprediction penalty than Core/Penryn.[7][8] Core can ideally sustain up to 4instructions per cycle (IPC) execution rate, compared to the 3 IPC capability ofP6,Pentium M andNetBurst microarchitectures. The new architecture is a dual core design with a sharedL2 cache engineered for maximumperformance per watt and improved scalability.

One new technology included in the design isMacro-Ops Fusion, which combines twox86 instructions into a singlemicro-operation. For example, a common code sequence like a compare followed by a conditional jump would become a single micro-op. However, this technology does not work in 64-bit mode.

Core can speculatively executeloads ahead of preceding stores with unknown addresses.[9]

Other new technologies include 1 cycle throughput (2 cycles previously) of all 128-bit SSE instructions and a new power saving design. All components will run at minimum speed, raising speed dynamically as needed (similar to AMD'sCool'n'Quiet power-saving technology, and Intel's ownSpeedStep technology from earlier mobile processors). This allows the chip to produce less heat, and minimize power use.

For most Woodcrest CPUs, thefront-side bus (FSB) runs at 1333MT/s; however, this is scaled down to 1066 MT/s for lower end 1.60 and 1.86 GHz variants.[10][11] The Merom mobile variant was initially targeted to run at an FSB of 667 MT/s while the second wave of Meroms, supporting 800 MT/s FSB, were released as part of the Santa Rosa platform with a different socket in May 2007. The desktop-oriented Conroe began with models having an FSB of 800 MT/s or 1066 MT/s with a 1333 MT/s line officially launched on July 22, 2007.

The power use of these processors is very low: average energy use is to be in the 1–2 watt range in ultra-low voltage variants, withthermal design powers (TDPs) of 65 watts for Conroe and most Woodcrests, 80 watts for the 3.0 GHz Woodcrest, and 40 or 35 watts for the low-voltage Woodcrest. In comparison, a 2.2 GHz AMDOpteron 875HE processor consumes 55 watts, while the energy efficientSocket AM2 line fits in the 35 wattthermal envelope (specified a different way so not directly comparable). Merom, the mobile variant, is listed at 35 watts TDP for standard versions and 5 watts TDP for ultra-low voltage (ULV) versions.[citation needed]

Previously, Intel announced that it would now focus on power efficiency, rather than raw performance. However, atIntel Developer Forum (IDF) in spring 2006, Intel advertised both. Some of the promised numbers were:

  • 20% more performance for Merom at the same power level; compared toCore Duo
  • 40% more performance for Conroe at 40% less power; compared toPentium D
  • 80% more performance for Woodcrest at 35% less power; compared to the originaldual-core Xeon

Processor cores

[edit]

The processors of the Core microarchitecture can be categorized by number of cores, cache size, and socket; each combination of these has a unique code name and product code that is used across several brands. For instance, code name "Allendale" with product code 80557 has two cores, 2 MB L2 cache and uses the desktop socket 775, but has been marketed as Celeron, Pentium, Core 2, and Xeon, each with different sets of features enabled. Most of the mobile and desktop processors come in two variants that differ in the size of the L2 cache, but the specific amount of L2 cache in a product can also be reduced by disabling parts at production time. Tigerton dual-cores and all quad-core processors except - are multi-chip modules combining two dies. For the 65 nm processors, the same product code can be shared by processors with different dies, but the specific information about which one is used can be derived from the stepping.

CoresMobileDesktop, UP ServerCL ServerDP ServerMP Server
Single-Core65 nm1Merom-L
80537
Conroe-L
80557
Single-Core45 nmPenryn-L
80585
Wolfdale-CL
80588
Dual-Core 65 nm2Merom-2M
80537
Merom
80537
Allendale
80557
Conroe
80557
Conroe-CL
80556
Woodcrest
80556
Tigerton
80564
Dual-Core 45 nmPenryn-3M
80577
Penryn
80576
Wolfdale-3M
80571
Wolfdale
80570
Wolfdale-CL
80588
Wolfdale-DP
80573
Quad-Core 65 nm4Kentsfield
80562
Clovertown
80563
Tigerton QC
80565
Quad-Core 45 nmPenryn-QC
80581
Yorkfield-6M
80580
Yorkfield
80569
Yorkfield-CL
80584
Harpertown
80574
Dunnington QC
80583
Six-Core 45 nm6Dunnington
80582

Conroe/Merom (65 nm)

[edit]
Main article:Conroe (microprocessor)

The original Core 2 processors are based on the same dies that can be identified asCPUID Family 6 Model 15. Depending on their configuration and packaging, their code names are Conroe (LGA 775, 4 MB L2 cache), Allendale (LGA 775, 2 MB L2 cache), Merom (Socket M, 4 MB L2 cache) and Kentsfield (multi-chip module, LGA 775, 2x4MB L2 cache). Merom and Allendale processors with limited features are inPentium Dual Core andCeleron processors, while Conroe, Allendale and Kentsfield also are sold asXeon processors.

Additional code names for processors based on this model areWoodcrest (LGA 771, 4 MB L2 cache),Clovertown (MCM, LGA 771, 2×4MB L2 cache) andTigerton (MCM,Socket 604, 2×4MB L2 cache), all of which are marketed only under the Xeon brand.

ProcessorBrand nameModel (list)CoresL2 CacheSocketTDP
Mobile processors
Merom-2MMobile Core 2 DuoU7xxx22 MBBGA47910 W
MeromL7xxx4 MB17 W
Merom
Merom-2M
T5xxx
T7xxx
2–4 MBSocket M
Socket P
BGA479
35 W
Merom XEMobile Core 2 ExtremeX7xxx24 MBSocket P44 W
MeromCeleron M5x011 MBSocket M
Socket P
30 W
Merom-2M5x5Socket P31 W
Merom-2MCeleron Dual-CoreT1xxx2512–1024 KB35 W
Merom-2MPentium Dual-CoreT2xxx
T3xxx
21 MB35 W
Desktop processors
AllendaleXeon3xxx22 MBLGA 77565 W
Conroe3xxx2–4 MB
Conroe and
Allendale
Core 2 DuoE4xxx22 MBLGA 77565 W
E6xx02–4 MB
Conroe-CLE6xx52–4 MBLGA 771
Conroe-XECore 2 ExtremeX6xxx24 MBLGA 77575 W
AllendalePentium Dual-CoreE2xxx21 MB65 W
AllendaleCeleronE1xxx2512 KB65 W
KentsfieldXeon32xx42×4 MB95–105 W
KentsfieldCore 2 QuadQ6xxx42×4 MB95–105 W
Kentsfield XECore 2 ExtremeQX6xxx42×4 MB130 W
WoodcrestXeon51xx24 MBLGA 77165–80 W
ClovertownL53xx42×4 MBLGA 77140–50 W
E53xx80 W
X53xx120–150 W
TigertonE72xx22×4 MBSocket 60480 W
Tigerton QCL73xx450 W
E73xx2×2–2×4 MB80 W
X73xx2×4 MB130 W

Conroe-L/Merom-L

[edit]

The Conroe-L and Merom-L processors are based around the same core as Conroe and Merom, but only contain a single core and 1 MB of L2 cache, significantly reducing production cost and power consumption of the processor at the expense of performance compared to the dual-core version. It is used only in ultra-low voltage Core 2 Solo U2xxx and in Celeron processors and is identified as CPUID family 6 model 22.

ProcessorBrand nameModel (list)CoresL2 CacheSocketTDP
Merom-LMobileCore 2 SoloU2xxx12 MBBGA4795.5 W
Merom-LCeleron M5x01512 KBSocket M
Socket P
27 W
Merom-L5x3512–1024 KBBGA4795.5–10 W
Conroe-LCeleron M4x01512 KBLGA 77535 W
Conroe-CL4x5LGA 77165 W

Penryn/Wolfdale (45 nm)

[edit]
Main article:Penryn (microarchitecture)
Wolfdale-type Core 2 Duo E8400 top view
Wolfdale-type Core 2 Duo E8400 perspective view

In Intel'sTick-Tock cycle, the 2007/2008 "Tick" was the shrink of the Core microarchitecture to 45 nanometers as CPUID model 23. In Core 2 processors, it is used with the code names Penryn (Socket P), Wolfdale (LGA 775) and Yorkfield (MCM, LGA 775), some of which are also sold as Celeron, Pentium and Xeon processors. In the Xeon brand, theWolfdale-DP andHarpertown code names are used for LGA 771 based MCMs with two or four active Wolfdale cores.

Architecturally, 45 nm Core 2 processors feature SSE4.1 and new divide/shuffle engine.[12]

The chips come in two sizes, with 6 MB and 3 MB L2 cache. The smaller version is commonly called Penryn-3M and Wolfdale-3M and Yorkfield-6M, respectively. The single-core version of Penryn, listed as Penryn-L here, is not a separate model like Merom-L but a version of the Penryn-3M model with only one active core.

ProcessorBrand nameModel (list)CoresL2 CacheSocketTDP
Mobile processors
Penryn-LCore 2 SoloSU3xxx13 MBBGA9565.5 W
Penryn-3MCore 2 DuoSU7xxx23 MBBGA95610 W
SU9xxx
PenrynSL9xxx6 MB17 W
SP9xxx25/28 W
Penryn-3MP7xxx3 MBSocket P
FCBGA6
25 W
P8xxx
PenrynP9xxx6 MB
Penryn-3MT6xxx2 MB35 W
T8xxx3 MB
PenrynT9xxx6 MB
E8x356 MBSocket P35-55 W
Penryn-QCCore 2 QuadQ9xxx42x3-2x6 MBSocket P45 W
Penryn XECore 2 ExtremeX9xxx26 MBSocket P44 W
Penryn-QCQX930042x6 MB45 W
Penryn-3MCeleronT3xxx21 MBSocket P35 W
SU2xxxμFC-BGA 95610 W
Penryn-L9x011 MBSocket P35 W
7x3μFC-BGA 95610 W
Penryn-3MPentiumT4xxx21 MBSocket P35 W
SU4xxx2 MBμFC-BGA 95610 W
Penryn-LSU2xxx15.5 W
Desktop processors
Wolfdale-3MCeleronE3xxx21 MBLGA 77565 W
PentiumE2210
E5xxx2 MB
E6xxx
Core 2 DuoE7xxx3 MB
WolfdaleE8xxx6 MB
Xeon31x045-65 W
Wolfdale-CL30x41LGA 77130 W
31x3265 W
YorkfieldX33x042×3–2×6 MBLGA 77565–95 W
Yorkfield-CLX33x3LGA 77180 W
Yorkfield-6MCore 2 QuadQ8xxx2×2 MBLGA 77565–95 W
Q9x0x2×3 MB
YorkfieldQ9x5x2×6 MB
Yorkfield XECore 2 ExtremeQX9xxx2×6 MB130–136 W
QX9xx5LGA 771150 W
Wolfdale-DPXeonE52xx26 MB65 W
L52xx20-55 W
X52xx80 W
HarpertownE54xx42×6 MBLGA 771
L54xx40-50 W
X54xx120-150 W

Dunnington

[edit]

TheXeon "Dunnington" processor (CPUID Family 6, model 29) is closely related to Wolfdale but comes with six cores and an on-chip L3 cache and is designed for servers with Socket 604, so it is marketed only as Xeon, not as Core 2.

ProcessorBrand nameModel (list)CoresL3 cacheSocketTDP
DunningtonXeonE74xx4-68-16 MBSocket 60490 W
L74xx4-612 MB50-65 W
X7460616 MB130 W

Steppings

[edit]

The Core microarchitecture uses severalstepping levels (steppings), which unlike prior microarchitectures, represent incremental improvements, and different sets of features like cache size and low power modes. Most of these steppings are used across brands, typically by disabling some features and limiting clock frequencies on low-end chips.

Steppings with a reduced cache size use a separate naming scheme, which means that the releases are no longer in alphabetic order. Added steppings have been used in internal and engineering samples, but are unlisted in the tables.

Many of the high-end Core 2 and Xeon processors useMulti-chip modules of two chips in order to get larger cache sizes or more than two cores.

Steppings using 65 nm process

[edit]
Mobile (Merom)Desktop (Conroe)Desktop (Kentsfield)Server (Woodcrest,Clovertown,Tigerton)
SteppingReleasedAreaCPUIDL2 cacheMax. clockCeleronPentiumCore 2CeleronPentiumCore 2XeonCore 2XeonXeon
B2Jul 2006143 mm206F64 MB2.93 GHzM5xxT5000 T7000L7000E6000 X600030005100
B3Nov 2006143 mm206F74 MB3.00 GHzQ6000 QX600032005300
L2Jan 2007111 mm206F22 MB2.13 GHzT5000U7000E2000E4000E60003000
E1May 2007143 mm206FA4 MB2.80 GHzM5xxT7000L7000X7000
G0Apr 2007143 mm206FB4 MB3.00 GHzM5xxT7000L7000X7000E2000E4000E60003000Q6000 QX600032005100530072007300
G2Mar 2009[13]143 mm206FB4 MB2.16 GHzM5xxT5000T7000L7000
M0Jul 2007111 mm206FD2 MB2.40 GHz5xxT1000T2000 T3000T5000 T7000U7000E1000E2000E4000
A1Jun 200781 mm2[b]106611 MB2.20 GHzM5xxU2000220 4x0

Early ES/QS steppings are: B0 (CPUID 6F4h), B1 (6F5h) and E0 (6F9h).

Steppings B2/B3, E1, and G0 of model 15 (cpuid 06fx) processors are evolutionary steps of the standard Merom/Conroe die with 4 MB L2 cache, with the short-lived E1 stepping only being used in mobile processors. Stepping L2 and M0 are theAllendale chips with just 2 MB L2 cache, reducing production cost and power consumption for low-end processors.

The G0 and M0 steppings improve idle power consumption in C1E state and add the C2E state in desktop processors. In mobile processors, all of which support C1 through C4 idle states, steppings E1, G0, and M0 add support for the Mobile Intel 965 Express (Santa Rosa) platform withSocket P, while the earlier B2 and L2 steppings only appear for theSocket M based Mobile Intel 945 Express (Napa refresh) platform.

The model 22 stepping A1 (cpuid 10661h) marks a significant design change, with just a single core and 1 MB L2 cache further reducing the power consumption and manufacturing cost for the low-end. Like the earlier steppings, A1 is not used with the Mobile Intel 965 Express platform.

Steppings G0, M0 and A1 mostly replaced all older steppings in 2008. In 2009, a new stepping G2 was introduced to replace the original stepping B2.[16]

Steppings using 45 nm process

[edit]
Mobile (Penryn)Desktop (Wolfdale)Desktop (Yorkfield)Server (Wolfdale-DP,Harpertown,Dunnington)
SteppingReleasedAreaCPUIDL2 cacheMax. clockCeleronPentiumCore 2CeleronPentiumCore 2XeonCore 2XeonXeon
C0Nov 2007107 mm2106766 MB3.00 GHzE8000P7000T8000T9000P9000SP9000SL9000X9000E80003100QX900052005400
M0Mar 200882 mm2106763 MB2.40 GHz7xxSU3000P7000 P8000T8000SU9000E5000E2000E7000
C1Mar 2008107 mm2106776 MB3.20 GHzQ9000QX90003300
M1Mar 200882 mm2106773 MB2.50 GHzQ8000Q90003300
E0Aug 2008107 mm21067A6 MB3.33 GHzT9000P9000SP9000SL9000Q9000QX9000E80003100Q9000 Q9000S QX9000330052005400
R0Aug 200882 mm21067A3 MB2.93 GHz7xx900SU2000T3000T4000SU2000SU4000SU3000T6000SU7000P8000SU9000E3000E5000E6000E7000Q8000 Q8000SQ9000 Q9000S3300
A1Sep 2008503 mm2106D13 MB2.67 GHz7400

In the model 23 (cpuid 01067xh), Intel started marketing stepping with full (6 MB) and reduced (3 MB) L2 cache at the same time, and giving them identical cpuid values. All steppings have the newSSE4.1 instructions. Stepping C1/M1 was a bug fix version of C0/M0 specifically for quad core processors and only used in those. Stepping E0/R0 adds two new instructions (XSAVE/XRSTOR) and replaces all earlier steppings.

In mobile processors, stepping C0/M0 is only used in the Intel Mobile 965 Express (Santa Rosa refresh) platform, whereas stepping E0/R0 supports the later Intel Mobile 4 Express (Montevina) platform.

Model 30 stepping A1 (cpuid 106d1h) adds an L3 cache and six instead of the usual two cores, which leads to an unusually large die size of 503 mm2.[17] As of February 2008, it has only found its way into the very high-end Xeon 7400 series (Dunnington).

System requirements

[edit]

Motherboard compatibility

[edit]

Conroe, Conroe XE and Allendale all use SocketLGA 775; however, not everymotherboard is compatible with these processors.

Supportingchipsets are:

The Yorkfield XE model QX9770 (45 nm with 1600 MT/s FSB) has limited chipset compatibility - with only X38, P35 (withoverclocking) and some high-performance X48 and P45 motherboards being compatible. BIOS updates were gradually being released to provide support for the Penryn technology, and the QX9775 is only compatible with the Intel D5400XS motherboard. The Wolfdale-3M model E7200 also has limited compatibility (at least the Xpress 200 chipset is incompatible[citation needed]).

Although a motherboard may have the required chipset to support Conroe, some motherboards based on the above-mentioned chipsets do not support Conroe. This is because all Conroe-based processors require a new power delivery feature set specified inVoltage Regulator-Down (VRD) 11.0. This requirement is a result of Conroe's significantly lower power consumption, compared to the Pentium 4/D CPUs it replaced. A motherboard that has both a supporting chipset and VRD 11 supports Conroe processors, but even then some boards will need an updatedBIOS to recognize Conroe's FID (Frequency ID) and VID (Voltage ID).

Synchronous memory modules

[edit]

Unlike the priorPentium 4 andPentium D design, the Core 2 technology sees a greater benefit from memory runningsynchronously with thefront-side bus (FSB). This means that for the Conroe CPUs with FSB of 1066 MT/s, the ideal memory performance for DDR2 isPC2-8500. In a few configurations, usingPC2-5300 instead of PC2-4200 can actually decrease performance. Only when going toPC2-6400 is there a significant performance increase. While DDR2 memory models with tighter timing specifications do improve performance, the difference in real world games and applications is often negligible.[18]

Optimally, the memory bandwidth afforded should match the bandwidth of the FSB, that is to say that a CPU with a 533 MT/s rated bus speed should be paired with RAM matching the same rated speed, for example DDR2 533, or PC2-4200. A common myth[citation needed] is that installing interleaved RAM will offer double the bandwidth. However, at most the increase in bandwidth by installing interleaved RAM is roughly 5–10%. TheAGTL+ PSB used by allNetBurst processors and current and medium-term (pre-QuickPath) Core 2 processors provide a 64-bit data path. Current chipsets provide for a couple of either DDR2 or DDR3 channels.

Matched processor and RAM ratings
Processor modelFront-side busMatched memory and maximum bandwidth
single channel, dual channel
DDRDDR2DDR3
Mobile: T5200, T5300, U2n00, U7n00533MT/sPC-3200 (DDR-400)
3.2 GB/s
PC2-4200 (DDR2-533)
4.264 GB/s
PC2-8500 (DDR2-1066)
8.532 GB/s
PC3-8500 (DDR3-1066)
8.530 GB/s
Desktop: E6n00, E6n20, X6n00, E7n00, Q6n00 and QX6n00
Mobile: T9400, T9550, T9600, P7350, P7450, P8400, P8600, P8700, P9500, P9600, SP9300, SP9400, X9100
1066 MT/s
Mobile: T5n00, T5n50, T7n00 (Socket M), L7200, L7400667 MT/sPC-3200 (DDR-400)
3.2 GB/s
PC2-5300 (DDR2-667)
5.336 GB/s
PC3-10600 (DDR3-1333)
10.670 GB/s
Desktop: E6n40, E6n50, E8nn0, Q9nn0, QX6n50, QX96501333 MT/s
Mobile: T5n70, T6400, T7n00 (Socket P), L7300, L7500, X7n00, T8n00, T9300, T9500, X9000
Desktop: E4n00, Pentium E2nn0, Pentium E5nn0, Celeron 4n0, E3n00
800 MT/sPC-3200 (DDR-400)
3.2 GB/s
PC-3200 (DDR-400)
3.2 GB/s
PC2-6400 (DDR2-800)
6.400 GB/s
PC2-8500 (DDR2-1066)
8.532 GB/s
PC3-6400 (DDR3-800)
6.400 GB/s
PC3-12800 (DDR3-1600)
12.800 GB/s
Desktop: QX9770, QX97751600 MT/s

On jobs requiring large amounts of memory access, the quad-core Core 2 processors can benefit significantly[19] from usingPC2-8500 memory, which runs at the same speed as the CPU's FSB; this is not an officially supported configuration, but several motherboards support it.

The Core 2 processor does not require the use of DDR2. While the Intel 975X and P965 chipsets require this memory, some motherboards and chipsets support both Core 2 processors andDDR memory. When using DDR memory, performance may be reduced because of the lower available memory bandwidth.

Chip errata

[edit]

The Core 2memory management unit (MMU) in X6800, E6000 and E4000 processors does not operate to prior specificationsimplemented in prior generations ofx86 hardware. This may cause problems, many of them serious security and stability issues, with extantoperating system software. Intel's documentation states that their programming manuals will be updated "in the coming months" with information on recommended methods of managing thetranslation lookaside buffer (TLB) for Core 2 to avoid issues, and admits that, "in rare instances, improper TLB invalidation may result in unpredictable system behavior, such as hangs or incorrect data."[20]

Among the issues stated:

  • Non-execute bit is shared across the cores.
  • Floating point instruction non-coherencies.
  • Allowed memory corruptions outside of the range of permitted writing for a process by running common instruction sequences.

Intelerrata Ax39, Ax43, Ax65, Ax79, Ax90, Ax99 are said to be particularly serious.[21] 39, 43, 79, which can cause unpredictable behavior or system hang, have been fixed in recentsteppings.

Among those who have stated the errata to be particularly serious areOpenBSD'sTheo de Raadt[22] andDragonFly BSD'sMatthew Dillon.[23] Taking a contrasting view wasLinus Torvalds, calling the TLB issue "totally insignificant", adding, "The biggest problem is that Intel should just have documented the TLB behavior better."[24]

Microsoft has issued update KB936357 to address the errata bymicrocode update,[25] with no performance penalty. BIOS updates are also available to fix the issue.

See also

[edit]

References

[edit]
  1. ^NetBurst had reached 3.8 GHz in 2004. Core initially reached 3 GHz, and after moving to 45nm inPenryn would reach 3.5 GHz.Westmere, the ultimate evolution of P6, reached 3.6 GHz base and 3.86 GHz boost frequency. (Excluding the 4.4 GHz special-order Xeons.)
  2. ^77 mm² according to Intel,[14] 80 mm² according to Hiroshige Goto[15]
  1. ^Bessonov, Oleg (September 9, 2005)."New Wine into Old Skins. Conroe: Grandson of Pentium III, Nephew of NetBurst?".ixbtlabs.com. Note that all mentions of "Next-Generation Micro-architecture" in Intel's slides have asterisks that warn that "micro-architecture nameTBD".
  2. ^abHinton, Glenn (February 17, 2010)."Key Nehalem Choices"(PDF).
  3. ^"Intel cancels Tejas, moves to dual-core designs".EE Times. May 7, 2004.
  4. ^"Penryn Arrives: Core 2 Extreme QX9650 Review". ExtremeTech. Archived fromthe original on October 31, 2007. RetrievedOctober 30, 2006.
  5. ^King, Ian (April 9, 2007)."How Israel saved Intel". The Seattle Times. RetrievedApril 15, 2012.
  6. ^"Driving energy-efficient performance, innovation with Intel Core microarchitecture"(PDF). Intel. March 7, 2006.
  7. ^De Gelas, Johan."The Bulldozer Aftermath: Delving Even Deeper".AnandTech.
  8. ^Thomadakis, Michael Euaggelos."The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms".
  9. ^De Gelas, Johan."Intel Core versus AMD's K8 architecture".AnandTech.
  10. ^"Intel Xeon Processor 5110". Intel. RetrievedApril 15, 2012.
  11. ^"Intel Xeon Processor 5120". Intel. RetrievedApril 15, 2012.
  12. ^"Intel Core 2 Extreme QX9650 - Penryn Ticks Ahead".
  13. ^"Intel Core 2 Duo Mobile Processors T7400 & L7400 and Intel Celeron M Processor 530 (Merom - Napa Refresh), PCN 108529-03, Product Design, B-2 to G-2 Stepping Conversion, Reason for Revision: Change G-0 to G-2 Stepping and Correct Post Conversion MM#"(PDF). Intel. March 30, 2009.
  14. ^Intel® Celeron® Processor 440ark.intel.com
  15. ^Intel CPU Die-Size and Microarchitecture
  16. ^"Product Change Notice"(PDF). Archived fromthe original(PDF) on December 22, 2010. RetrievedJune 17, 2012.
  17. ^"ARK entry for Intel Xeon Processor X7460". Intel. RetrievedJuly 14, 2009.
  18. ^piotke (August 1, 2006)."Intel Core 2: Is high speed memory worth its price?". Madshrimps. RetrievedAugust 1, 2006.
  19. ^Jacob (May 19, 2007)."Benchmarks of four Prime95 processes on a quad-core". Mersenne Forum. RetrievedMay 22, 2007.
  20. ^"Dual-Core Intel Xeon Processor 7200 Series and Quad-Core Intel Xeon Processor 7300 Series"(PDF). p. 46. RetrievedJanuary 23, 2010.
  21. ^"Intel Core 2 Duo Processor for Intel Centrino Duo Processor Technology Specification Update"(PDF). pp. 18–21.
  22. ^"'Intel Core 2' - MARC".marc.info.
  23. ^"Matthew Dillon on Intel Core Bugs". OpenBSD journal. June 30, 2007. RetrievedApril 15, 2012.
  24. ^Torvalds, Linus (June 27, 2007)."Core 2 Errata -- problematic or overblown?". Real World Technologies. RetrievedApril 15, 2012.
  25. ^"A microcode reliability update is available that improves the reliability of systems that use Intel processors". Microsoft. October 8, 2011. RetrievedApril 15, 2012.

External links

[edit]
Lists
Microarchitectures
IA-32 (32-bit x86)
x86-64 (64-bit)
x86ULV
Current products
x86-64 (64-bit)
Discontinued
BCD oriented (4-bit)
pre-x86 (8-bit)
Earlyx86 (16-bit)
x87 (externalFPUs)
8/16-bit databus
8087 (1980)
16-bit databus
80C187
80287
80387SX
32-bit databus
80387DX
80487
IA-32 (32-bit x86)
x86-64 (64-bit)
Other
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Intel_Core_(microarchitecture)&oldid=1290785410"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp