Test for infinite series of monotonous terms for convergence
The integral test applied to theharmonic series . Since the area under the curvey = 1/x forx ∈[1, ∞) is infinite, the total area of the rectangles must be infinite as well. Inmathematics , theintegral test for convergence is amethod used to test infiniteseries ofmonotonic terms forconvergence . It was developed byColin Maclaurin andAugustin-Louis Cauchy and is sometimes known as theMaclaurin–Cauchy test .
Statement of the test [ edit ] Consider aninteger N and a functionf defined on the unboundedinterval [N , ∞) , on which it ismonotone decreasing . Then the infinite series
∑ n = N ∞ f ( n ) {\displaystyle \sum _{n=N}^{\infty }f(n)} converges to areal number if and only if theimproper integral
∫ N ∞ f ( x ) d x {\displaystyle \int _{N}^{\infty }f(x)\,dx} is finite. In particular, if the integral diverges, then theseries diverges as well.
If the improper integral is finite, then the proof also gives thelower and upper bounds
for the infinite series.
Note that if the functionf ( x ) {\displaystyle f(x)} is increasing, then the function− f ( x ) {\displaystyle -f(x)} is decreasing and the above theorem applies.
Many textbooks require the functionf {\displaystyle f} to be positive,[ 1] [ 2] [ 3] but this condition is not really necessary, since whenf {\displaystyle f} is negative and decreasing both∑ n = N ∞ f ( n ) {\displaystyle \sum _{n=N}^{\infty }f(n)} and∫ N ∞ f ( x ) d x {\displaystyle \int _{N}^{\infty }f(x)\,dx} diverge.[ 4] [better source needed ]
The proof uses thecomparison test , comparing the termf ( n ) {\displaystyle f(n)} with the integral off {\displaystyle f} over the intervals[ n − 1 , n ) {\displaystyle [n-1,n)} and[ n , n + 1 ) {\displaystyle [n,n+1)} respectively.
The monotonic functionf {\displaystyle f} iscontinuous almost everywhere . To show this, let
D = { x ∈ [ N , ∞ ) ∣ f is discontinuous at x } {\displaystyle D=\{x\in [N,\infty )\mid f{\text{ is discontinuous at }}x\}} For everyx ∈ D {\displaystyle x\in D} , there exists by thedensity ofQ {\displaystyle \mathbb {Q} } , ac ( x ) ∈ Q {\displaystyle c(x)\in \mathbb {Q} } so thatc ( x ) ∈ [ lim y ↓ x f ( y ) , lim y ↑ x f ( y ) ] {\displaystyle c(x)\in \left[\lim _{y\downarrow x}f(y),\lim _{y\uparrow x}f(y)\right]} .
Note that this set contains anopen non-empty interval precisely iff {\displaystyle f} isdiscontinuous atx {\displaystyle x} . We can uniquely identifyc ( x ) {\displaystyle c(x)} as therational number that has the least index in anenumeration N → Q {\displaystyle \mathbb {N} \to \mathbb {Q} } and satisfies the above property. Sincef {\displaystyle f} ismonotone , this defines aninjective mapping c : D → Q , x ↦ c ( x ) {\displaystyle c:D\to \mathbb {Q} ,x\mapsto c(x)} and thusD {\displaystyle D} iscountable . It follows thatf {\displaystyle f} iscontinuous almost everywhere . This issufficient forRiemann integrability .[ 5]
Sincef is a monotone decreasing function, we know that
f ( x ) ≤ f ( n ) for all x ∈ [ n , ∞ ) {\displaystyle f(x)\leq f(n)\quad {\text{for all }}x\in [n,\infty )} and
f ( n ) ≤ f ( x ) for all x ∈ [ N , n ] . {\displaystyle f(n)\leq f(x)\quad {\text{for all }}x\in [N,n].} Hence, for every integern ≥N ,
and, for every integern ≥N + 1 ,
By summation over alln fromN to some larger integerM , we get from (2 )
∫ N M + 1 f ( x ) d x = ∑ n = N M ∫ n n + 1 f ( x ) d x ⏟ ≤ f ( n ) ≤ ∑ n = N M f ( n ) {\displaystyle \int _{N}^{M+1}f(x)\,dx=\sum _{n=N}^{M}\underbrace {\int _{n}^{n+1}f(x)\,dx} _{\leq \,f(n)}\leq \sum _{n=N}^{M}f(n)} and from (3 )
∑ n = N M f ( n ) = f ( N ) + ∑ n = N + 1 M f ( n ) ≤ f ( N ) + ∑ n = N + 1 M ∫ n − 1 n f ( x ) d x ⏟ ≥ f ( n ) = f ( N ) + ∫ N M f ( x ) d x . {\displaystyle {\begin{aligned}\sum _{n=N}^{M}f(n)&=f(N)+\sum _{n=N+1}^{M}f(n)\\&\leq f(N)+\sum _{n=N+1}^{M}\underbrace {\int _{n-1}^{n}f(x)\,dx} _{\geq \,f(n)}\\&=f(N)+\int _{N}^{M}f(x)\,dx.\end{aligned}}} Combining these two estimates yields
∫ N M + 1 f ( x ) d x ≤ ∑ n = N M f ( n ) ≤ f ( N ) + ∫ N M f ( x ) d x . {\displaystyle \int _{N}^{M+1}f(x)\,dx\leq \sum _{n=N}^{M}f(n)\leq f(N)+\int _{N}^{M}f(x)\,dx.} LettingM tend to infinity, the bounds in (1 ) and the result follow.
Theharmonic series
∑ n = 1 ∞ 1 n {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n}}} diverges because, using thenatural logarithm , itsantiderivative , and thefundamental theorem of calculus , we get
∫ 1 M 1 n d n = ln n | 1 M = ln M → ∞ for M → ∞ . {\displaystyle \int _{1}^{M}{\frac {1}{n}}\,dn=\ln n{\Bigr |}_{1}^{M}=\ln M\to \infty \quad {\text{for }}M\to \infty .} On the other hand, the series
ζ ( 1 + ε ) = ∑ n = 1 ∞ 1 n 1 + ε {\displaystyle \zeta (1+\varepsilon )=\sum _{n=1}^{\infty }{\frac {1}{n^{1+\varepsilon }}}} (cf.Riemann zeta function )converges for everyε > 0 , because by thepower rule
∫ 1 M 1 n 1 + ε d n = − 1 ε n ε | 1 M = 1 ε ( 1 − 1 M ε ) ≤ 1 ε < ∞ for all M ≥ 1. {\displaystyle \int _{1}^{M}{\frac {1}{n^{1+\varepsilon }}}\,dn=\left.-{\frac {1}{\varepsilon n^{\varepsilon }}}\right|_{1}^{M}={\frac {1}{\varepsilon }}\left(1-{\frac {1}{M^{\varepsilon }}}\right)\leq {\frac {1}{\varepsilon }}<\infty \quad {\text{for all }}M\geq 1.} From (1 ) we get the upper estimate
ζ ( 1 + ε ) = ∑ n = 1 ∞ 1 n 1 + ε ≤ 1 + ε ε , {\displaystyle \zeta (1+\varepsilon )=\sum _{n=1}^{\infty }{\frac {1}{n^{1+\varepsilon }}}\leq {\frac {1+\varepsilon }{\varepsilon }},} which can be compared with some of theparticular values of Riemann zeta function .
Borderline between divergence and convergence [ edit ] The above examples involving the harmonic series raise the question of whether there are monotone sequences such thatf (n ) decreases to 0 faster than1/n but slower than1/n 1+ε in the sense that
lim n → ∞ f ( n ) 1 / n = 0 and lim n → ∞ f ( n ) 1 / n 1 + ε = ∞ {\displaystyle \lim _{n\to \infty }{\frac {f(n)}{1/n}}=0\quad {\text{and}}\quad \lim _{n\to \infty }{\frac {f(n)}{1/n^{1+\varepsilon }}}=\infty } for everyε > 0 , and whether the corresponding series of thef (n ) still diverges. Once such a sequence is found, a similar question can be asked withf (n ) taking the role of1/n , and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series.
Using the integral test for convergence, one can show (see below) that, for everynatural number k , the series
still diverges (cf.proof that the sum of the reciprocals of the primes diverges fork = 1 ) but
converges for everyε > 0 . Herelnk denotes thek -foldcomposition of the natural logarithm definedrecursively by
ln k ( x ) = { ln ( x ) for k = 1 , ln ( ln k − 1 ( x ) ) for k ≥ 2. {\displaystyle \ln _{k}(x)={\begin{cases}\ln(x)&{\text{for }}k=1,\\\ln(\ln _{k-1}(x))&{\text{for }}k\geq 2.\end{cases}}} Furthermore,N k denotes the smallest natural number such that thek -fold composition is well-defined andlnk (N k ) ≥ 1 , i.e.
N k ≥ e e ⋅ ⋅ e ⏟ k e ′ s = e ↑↑ k {\displaystyle N_{k}\geq \underbrace {e^{e^{\cdot ^{\cdot ^{e}}}}} _{k\ e'{\text{s}}}=e\uparrow \uparrow k} usingtetration orKnuth's up-arrow notation .
To see the divergence of the series (4 ) using the integral test, note that by repeated application of thechain rule
d d x ln k + 1 ( x ) = d d x ln ( ln k ( x ) ) = 1 ln k ( x ) d d x ln k ( x ) = ⋯ = 1 x ln ( x ) ⋯ ln k ( x ) , {\displaystyle {\frac {d}{dx}}\ln _{k+1}(x)={\frac {d}{dx}}\ln(\ln _{k}(x))={\frac {1}{\ln _{k}(x)}}{\frac {d}{dx}}\ln _{k}(x)=\cdots ={\frac {1}{x\ln(x)\cdots \ln _{k}(x)}},} hence
∫ N k ∞ d x x ln ( x ) ⋯ ln k ( x ) = ln k + 1 ( x ) | N k ∞ = ∞ . {\displaystyle \int _{N_{k}}^{\infty }{\frac {dx}{x\ln(x)\cdots \ln _{k}(x)}}=\ln _{k+1}(x){\bigr |}_{N_{k}}^{\infty }=\infty .} To see the convergence of the series (5 ), note that by thepower rule , the chain rule and the above result
− d d x 1 ε ( ln k ( x ) ) ε = 1 ( ln k ( x ) ) 1 + ε d d x ln k ( x ) = ⋯ = 1 x ln ( x ) ⋯ ln k − 1 ( x ) ( ln k ( x ) ) 1 + ε , {\displaystyle -{\frac {d}{dx}}{\frac {1}{\varepsilon (\ln _{k}(x))^{\varepsilon }}}={\frac {1}{(\ln _{k}(x))^{1+\varepsilon }}}{\frac {d}{dx}}\ln _{k}(x)=\cdots ={\frac {1}{x\ln(x)\cdots \ln _{k-1}(x)(\ln _{k}(x))^{1+\varepsilon }}},} hence
∫ N k ∞ d x x ln ( x ) ⋯ ln k − 1 ( x ) ( ln k ( x ) ) 1 + ε = − 1 ε ( ln k ( x ) ) ε | N k ∞ < ∞ {\displaystyle \int _{N_{k}}^{\infty }{\frac {dx}{x\ln(x)\cdots \ln _{k-1}(x)(\ln _{k}(x))^{1+\varepsilon }}}=-{\frac {1}{\varepsilon (\ln _{k}(x))^{\varepsilon }}}{\biggr |}_{N_{k}}^{\infty }<\infty } and (1 ) gives bounds for the infinite series in (5 ).
Knopp, Konrad , "Infinite Sequences and Series",Dover Publications , Inc., New York, 1956. (§ 3.3)ISBN 0-486-60153-6 Whittaker, E. T., and Watson, G. N.,A Course in Modern Analysis , fourth edition, Cambridge University Press, 1963. (§ 4.43)ISBN 0-521-58807-3 Ferreira, Jaime Campos, Ed Calouste Gulbenkian, 1987,ISBN 972-31-0179-3 ^ Stewart, James; Clegg, Daniel; Watson, Saleem (2021).Calculus: Metric Version (9 ed.). Cengage.ISBN 9780357113462 . ^ Wade, William (2004).An Introduction to Analysis (3 ed.). Pearson Education.ISBN 9780131246836 . ^ Thomas, George; Hass, Joel; Heil, Christopher; Weir, Maurice; Zuleta, José Luis (2018).Thomas' Calculus: Early Transcendentals (14 ed.). Pearson Education.ISBN 9781292253114 . ^ savemycalculus."Why does it have to be positive and decreasing to apply the integral test?" .Mathematics Stack Exchange . Retrieved2020-03-11 . ^ Brown, A. B. (September 1936). "A Proof of the Lebesgue Condition for Riemann Integrability".The American Mathematical Monthly .43 (7):396– 398.doi :10.2307/2301737 .ISSN 0002-9890 .JSTOR 2301737 .