Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Integral test for convergence

From Wikipedia, the free encyclopedia
Test for infinite series of monotonous terms for convergence
The integral test applied to theharmonic series. Since the area under the curvey = 1/x forx[1, ∞) is infinite, the total area of the rectangles must be infinite as well.
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Inmathematics, theintegral test for convergence is amethod used to test infiniteseries ofmonotonic terms forconvergence. It was developed byColin Maclaurin andAugustin-Louis Cauchy and is sometimes known as theMaclaurin–Cauchy test.

Statement of the test

[edit]

Consider anintegerN and a functionf defined on the unboundedinterval[N, ∞), on which it ismonotone decreasing. Then the infinite series

n=Nf(n){\displaystyle \sum _{n=N}^{\infty }f(n)}

converges to areal number if and only if theimproper integral

Nf(x)dx{\displaystyle \int _{N}^{\infty }f(x)\,dx}

is finite. In particular, if the integral diverges, then theseries diverges as well.

Remark

[edit]

If the improper integral is finite, then the proof also gives thelower and upper bounds

Nf(x)dxn=Nf(n)f(N)+Nf(x)dx{\displaystyle \int _{N}^{\infty }f(x)\,dx\leq \sum _{n=N}^{\infty }f(n)\leq f(N)+\int _{N}^{\infty }f(x)\,dx}1

for the infinite series.

Note that if the functionf(x){\displaystyle f(x)} is increasing, then the functionf(x){\displaystyle -f(x)} is decreasing and the above theorem applies.

Many textbooks require the functionf{\displaystyle f} to be positive,[1][2][3] but this condition is not really necessary, since whenf{\displaystyle f} is negative and decreasing bothn=Nf(n){\displaystyle \sum _{n=N}^{\infty }f(n)} andNf(x)dx{\displaystyle \int _{N}^{\infty }f(x)\,dx} diverge.[4][better source needed]

Proof

[edit]

The proof uses thecomparison test, comparing the termf(n){\displaystyle f(n)} with the integral off{\displaystyle f} over the intervals[n1,n){\displaystyle [n-1,n)} and[n,n+1){\displaystyle [n,n+1)} respectively.

The monotonic functionf{\displaystyle f} iscontinuousalmost everywhere. To show this, let

D={x[N,)f is discontinuous at x}{\displaystyle D=\{x\in [N,\infty )\mid f{\text{ is discontinuous at }}x\}}

For everyxD{\displaystyle x\in D}, there exists by thedensity ofQ{\displaystyle \mathbb {Q} }, ac(x)Q{\displaystyle c(x)\in \mathbb {Q} } so thatc(x)[limyxf(y),limyxf(y)]{\displaystyle c(x)\in \left[\lim _{y\downarrow x}f(y),\lim _{y\uparrow x}f(y)\right]}.

Note that this set contains anopennon-empty interval precisely iff{\displaystyle f} isdiscontinuous atx{\displaystyle x}. We can uniquely identifyc(x){\displaystyle c(x)} as therational number that has the least index in anenumerationNQ{\displaystyle \mathbb {N} \to \mathbb {Q} } and satisfies the above property. Sincef{\displaystyle f} ismonotone, this defines aninjectivemappingc:DQ,xc(x){\displaystyle c:D\to \mathbb {Q} ,x\mapsto c(x)} and thusD{\displaystyle D} iscountable. It follows thatf{\displaystyle f} iscontinuousalmost everywhere. This issufficient forRiemann integrability.[5]

Sincef is a monotone decreasing function, we know that

f(x)f(n)for all x[n,){\displaystyle f(x)\leq f(n)\quad {\text{for all }}x\in [n,\infty )}

and

f(n)f(x)for all x[N,n].{\displaystyle f(n)\leq f(x)\quad {\text{for all }}x\in [N,n].}

Hence, for every integernN,

nn+1f(x)dxnn+1f(n)dx=f(n){\displaystyle \int _{n}^{n+1}f(x)\,dx\leq \int _{n}^{n+1}f(n)\,dx=f(n)}2

and, for every integernN + 1,

f(n)=n1nf(n)dxn1nf(x)dx.{\displaystyle f(n)=\int _{n-1}^{n}f(n)\,dx\leq \int _{n-1}^{n}f(x)\,dx.}3

By summation over alln fromN to some larger integerM, we get from (2)

NM+1f(x)dx=n=NMnn+1f(x)dxf(n)n=NMf(n){\displaystyle \int _{N}^{M+1}f(x)\,dx=\sum _{n=N}^{M}\underbrace {\int _{n}^{n+1}f(x)\,dx} _{\leq \,f(n)}\leq \sum _{n=N}^{M}f(n)}

and from (3)

n=NMf(n)=f(N)+n=N+1Mf(n)f(N)+n=N+1Mn1nf(x)dxf(n)=f(N)+NMf(x)dx.{\displaystyle {\begin{aligned}\sum _{n=N}^{M}f(n)&=f(N)+\sum _{n=N+1}^{M}f(n)\\&\leq f(N)+\sum _{n=N+1}^{M}\underbrace {\int _{n-1}^{n}f(x)\,dx} _{\geq \,f(n)}\\&=f(N)+\int _{N}^{M}f(x)\,dx.\end{aligned}}}

Combining these two estimates yields

NM+1f(x)dxn=NMf(n)f(N)+NMf(x)dx.{\displaystyle \int _{N}^{M+1}f(x)\,dx\leq \sum _{n=N}^{M}f(n)\leq f(N)+\int _{N}^{M}f(x)\,dx.}

LettingM tend to infinity, the bounds in (1) and the result follow.

Applications

[edit]

Theharmonic series

n=11n{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n}}}

diverges because, using thenatural logarithm, itsantiderivative, and thefundamental theorem of calculus, we get

1M1ndn=lnn|1M=lnMfor M.{\displaystyle \int _{1}^{M}{\frac {1}{n}}\,dn=\ln n{\Bigr |}_{1}^{M}=\ln M\to \infty \quad {\text{for }}M\to \infty .}

On the other hand, the series

ζ(1+ε)=n=11n1+ε{\displaystyle \zeta (1+\varepsilon )=\sum _{n=1}^{\infty }{\frac {1}{n^{1+\varepsilon }}}}

(cf.Riemann zeta function)converges for everyε > 0, because by thepower rule

1M1n1+εdn=1εnε|1M=1ε(11Mε)1ε<for all M1.{\displaystyle \int _{1}^{M}{\frac {1}{n^{1+\varepsilon }}}\,dn=\left.-{\frac {1}{\varepsilon n^{\varepsilon }}}\right|_{1}^{M}={\frac {1}{\varepsilon }}\left(1-{\frac {1}{M^{\varepsilon }}}\right)\leq {\frac {1}{\varepsilon }}<\infty \quad {\text{for all }}M\geq 1.}

From (1) we get the upper estimate

ζ(1+ε)=n=11n1+ε1+εε,{\displaystyle \zeta (1+\varepsilon )=\sum _{n=1}^{\infty }{\frac {1}{n^{1+\varepsilon }}}\leq {\frac {1+\varepsilon }{\varepsilon }},}

which can be compared with some of theparticular values of Riemann zeta function.

Borderline between divergence and convergence

[edit]

The above examples involving the harmonic series raise the question of whether there are monotone sequences such thatf(n) decreases to 0 faster than1/n but slower than1/n1+ε in the sense that

limnf(n)1/n=0andlimnf(n)1/n1+ε={\displaystyle \lim _{n\to \infty }{\frac {f(n)}{1/n}}=0\quad {\text{and}}\quad \lim _{n\to \infty }{\frac {f(n)}{1/n^{1+\varepsilon }}}=\infty }

for everyε > 0, and whether the corresponding series of thef(n) still diverges. Once such a sequence is found, a similar question can be asked withf(n) taking the role of1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series.

Using the integral test for convergence, one can show (see below) that, for everynatural numberk, the series

n=Nk1nln(n)ln2(n)lnk1(n)lnk(n){\displaystyle \sum _{n=N_{k}}^{\infty }{\frac {1}{n\ln(n)\ln _{2}(n)\cdots \ln _{k-1}(n)\ln _{k}(n)}}}4

still diverges (cf.proof that the sum of the reciprocals of the primes diverges fork = 1) but

n=Nk1nln(n)ln2(n)lnk1(n)(lnk(n))1+ε{\displaystyle \sum _{n=N_{k}}^{\infty }{\frac {1}{n\ln(n)\ln _{2}(n)\cdots \ln _{k-1}(n)(\ln _{k}(n))^{1+\varepsilon }}}}5

converges for everyε > 0. Herelnk denotes thek-foldcomposition of the natural logarithm definedrecursively by

lnk(x)={ln(x)for k=1,ln(lnk1(x))for k2.{\displaystyle \ln _{k}(x)={\begin{cases}\ln(x)&{\text{for }}k=1,\\\ln(\ln _{k-1}(x))&{\text{for }}k\geq 2.\end{cases}}}

Furthermore,Nk denotes the smallest natural number such that thek-fold composition is well-defined andlnk(Nk) ≥ 1, i.e.

Nkeeek es=e↑↑k{\displaystyle N_{k}\geq \underbrace {e^{e^{\cdot ^{\cdot ^{e}}}}} _{k\ e'{\text{s}}}=e\uparrow \uparrow k}

usingtetration orKnuth's up-arrow notation.

To see the divergence of the series (4) using the integral test, note that by repeated application of thechain rule

ddxlnk+1(x)=ddxln(lnk(x))=1lnk(x)ddxlnk(x)==1xln(x)lnk(x),{\displaystyle {\frac {d}{dx}}\ln _{k+1}(x)={\frac {d}{dx}}\ln(\ln _{k}(x))={\frac {1}{\ln _{k}(x)}}{\frac {d}{dx}}\ln _{k}(x)=\cdots ={\frac {1}{x\ln(x)\cdots \ln _{k}(x)}},}

hence

Nkdxxln(x)lnk(x)=lnk+1(x)|Nk=.{\displaystyle \int _{N_{k}}^{\infty }{\frac {dx}{x\ln(x)\cdots \ln _{k}(x)}}=\ln _{k+1}(x){\bigr |}_{N_{k}}^{\infty }=\infty .}

To see the convergence of the series (5), note that by thepower rule, the chain rule and the above result

ddx1ε(lnk(x))ε=1(lnk(x))1+εddxlnk(x)==1xln(x)lnk1(x)(lnk(x))1+ε,{\displaystyle -{\frac {d}{dx}}{\frac {1}{\varepsilon (\ln _{k}(x))^{\varepsilon }}}={\frac {1}{(\ln _{k}(x))^{1+\varepsilon }}}{\frac {d}{dx}}\ln _{k}(x)=\cdots ={\frac {1}{x\ln(x)\cdots \ln _{k-1}(x)(\ln _{k}(x))^{1+\varepsilon }}},}

hence

Nkdxxln(x)lnk1(x)(lnk(x))1+ε=1ε(lnk(x))ε|Nk<{\displaystyle \int _{N_{k}}^{\infty }{\frac {dx}{x\ln(x)\cdots \ln _{k-1}(x)(\ln _{k}(x))^{1+\varepsilon }}}=-{\frac {1}{\varepsilon (\ln _{k}(x))^{\varepsilon }}}{\biggr |}_{N_{k}}^{\infty }<\infty }

and (1) gives bounds for the infinite series in (5).

See also

[edit]

References

[edit]
  1. ^Stewart, James; Clegg, Daniel; Watson, Saleem (2021).Calculus: Metric Version (9 ed.). Cengage.ISBN 9780357113462.
  2. ^Wade, William (2004).An Introduction to Analysis (3 ed.). Pearson Education.ISBN 9780131246836.
  3. ^Thomas, George; Hass, Joel; Heil, Christopher; Weir, Maurice; Zuleta, José Luis (2018).Thomas' Calculus: Early Transcendentals (14 ed.). Pearson Education.ISBN 9781292253114.
  4. ^savemycalculus."Why does it have to be positive and decreasing to apply the integral test?".Mathematics Stack Exchange. Retrieved2020-03-11.
  5. ^Brown, A. B. (September 1936). "A Proof of the Lebesgue Condition for Riemann Integrability".The American Mathematical Monthly.43 (7):396–398.doi:10.2307/2301737.ISSN 0002-9890.JSTOR 2301737.
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Integral_test_for_convergence&oldid=1257465098"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp