Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Infinitesimal generator (stochastic processes)

From Wikipedia, the free encyclopedia
Of a stochastic process
This article is about infinitesimal generator for general stochastic processes. For generators for the special case of finite-state continuous time Markov chains, seetransition rate matrix.

Inmathematics — specifically, instochastic analysis — theinfinitesimal generator of aFeller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is aFourier multiplier operator[1] that encodes a great deal of information about the process.

The generator is used in evolution equations such as theKolmogorov backward equation, which describes the evolution of statistics of the process; itsL2Hermitian adjoint is used in evolution equations such as theFokker–Planck equation, also known as Kolmogorov forward equation, which describes the evolution of theprobability density functions of the process.

The Kolmogorov forward equation in the notation is justtρ=Aρ{\displaystyle \partial _{t}\rho ={\mathcal {A}}^{*}\rho }, whereρ{\displaystyle \rho } is the probability density function, andA{\displaystyle {\mathcal {A}}^{*}} is the adjoint of the infinitesimal generator of the underlying stochastic process. TheKlein–Kramers equation is a special case of that.

Definition

[edit]

General case

[edit]

For aFeller process(Xt)t0{\displaystyle (X_{t})_{t\geq 0}} with Feller semigroupT=(Tt)t0{\displaystyle T=(T_{t})_{t\geq 0}} and state spaceE{\displaystyle E} the generator(A,D(A)){\displaystyle (A,D(A))} is defined as[1]

D(A)={fC0(E):limt0Ttfft exists as uniform limit},Af=limt0Ttfft,   for any fD(A).{\displaystyle {\begin{aligned}D(A)&=\left\{f\in C_{0}(E):\lim _{t\downarrow 0}{\frac {T_{t}f-f}{t}}{\text{ exists as uniform limit}}\right\},\\Af&=\lim _{t\downarrow 0}{\frac {T_{t}f-f}{t}},~~{\text{ for any }}f\in D(A).\\\end{aligned}}}

HereC0(E){\displaystyle C_{0}(E)} denotes theBanach space of continuous functions onE{\displaystyle E} vanishing at infinity, equipped with the supremum norm, andTtf(x)=Exf(Xt)=E(f(Xt)|X0=x){\displaystyle T_{t}f(x)=\mathbb {E} ^{x}f(X_{t})=\mathbb {E} (f(X_{t})|X_{0}=x)}. In general, it is not easy to describe the domain of the Feller generator. However, the Feller generator is always closed and densely defined. IfX{\displaystyle X} isRd{\displaystyle \mathbb {R} ^{d}}-valued andD(A){\displaystyle D(A)} contains thetest functions (compactly supported smooth functions) then[1]Af(x)=c(x)f(x)+l(x)f(x)+12divQ(x)f(x)+Rd{0}(f(x+y)f(x)f(x)yχ(|y|))N(x,dy),{\displaystyle Af(x)=-c(x)f(x)+l(x)\cdot \nabla f(x)+{\frac {1}{2}}{\text{div}}Q(x)\nabla f(x)+\int _{\mathbb {R} ^{d}\setminus {\{0\}}}\left(f(x+y)-f(x)-\nabla f(x)\cdot y\chi (|y|)\right)N(x,dy),}wherec(x)0{\displaystyle c(x)\geq 0}, and(l(x),Q(x),N(x,)){\displaystyle (l(x),Q(x),N(x,\cdot ))} is aLévy triplet for fixedxRd{\displaystyle x\in \mathbb {R} ^{d}}.

Lévy processes

[edit]

The generator ofLévy semigroup is of the formAf(x)=lf(x)+12divQf(x)+Rd{0}(f(x+y)f(x)f(x)yχ(|y|))ν(dy){\displaystyle Af(x)=l\cdot \nabla f(x)+{\frac {1}{2}}{\text{div}}Q\nabla f(x)+\int _{\mathbb {R} ^{d}\setminus {\{0\}}}\left(f(x+y)-f(x)-\nabla f(x)\cdot y\,\chi (|y|)\right)\nu (dy)}wherelRd,QRd×d{\displaystyle l\in \mathbb {R} ^{d},Q\in \mathbb {R} ^{d\times d}} is positive semidefinite andν{\displaystyle \nu } is aLévy measure satisfyingRd{0}min(|y|2,1)ν(dy)<{\displaystyle \int _{\mathbb {R} ^{d}\setminus \{0\}}\min(|y|^{2},1)\nu (dy)<\infty } and01χ(s)κmin(s,1){\displaystyle 0\leq 1-\chi (s)\leq \kappa \min(s,1)}for someκ>0{\displaystyle \kappa >0} withsχ(s){\displaystyle s\chi (s)} is bounded. If we defineψ(ξ)=ψ(0)ilξ+12ξQξ+Rd{0}(1eiyξ+iξyχ(|y|))ν(dy){\displaystyle \psi (\xi )=\psi (0)-il\cdot \xi +{\frac {1}{2}}\xi \cdot Q\xi +\int _{\mathbb {R} ^{d}\setminus \{0\}}(1-e^{iy\cdot \xi }+i\xi \cdot y\,\chi (|y|))\nu (dy)}forψ(0)0{\displaystyle \psi (0)\geq 0} then the generator can be written asAf(x)=eixξψ(ξ)f^(ξ)dξ{\displaystyle Af(x)=-\int e^{ix\cdot \xi }\psi (\xi ){\hat {f}}(\xi )d\xi }wheref^{\displaystyle {\hat {f}}} denotes the Fourier transform. So the generator of a Lévy process (or semigroup) is a Fourier multiplier operator with symbolψ{\displaystyle -\psi }.

Stochastic differential equations driven by Lévy processes

[edit]

LetL{\textstyle L} be a Lévy process with symbolψ{\displaystyle \psi } (see above). LetΦ{\displaystyle \Phi } be locally Lipschitz and bounded. The solution of the SDEdXt=Φ(Xt)dLt{\displaystyle dX_{t}=\Phi (X_{t-})dL_{t}} exists for each deterministic initial conditionxRd{\displaystyle x\in \mathbb {R} ^{d}} and yields a Feller process with symbolq(x,ξ)=ψ(Φ(x)ξ).{\displaystyle q(x,\xi )=\psi (\Phi ^{\top }(x)\xi ).}

Note that in general, the solution of an SDE driven by a Feller process which is not Lévy might fail to be Feller or even Markovian.

As a simple example considerdXt=l(Xt)dt+σ(Xt)dWt{\textstyle dX_{t}=l(X_{t})dt+\sigma (X_{t})dW_{t}} with a Brownian motion driving noise. If we assumel,σ{\displaystyle l,\sigma } are Lipschitz and of linear growth, then for each deterministic initial condition there exists a unique solution, which is Feller with symbolq(x,ξ)=il(x)ξ+12ξQ(x)ξ.{\displaystyle q(x,\xi )=-il(x)\cdot \xi +{\frac {1}{2}}\xi Q(x)\xi .}

Mean first passage time

[edit]

The meanfirst passage timeT1{\displaystyle T_{1}} satisfiesAT1=1{\displaystyle {\mathcal {A}}T_{1}=-1}. This can be used to calculate, for example, the time it takes for a Brownian motion particle in a box to hit the boundary of the box, or the time it takes for a Brownian motion particle in a potential well to escape the well. Under certain assumptions, the escape time satisfies theArrhenius equation.[2]

Generators of some common processes

[edit]

For finite-state continuous time Markov chains the generator may be expressed as atransition rate matrix.

The general n-dimensional diffusion processdXt=μ(Xt,t)dt+σ(Xt,t)dWt{\displaystyle dX_{t}=\mu (X_{t},t)\,dt+\sigma (X_{t},t)\,dW_{t}} has generatorAf=(f)Tμ+tr((2f)D){\displaystyle {\mathcal {A}}f=(\nabla f)^{T}\mu +tr((\nabla ^{2}f)D)}whereD=12σσT{\displaystyle D={\frac {1}{2}}\sigma \sigma ^{T}} is thediffusion matrix,2f{\displaystyle \nabla ^{2}f} is theHessian of the functionf{\displaystyle f}, andtr{\displaystyle tr} is thematrix trace. Itsadjoint operator is[2]Af=ii(fμi)+ijij(fDij){\displaystyle {\mathcal {A}}^{*}f=-\sum _{i}\partial _{i}(f\mu _{i})+\sum _{ij}\partial _{ij}(fD_{ij})}The following are commonly used special cases for the general n-dimensional diffusion process.

See also

[edit]

References

[edit]
  1. ^abcBöttcher, Björn; Schilling, René; Wang, Jian (2013).Lévy Matters III: Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Springer International Publishing.ISBN 978-3-319-02683-1.
  2. ^ab"Lecture 10: Forward and Backward equations for SDEs"(PDF).cims.nyu.edu.
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Retrieved from "https://en.wikipedia.org/w/index.php?title=Infinitesimal_generator_(stochastic_processes)&oldid=1289209079"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp