Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Indole

From Wikipedia, the free encyclopedia
Chemical compound
Indole
Skeletal formula with numbering scheme
Ball-and-stick model of indole
Space-filling model of indole
Names
Preferred IUPAC name
1H-Indole[1]
Other names
2,3-Benzopyrrole, ketole,
1-benzazole
Identifiers
3D model (JSmol)
107693
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.004.019Edit this at Wikidata
EC Number
  • 204-420-7
3477
KEGG
RTECS number
  • NL2450000
UNII
  • InChI=1S/C8H7N/c1-2-4-8-7(3-1)5-6-9-8/h1-6,9H checkY
    Key: SIKJAQJRHWYJAI-UHFFFAOYSA-N checkY
  • InChI=1/C8H7N/c1-2-4-8-7(3-1)5-6-9-8/h1-6,9H
    Key: SIKJAQJRHWYJAI-UHFFFAOYAI
  • C12=C(C=CN2)C=CC=C1
Properties
C8H7N
Molar mass117.151 g·mol−1
AppearanceWhite solid
OdorFecal or jasmine like (at extremely low concentrations)
Density1.1747 g/cm3, solid
Melting point52 to 54 °C (126 to 129 °F; 325 to 327 K)
Boiling point253 to 254 °C (487 to 489 °F; 526 to 527 K)
0.19 g/100 ml (20 °C)
Soluble in hot water
Acidity (pKa)16.2
(21.0 inDMSO)
Basicity (pKb)17.6
−85.0·10−6 cm3/mol
Structure
Pna21
Planar
2.11 D inbenzene
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Skin sensitising
GHS labelling:
GHS06: ToxicGHS07: Exclamation mark
Danger
H302,H311
P264,P270,P280,P301+P312,P302+P352,P312,P322,P330,P361,P363,P405,P501
Flash point121 °C (250 °F; 394 K)
Safety data sheet (SDS)[1]
Related compounds
Othercations
Indolium
benzene,benzofuran,
carbazole,carboline,
indene,benzothiophene,
indoline,
isatin,methylindole,
oxindole,pyrrole,
skatole,benzophosphole
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Indole is anorganic compound with the formulaC6H4CCNH3. Indole is classified as anaromaticheterocycle. It has abicyclic structure, consisting of a six-memberedbenzene ring fused to a five-memberedpyrrole ring.Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced bysubstituent groups. Indoles are widely distributed in nature, most notably asamino acidtryptophan andneurotransmitterserotonin.[2]

General properties and occurrence

[edit]

Indole is asolid at room temperature. It occurs naturally in humanfeces and has an intense fecalodor. At very low concentrations, however, it has a flowery smell,[3] and is a constituent of manyperfumes. It also occurs incoal tar. It has been identified incannabis.[4] It is the main volatile compound instinky tofu.[5]

When indole is asubstituent on a larger molecule, it is called anindolyl group bysystematic nomenclature.

Indole undergoeselectrophilic substitution, mainly at position 3 (see diagram in right margin).Substituted indoles are structural elements of (and for some compounds, the synthetic precursors for) the tryptophan-derivedtryptamine alkaloids, which includes theneurotransmitterserotonin and thehormone[6]melatonin, as well as the naturally occurringpsychedelic drugsdimethyltryptamine andpsilocybin. Other indolic compounds include the plant hormoneauxin (indolyl-3-acetic acid,IAA),tryptophol, the anti-inflammatory drugindomethacin, and thebetablockerpindolol.

The nameindole is aportmanteau of the wordsindigo andoleum, since indole was first isolated by treatment of the indigo dye with oleum.

History

[edit]
Baeyer's original structure for indole, 1869

Indole chemistry began to develop with the study of the dyeindigo. Indigo can be converted toisatin and then tooxindole. In 1866,Adolf von Baeyer reducedoxindole to indole usingzinc dust.[7] In 1869, he proposed a formula for indole.[8]

Certain indole derivatives were important dyestuffs until the end of the 19th century. In the 1930s, interest in indole intensified when it became known that the indole substituent is present in many importantalkaloids, known asindole alkaloids (e.g.,tryptophan andauxins), and it remains an active area of research today.[9]

Biosynthesis and function

[edit]

Indole isbiosynthesized in theshikimate pathway viaanthranilate.[2] It is an intermediate in the biosynthesis oftryptophan, where it stays inside thetryptophan synthase molecule between the removal of 3-phospho-glyceraldehyde and the condensation withserine. When indole is needed in the cell, it is usually produced from tryptophan bytryptophanase.[10]

Indole is produced via anthranilate and reacts further to give the amino acid tryptophan.

As anintercellular signal molecule, indole regulates various aspects of bacterial physiology, includingspore formation,plasmid stability,resistance to drugs,biofilm formation, andvirulence.[11] A number of indole derivatives have important cellular functions, includingneurotransmitters such asserotonin.[2]

Tryptophan metabolism by human gut microbiota()
The image above contains clickable links
This diagram shows the biosynthesis ofbioactive compounds (indole and certain other derivatives) fromtryptophan by bacteria in the gut.[12] Indole is produced from tryptophan by bacteria that expresstryptophanase.[12]Clostridium sporogenes metabolizes tryptophan into indole and subsequently3-indolepropionic acid (IPA),[13] a highly potentneuroprotectiveantioxidant that scavengeshydroxyl radicals.[12][14][15] IPA binds to thepregnane X receptor (PXR) in intestinal cells, thereby facilitating mucosal homeostasis andbarrier function.[12] Followingabsorption from the intestine anddistribution to the brain, IPA confers a neuroprotective effect againstcerebral ischemia andAlzheimer's disease.[12]Lactobacillaceae (Lactobacilluss.l.) species metabolize tryptophan intoindole-3-aldehyde (I3A) which acts on thearyl hydrocarbon receptor (AhR) in intestinal immune cells, in turn increasinginterleukin-22 (IL-22) production.[12] Indole itselftriggers the secretion ofglucagon-like peptide-1 (GLP-1) inintestinal L cells and acts as aligand for AhR.[12] Indole can also be metabolized by the liver intoindoxyl sulfate, a compound that is toxic in high concentrations and associated withvascular disease andrenal dysfunction.[12] AST-120 (activated charcoal), an intestinalsorbent that istaken by mouth,adsorbs indole, in turn decreasing the concentration of indoxyl sulfate in blood plasma.[12]

Detection methods

[edit]

Common classical methods applied for the detection of extracellular and environmental indoles, areSalkowski,Kovács,Ehrlich's reagent assays andHPLC.[16][17][18] For intracellular indole detection and measurement genetically encoded indole-responsivebiosensor is applicable.[19]

Medical applications

[edit]

Indoles and their derivatives are promising againsttuberculosis,malaria,diabetes,cancer,migraines,convulsions,hypertension, bacterial infections of methicillin-resistantStaphylococcus aureus (MRSA) and evenviruses.[20][21][22][23][24]

Synthetic routes

[edit]

Indole and its derivatives can also be synthesized by a variety of methods.[25][26][27] According to a 2011 review, all known syntheses fall into 9 categories.[28]

The main industrial routes start fromaniline via vapor-phase reaction withethylene glycol in the presence ofcatalysts:

Reaction of aniline and ethylene glycol to give indole.

In general, reactions are conducted between 200 and 500 °C. Yields can be as high as 60%. Other precursors to indole includeformyltoluidine, 2-ethylaniline, and 2-(2-nitrophenyl)ethanol, all of which undergocyclizations.[29]


Leimgruber–Batcho indole synthesis

[edit]
Main article:Leimgruber–Batcho indole synthesis
The Leimgruber–Batcho indole synthesis

TheLeimgruber–Batcho indole synthesis is an efficient method of synthesizing indole and substituted indoles.[30] Originally disclosed in a patent in 1976, this method is high-yielding and can generate substituted indoles. This method is especially popular in thepharmaceutical industry, where many pharmaceuticaldrugs are made up of specifically substituted indoles.

Fischer indole synthesis

[edit]
Main article:Fischer indole synthesis
The Fischer indole synthesis
One-pot microwave-assisted synthesis of indole from phenylhydrazine and pyruvic acid

One of the oldest and most reliable methods for synthesizing substituted indoles is theFischer indole synthesis, developed in 1883 byEmil Fischer. Although the synthesis of indole itself is problematic using the Fischer indole synthesis, it is often used to generate indoles substituted in the 2- and/or 3-positions. Indole can still be synthesized, however, using the Fischer indole synthesis by reactingphenylhydrazine withpyruvic acid followed bydecarboxylation of the formed indole-2-carboxylic acid. This has also been accomplished in a one-pot synthesis using microwave irradiation.[31]

Other indole-forming reactions

[edit]


Chemical reactions of indole

[edit]

Basicity

[edit]

Unlike mostamines, indole is notbasic: just likepyrrole, the aromatic character of the ring means that thelone pair of electrons on the nitrogen atom is not available for protonation.[34] Strong acids such ashydrochloric acid can, however,protonate indole. Indole is primarily protonated at the C3, rather than N1, owing to theenamine-like reactivity of the portion of the molecule located outside of thebenzene ring. The protonated form has apKa of −3.6. The sensitivity of many indolic compounds (e.g.,tryptamines) under acidic conditions is caused by this protonation.

Electrophilic substitution

[edit]

The most reactive position on indole forelectrophilic aromatic substitution is C3, which is 1013 times more reactive thanbenzene. For example, it is alkylated by phosphorylated serine in the biosynthesis of the amino acid tryptophan.Vilsmeier–Haackformylation of indole[35] will take place at room temperature exclusively at C3.

The Vilsmeyer–Haack formylation of indole

Since the pyrrolic ring is the most reactive portion of indole, electrophilic substitution of the carbocyclic (benzene) ring generally takes place only after N1, C2, and C3 are substituted. A noteworthy exception occurs when electrophilic substitution is carried out in conditions sufficiently acidic to exhaustively protonate C3. In this case, C5 is the most common site of electrophilic attack.[36]

Gramine, a useful synthetic intermediate, is produced via aMannich reaction of indole withdimethylamine andformaldehyde. It is the precursor to indole-3-acetic acid and synthetic tryptophan.

Synthesis of gramine from indole

N–H acidity and organometallic indole anion complexes

[edit]

The N–H center has a pKa of 21 inDMSO, so that verystrong bases such assodium hydride orn-butyl lithium and water-free conditions are required for completedeprotonation. The resultingorganometalic derivatives can react in two ways. The moreionic salts such as thesodium orpotassium compounds tend to react withelectrophiles at nitrogen-1, whereas the morecovalent magnesium compounds (indoleGrignard reagents) and (especially)zinc complexes tend to react at carbon 3 (see figure below). In analogous fashion,polar aproticsolvents such asDMF andDMSO tend to favour attack at the nitrogen, whereas nonpolar solvents such astoluene favour C3 attack.[37][38]

Formation and reactions of the indole anion

Carbon acidity and C2 lithiation

[edit]

After the N–H proton, the hydrogen at C2 is the next most acidic proton on indole. Reaction ofN-protected indoles withbutyl lithium orlithium diisopropylamide results in lithiation exclusively at the C2 position. This strong nucleophile can then be used as such with other electrophiles.

2-position lithiation of indole

Bergman and Venemalm developed a technique for lithiating the 2-position of unsubstituted indole,[39] as did Katritzky.[40]

Oxidation of indole

[edit]

Due to the electron-rich nature of indole, it is easilyoxidized. Simple oxidants such asN-bromosuccinimide will selectively oxidize indole1 tooxindole (4 and5).

Oxidation of indole by N-bromosuccinimide

Cycloadditions of indole

[edit]

Only the C2–C3pi bond of indole is capable ofcycloaddition reactions. Intramolecular variants are often higher-yielding than intermolecular cycloadditions. For example, Padwaet al.[41] have developed thisDiels-Alder reaction to form advancedstrychnine intermediates. In this case, the 2-aminofuran is thediene, whereas the indole is thedienophile. Indoles also undergo intramolecular [2+3] and [2+2] cycloadditions.

Example of a cycloaddition of indole

Despite mediocre yields, intermolecular cycloadditions of indole derivatives have been well documented.[42][43][44][45] One example is thePictet-Spengler reaction betweentryptophan derivatives andaldehydes,[46] which produces a mixture ofdiastereomers, leading to reducedyield of the desired product.

Hydrogenation

[edit]

Indoles are susceptible to hydrogenation of the imine subunit[47] to giveindolines.

See also

[edit]

References

[edit]
  1. ^International Union of Pure and Applied Chemistry (2014).Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013.The Royal Society of Chemistry. p. 213.doi:10.1039/9781849733069.ISBN 978-0-85404-182-4.
  2. ^abcNelson, David L.; Cox, Michael M. (2005).Principles of Biochemistry (4th ed.). New York: W. H. Freeman.ISBN 0-7167-4339-6.
  3. ^Purves, Dale; Augustine, George J; Fitzpatrick, David; Katz, Lawrence C; LaMantia, Anthony-Samuel; McNamara, James O; Williams, S Mark."Olfactory Perception in Humans".Olfactory Perception in Humans. Retrieved20 October 2020.
  4. ^Oswald, Iain W. H.; Paryani, Twinkle R.; Sosa, Manuel E.; Ojeda, Marcos A.; Altenbernd, Mark R.; Grandy, Jonathan J.; Shafer, Nathan S.; Ngo, Kim; Peat, Jack R.; Melshenker, Bradley G.; Skelly, Ian; Koby, Kevin A.; Page, Michael F. Z.; Martin, Thomas J. (2023-10-12)."Minor, Nonterpenoid Volatile Compounds Drive the Aroma Differences of Exotic Cannabis".ACS Omega.8 (42):39203–39216.doi:10.1021/acsomega.3c04496.ISSN 2470-1343.PMC 10601067.PMID 37901519.
  5. ^Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo (26 March 2012)."Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings".Molecules.17 (4):3708–3722.doi:10.3390/molecules17043708.PMC 6268145.PMID 22450681.
  6. ^Lee, Jung Goo (21 October 2019)."The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease".Brain Sciences.9 (285): 285.doi:10.3390/brainsci9100285.PMC 6826722.PMID 31640239.
  7. ^Baeyer, A. (1866)."Ueber die Reduction aromatischer Verbindungen mittelst Zinkstaub" [On the reduction of aromatic compounds by means of zinc dust].Annalen der Chemie und Pharmacie.140 (3):295–296.doi:10.1002/jlac.18661400306.
  8. ^Baeyer, A.; Emmerling, A. (1869)."Synthese des Indols" [Synthesis of indole].Berichte der Deutschen Chemischen Gesellschaft.2:679–682.doi:10.1002/cber.186900201268.
  9. ^Van Order, R. B.; Lindwall, H. G. (1942). "Indole".Chem. Rev.30:69–96.doi:10.1021/cr60095a004.
  10. ^Stephanopoulos, George; Aristidou, Aristos A.; Nielsen, Jens (1998-10-17).Metabolic Engineering: Principles and Methodologies. Academic Press. p. 251.ISBN 978-0-08-053628-6.
  11. ^Lee, Jin-Hyung; Lee, Jintae (2010)."Indole as an intercellular signal in microbial communities".FEMS Microbiology Reviews.34 (4):426–44.doi:10.1111/j.1574-6976.2009.00204.x.ISSN 0168-6445.PMID 20070374.
  12. ^abcdefghiZhang LS, Davies SS (April 2016)."Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions".Genome Med.8 (1): 46.doi:10.1186/s13073-016-0296-x.PMC 4840492.PMID 27102537.Lactobacillus spp. convert tryptophan to indole-3-aldehyde (I3A) through unidentified enzymes [125].Clostridium sporogenes convert tryptophan to IPA [6], likely via a tryptophan deaminase. ... IPA also potently scavenges hydroxyl radicals
    Table 2: Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease
    Figure 1: Molecular mechanisms of action of indole and its metabolites on host physiology and disease
  13. ^Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC,Siuzdak G (March 2009)."Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites".Proc. Natl. Acad. Sci. U.S.A.106 (10):3698–3703.Bibcode:2009PNAS..106.3698W.doi:10.1073/pnas.0812874106.PMC 2656143.PMID 19234110.Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacteriumClostridium sporogenes.
    IPA metabolism diagram
  14. ^"3-Indolepropionic acid".Human Metabolome Database. University of Alberta. Retrieved12 June 2018.
  15. ^Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (July 1999)."Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid".J. Biol. Chem.274 (31):21937–21942.doi:10.1074/jbc.274.31.21937.PMID 10419516.S2CID 6630247.[Indole-3-propionic acid (IPA)] has previously been identified in the plasma and cerebrospinal fluid of humans, but its functions are not known. ... In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity.
  16. ^Ehmann, Axel (1977-02-11)."The van URK-Salkowski reagent — a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives".Journal of Chromatography A.132 (2):267–276.doi:10.1016/S0021-9673(00)89300-0.ISSN 0021-9673.PMID 188858.
  17. ^Darkoh, Charles; Chappell, Cynthia; Gonzales, Christopher; Okhuysen, Pablo (December 2015). Schloss, P. D. (ed.)."A Rapid and Specific Method for the Detection of Indole in Complex Biological Samples".Applied and Environmental Microbiology.81 (23):8093–8097.Bibcode:2015ApEnM..81.8093D.doi:10.1128/AEM.02787-15.ISSN 0099-2240.PMC 4651089.PMID 26386049.
  18. ^Gilbert, Sarah; Xu, Jenny; Acosta, Kenneth; Poulev, Alexander; Lebeis, Sarah; Lam, Eric (2018)."Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between Duckweeds and Endophytes".Frontiers in Chemistry.6: 265.Bibcode:2018FrCh....6..265G.doi:10.3389/fchem.2018.00265.ISSN 2296-2646.PMC 6052042.PMID 30050896.
  19. ^Matulis, Paulius; Kutraite, Ingrida; Augustiniene, Ernesta; Valanciene, Egle; Jonuskiene, Ilona; Malys, Naglis (January 2022)."Development and Characterization of Indole-Responsive Whole-Cell Biosensor Based on the Inducible Gene Expression System from Pseudomonas putida KT2440".International Journal of Molecular Sciences.23 (9): 4649.doi:10.3390/ijms23094649.ISSN 1422-0067.PMC 9105386.PMID 35563040.
  20. ^Ramesh, Deepthi; Joji, Annu; Vijayakumar, Balaji Gowrivel; Sethumadhavan, Aiswarya; Mani, Maheswaran; Kannan, Tharanikkarasu (15 July 2020)."Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis".European Journal of Medicinal Chemistry.198 112358.doi:10.1016/j.ejmech.2020.112358.ISSN 0223-5234.PMID 32361610.S2CID 218490655.
  21. ^Qin, Hua-Li; Liu, Jing; Fang, Wan-Yin; Ravindar, L.; Rakesh, K. P. (15 May 2020). "Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA)".European Journal of Medicinal Chemistry.194 112245.doi:10.1016/j.ejmech.2020.112245.ISSN 0223-5234.PMID 32220687.S2CID 214695328.
  22. ^Thanikachalam, Punniyakoti Veeraveedu; Maurya, Rahul Kumar; Garg, Vishali; Monga, Vikramdeep (15 October 2019). "An insight into the medicinal perspective of synthetic analogs of indole: A review".European Journal of Medicinal Chemistry.180:562–612.doi:10.1016/j.ejmech.2019.07.019.ISSN 0223-5234.PMID 31344615.S2CID 198911553.
  23. ^Kumari, Archana; Singh, Rajesh K. (1 August 2019). "Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives".Bioorganic Chemistry.89 103021.doi:10.1016/j.bioorg.2019.103021.ISSN 0045-2068.PMID 31176854.S2CID 182950054.
  24. ^Jia, Yanshu; Wen, Xiaoyue; Gong, Yufeng; Wang, Xuefeng (15 August 2020). "Current scenario of indole derivatives with potential anti-drug-resistant cancer activity".European Journal of Medicinal Chemistry.200 112359.doi:10.1016/j.ejmech.2020.112359.ISSN 0223-5234.PMID 32531682.S2CID 219021072.
  25. ^Gribble, G. W. (2000). "Recent developments in indole ring synthesis—methodology and applications".J. Chem. Soc. Perkin Trans. 1 (7): 1045.doi:10.1039/a909834h.
  26. ^Cacchi, S.; Fabrizi, G. (2005). "Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions".Chem. Rev.105 (7):2873–2920.doi:10.1021/cr040639b.hdl:11573/232340.PMID 16011327.
  27. ^Humphrey, G. R.; Kuethe, J. T. (2006). "Practical Methodologies for the Synthesis of Indoles".Chem. Rev.106 (7):2875–2911.doi:10.1021/cr0505270.PMID 16836303.
  28. ^Taber, Douglass F.; Tirunahari, Pavan K. (September 2011)."Indole synthesis: a review and proposed classification".Tetrahedron.67 (38):7195–7210.doi:10.1016/j.tet.2011.06.040.PMC 4255418.PMID 25484459.
  29. ^Collin, Gerd; Höke, Hartmut. "Indole".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a14_167.ISBN 978-3-527-30673-2.
  30. ^"Indol NSP"(PDF).
  31. ^Bratulescu, George (2008). "A new and efficient one-pot synthesis of indoles".Tetrahedron Letters.49 (6): 984.doi:10.1016/j.tetlet.2007.12.015.
  32. ^Diels, Otto; Reese, Johannes (1934). "Synthesen in der hydroaromatischen Reihe. XX. Über die Anlagerung von Acetylen-dicarbonsäureester an Hydrazobenzol" [Syntheses in the hydroaromatic series. XX. The addition of acetylene dicarboxylic acid ester to hydrazobenzene].Justus Liebig's Annalen der Chemie.511: 168.doi:10.1002/jlac.19345110114.
  33. ^Huntress, Ernest H.; Bornstein, Joseph; Hearon, William M. (1956). "An Extension of the Diels-Reese Reaction".J. Am. Chem. Soc.78 (10): 2225.Bibcode:1956JAChS..78.2225H.doi:10.1021/ja01591a055.
  34. ^Dewick, Paul M. (2013-03-20).Essentials of Organic Chemistry: For Students of Pharmacy, Medicinal Chemistry and Biological Chemistry. John Wiley & Sons. p. 143.ISBN 978-1-118-68196-1.
  35. ^James, P. N.; Snyder, H. R. (1959)."Indole-3-aldehyde".Organic Syntheses.39: 30.doi:10.15227/orgsyn.039.0030.
  36. ^Noland, W. E.; Rush, K. R.; Smith, L. R. (1966). "Nitration of Indoles. IV. The Nitration of 2-Phenylindole".J. Org. Chem.31:65–69.doi:10.1021/jo01339a013.
  37. ^Ahmad, Shabee (2025)."Indole Derivatives as Anticancer Agent: Recent Developments".JioaVatar.
  38. ^Heaney, H.; Ley, S. V. (1974)."1-Benzylindole".Organic Syntheses.54: 58.doi:10.15227/orgsyn.054.0058.
  39. ^Bergman, J.; Venemalm, L. (1992). "Efficient synthesis of 2-chloro-, 2-bromo-, and 2-iodoindole".J. Org. Chem.57 (8): 2495.doi:10.1021/jo00034a058.
  40. ^Katritzky, Alan R.; Li, Jianqing; Stevens, Christian V. (1995). "Facile Synthesis of 2-Substituted Indoles and Indolo[3,2-b]carbazoles from 2-(Benzotriazol-1-ylmethyl)indole".J. Org. Chem.60 (11):3401–3404.doi:10.1021/jo00116a026.
  41. ^Lynch, S. M.; Bur, S. K.; Padwa, A. (2002). "Intramolecular Amidofuran Cycloadditions across an Indole π-Bond: An Efficient Approach to theAspidosperma andStrychnosABCE Core".Org. Lett.4 (26):4643–5.doi:10.1021/ol027024q.PMID 12489950.
  42. ^Cox, E. D.; Cook, J. M. (1995). "The Pictet-Spengler condensation: a new direction for an old reaction".Chemical Reviews.95 (6):1797–1842.doi:10.1021/cr00038a004.
  43. ^Gremmen, C.; Willemse, B.; Wanner, M. J.; Koomen, G.-J. (2000). "Enantiopure Tetrahydro-β-carbolines via Pictet–Spengler Reactions withN-Sulfinyl Tryptamines".Org. Lett.2 (13):1955–1958.doi:10.1021/ol006034t.PMID 10891200.
  44. ^Larghi, Enrique L.; Amongero, Marcela; Bracca, Andrea B. J.; Kaufman, Teodoro S. (2005)."The intermolecular Pictet–Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically-active isoquinoline and indole alkaloids".Arkivoc. RL-1554K (12):98–153.doi:10.3998/ark.5550190.0006.c09.hdl:2027/spo.5550190.0006.c09.
  45. ^Kaufman, Teodoro S. (2005). "Synthesis of Optically-Active Isoquinoline and Indole Alkaloids Employing the Pictet–Spengler Condensation with Removable Chiral Auxiliaries Bound to Nitrogen". In Vicario, J. L. (ed.).New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles. Thiruvananthapuram: Research SignPost. pp. 99–147.ISBN 978-81-7736-278-7.
  46. ^Bonnet, D.; Ganesan, A. (2002). "Solid-Phase Synthesis of Tetrahydro-β-carbolinehydantoins via theN-Acyliminium Pictet–Spengler Reaction and Cyclative Cleavage".J. Comb. Chem.4 (6):546–548.doi:10.1021/cc020026h.PMID 12425597.
  47. ^Zhu, G.; Zhang, X.Tetrahedron: Asymmetry1998,9, 2415.

General references

[edit]
  • Houlihan, W. J., ed. (1972).Indoles Part One. New York: Wiley Interscience.[ISBN missing]
  • Sundberg, R. J. (1996).Indoles. San Diego: Academic Press.ISBN 978-0-12-676945-6.
  • Joule, J. A.; Mills, K. (2000).Heterocyclic Chemistry. Oxford, UK: Blackwell Science.ISBN 978-0-632-05453-4.
  • Joule, J. (2000). E. J., Thomas (ed.).Science of Synthesis. Vol. 10. Stuttgart: Thieme. p. 361.ISBN 978-3-13-112241-4.
  • Schoenherr, H.; Leighton, J. L. (2012). "Direct and Highly Enantioselective Iso-Pictet-Spengler Reactions with α-Ketoamides: Access to Underexplored Indole Core Structures".Org. Lett.14 (10):2610–3.doi:10.1021/ol300922b.PMID 22540677.

External links

[edit]
Wikimedia Commons has media related to1H-Indole.
1 ring
Three-membered
Five-membered
Six-membered
Seven-membered
Nine-membered
18-membered
2 rings
Five + Five
Five + Six
Six + Six
Five + Seven
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Indole&oldid=1320349529"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp