Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Icositrigon

From Wikipedia, the free encyclopedia
Polygon with 23 sides
Regular icositrigon
A regular icositrigon
TypeRegular polygon
Edges andvertices23
Schläfli symbol{23}
Coxeter–Dynkin diagrams
Symmetry groupDihedral (D23), order 2×23
Internal angle (degrees)≈164.348°
PropertiesConvex,cyclic,equilateral,isogonal,isotoxal
Dual polygonSelf

Ingeometry, anicositrigon (oricosikaitrigon) or 23-gon is a 23-sidedpolygon. The icositrigon has the distinction of being the smallest regular polygon that is notneusis constructible.

Regular icositrigon

[edit]

Aregular icositrigon is represented bySchläfli symbol {23}.

A regular icositrigon hasinternal angles of378023{\textstyle {\frac {3780}{23}}} degrees, with an area ofA=234a2cotπ23=23r2tanπ2341.8344a2,{\textstyle A={\frac {23}{4}}a^{2}\cot {\frac {\pi }{23}}=23r^{2}\tan {\frac {\pi }{23}}\simeq 41.8344\,a^{2},} wherea{\displaystyle a} is side length andr{\displaystyle r} is the inradius, orapothem.

The regular icositrigon is notconstructible with acompass and straightedge orangle trisection,[1] on account of thenumber 23 being neither aFermat norPierpont prime. In addition, the regular icositrigon is thesmallest regular polygon that is not constructible even with neusis.

Concerning the nonconstructability of the regular icositrigon, A. Baragar (2002) showed it is not possible to construct a regular 23-gon using only a compass and twice-notched straightedge by demonstrating that every point constructible with said method lies in a tower offields overQ{\displaystyle \mathbb {Q} } such thatQ=K0K1Kn=K{\displaystyle \mathbb {Q} =K_{0}\subset K_{1}\subset \dots \subset K_{n}=K}, being a sequence of nested fields in which the degree of the extension at each step is 2, 3, 5, or 6.

Supposeα{\displaystyle \alpha } inC{\displaystyle \mathbb {C} } is constructible using a compass and twice-notchedstraightedge. Thenα{\displaystyle \alpha } belongs to a fieldK{\displaystyle K} that lies in a tower of fieldsQ=K0K1Kn=K{\displaystyle \mathbb {Q} =K_{0}\subset K_{1}\subset \dots \subset K_{n}=K}for which the index[Kj:Kj1]{\displaystyle [K_{j}:K_{j-1}]} at each step is 2, 3, 5, or 6. In particular, ifN=[K:Q]{\displaystyle N=[K:\mathbb {Q} ]}, then the only primes dividingN{\displaystyle N} are 2, 3, and 5. (Theorem 5.1)

If we can construct the regular p-gon, then we can constructζp=e2πip{\displaystyle \zeta _{p}=e^{\frac {2\pi i}{p}}}, which is the root of anirreducible polynomial of degreep1{\displaystyle p-1}. By Theorem 5.1,ζp{\displaystyle \zeta _{p}} lies in a fieldK{\displaystyle K} of degreeN{\displaystyle N} overQ{\displaystyle \mathbb {Q} }, where the only primes that divideN{\displaystyle N} are 2, 3, and 5. ButQ[ζp]{\displaystyle \mathbb {Q} [\zeta _{p}]} is a subfield ofK{\displaystyle K}, sop1{\displaystyle p-1} dividesN{\displaystyle N}. In particular, forp=23{\displaystyle p=23},N{\displaystyle N} must be divisible by 11, and forp=29{\displaystyle p=29},N must be divisible by 7.[2]

This result establishes, considering prime-power regular polygons less than the 100-gon, that it is impossible to construct the 23-, 29-, 43-, 47-, 49-, 53-, 59-, 67-, 71-, 79-, 83-, and 89-gons with neusis. But it is not strong enough to decide the cases of the11-, 25-, 31-, 41-, and 61-gons. Elliot Benjamin and Chip Snyder discovered in 2014 that the regular hendecagon (11-gon) is neusis constructible; the remaining cases are still open.[3]

An icositrigon is notorigami constructible either, because 23 is not a Pierpont prime, nor apower of two orthree.[4] It can be constructed using thequadratrix of Hippias,Archimedean spiral, and otherauxiliary curves; yet this is true for all regular polygons.[5]

Related figures

[edit]

Below is a table of ten regular icositrigrams, orstar 23-gons, labeled with their respectiveSchläfli symbol {23/q}, 2 ≤ q ≤ 11.


{23/2}

{23/3}

{23/4}

{23/5}

{23/6}

{23/7}

{23/8}

{23/9}

{23/10}

{23/11}

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A048136 (Tomahawk-nonconstructiblen{\displaystyle n}-gons)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Baragar, Arthur (2002). "Constructions Using a Compass and Twice-Notched Straightedge".The American Mathematical Monthly.109 (2):151–164.doi:10.1080/00029890.2002.11919848.
  3. ^Benjamin, Elliot; Snyder, C. (May 2014). "On the construction of the regular hendecagon by marked ruler and compass".Mathematical Proceedings of the Cambridge Philosophical Society.156 (3):409–424.doi:10.1017/S0305004113000753.
  4. ^Young Lee, H. (2017)Origami-Constructible Numbers University of Georgiahttps://getd.libs.uga.edu/pdfs/lee_hwa-young_201712_ma.pdf
  5. ^Milici, P.; Dawson, R. (December 2012)."The equiangular compass"(PDF).The Mathematical Intelligencer.34 (4):63–67.doi:10.1007/s00283-012-9308-x.

External links

[edit]
Triangles
Quadrilaterals
By number
of sides
1–10 sides
11–20 sides
>20 sides
Star polygons
Classes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Icositrigon&oldid=1308067075"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp