Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Iboga-type alkaloid

From Wikipedia, the free encyclopedia
Group of alkaloids related to Tabernanthe iboga
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Iboga-type alkaloid" – news ·newspapers ·books ·scholar ·JSTOR
(August 2023) (Learn how and when to remove this message)

Iboga-type alkaloids are a set ofmonoterpeneindole alkaloids comprising naturally occurring compounds found inTabernanthe andTabernaemontana, as well as syntheticstructural analogs. Naturally occurring iboga-type alkaloids includeibogamine,ibogaine,tabernanthine, and other substituted ibogamines(see below). Many iboga-type alkaloids displaybiological activities such ascardiac toxicity andpsychoactive effects, and some have been studied as potential treatments fordrug addiction.[1][2]

Naturally-occurring

[edit]

Substituted ibogamines

[edit]
Main article:Ibogamine

PubChemCIDNameR1R2R3R4
100217IbogamineHHHH
197060IbogaineOMeHHH
3083548NoribogaineOHHHH
6326116TabernanthineHOMeHH
193302IbogalineOMeOMeHH
73489CoronaridineHHCO2MeH
73255VoacangineOMeHCO2MeH
363281IsovoacangineHOMeCO2MeH
65572ConopharyngineOMeOMeCO2MeH
1107731619(S)-HydroxyibogamineHHHOH
71656190Iboxygaine / KimvulineOMeHHOH
NDNDHOMeHOH
NDNDOMeOMeHOH
1555973219(S)-HydroxycoronaridineHHCO2MeOH
196982VoacristineOMeHCO2MeOH
10362598IsovoacristineHOMeCO2MeOH
10200463819(S)-HydroxyconopharyngineOMeOMeCO2MeOH

Catharanthine is anunsaturated analog ofcoronaridine.

Oxidation products

[edit]

Similarly to other ring-constrainedtryptamines such asyohimbine[3] andmitragynine (seemitragynine pseudoindoxyl),oxidation andrearrangement products of substituted ibogamines have been reported, such asiboluteine (ibogaine pseudoindoxyl) (CID:21589055) andvoaluteine (CID:633439).[4]

Iboluteine (left) and voaluteine (right), putative metabolites of ibogaine and voacangine, respectively.[4]

Other alkaloids

[edit]

Treatment of drug dependence

[edit]

Ibogaine and related alkaloids reduce the craving for subsequent doses in individuals experiencingwithdrawal symptoms associated withdrug addiction. Their use has been investigated in several clinical studies involving individuals dependent onopioids,cocaine, and other substances. While positive effects—such as alleviation of withdrawal symptoms, improvement indepression, and mitigation ofpost-traumatic symptoms—have been confirmed, severe medical complications, including fatal cases, have also been reported due to neurotoxic and cardiotoxic side effects.[5]

Synthetic analogues

[edit]

18-MC,ME-18-MC, and18-MAC arecoronaridine analogs with similar anti-addictive effects.[6][7][8][9]

More distantly related synthetic analogs include:

See also

[edit]

References

[edit]
  1. ^Glick, S. D.; Kuehne, M. E.; Raucci, J.; Wilson, T. E.; Larson, D.; Keller, R. W.; Carlson, J. N. (1994-09-19). "Effects of iboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum".Brain Research.657 (1):14–22.doi:10.1016/0006-8993(94)90948-2.ISSN 0006-8993.PMID 7820611.S2CID 1940631.
  2. ^Antonio, Tamara; Childers, Steven R.; Rothman, Richard B.; Dersch, Christina M.; King, Christine; Kuehne, Martin; Bornmann, William G.; Eshleman, Amy J.; Janowsky, Aaron; Simon, Eric R.; Reith, Maarten E. A.; Alper, Kenneth (2013-10-16)."Effect of Iboga Alkaloids on µ-Opioid Receptor-Coupled G Protein Activation".PLOS ONE.8 (10) e77262.Bibcode:2013PLoSO...877262A.doi:10.1371/journal.pone.0077262.ISSN 1932-6203.PMC 3818563.PMID 24204784.
  3. ^Finch, Neville; Gemenden, C. W.; Hsu, Iva Hsiu-Chu; Kerr, Ann; Sim, G. A.; Taylor, W. I. (May 1965)."Oxidative Transformations of Indole Alkaloids. III. Pseudoindoxyls from Yohimbinoid Alkaloids and Their Conversion to "Invert" Alkaloids 1,2".Journal of the American Chemical Society.87 (10):2229–2235.Bibcode:1965JAChS..87.2229F.doi:10.1021/ja01088a024.ISSN 0002-7863.PMID 14290283.Archived from the original on 2023-02-07. Retrieved2023-08-05.
  4. ^abThe Alkaloids: Chemistry and Physiology V11. Academic Press. 2014-05-14.ISBN 978-0-08-086535-5.Archived from the original on 2023-08-06. Retrieved2023-08-06.
  5. ^Patrick Köck, Katharina Froelich, Marc Walter, Undine Lang, Kenneth M. Dürsteler (July 2022),"A systematic literature review of clinical trials and therapeutic applications of ibogaine",Journal of Substance Abuse Treatment, vol. 138,doi:10.1016/j.jsat.2021.108717,PMID 35012793, retrieved2022-07-05{{citation}}: CS1 maint: multiple names: authors list (link)
  6. ^Kuehne ME, He L, Jokiel PA, Pace CJ, Fleck MW, Maisonneuve IM, et al. (June 2003). "Synthesis and biological evaluation of 18-methoxycoronaridine congeners. Potential antiaddiction agents".Journal of Medicinal Chemistry.46 (13):2716–30.doi:10.1021/jm020562o.PMID 12801235.
  7. ^Pace CJ, Glick SD, Maisonneuve IM, He LW, Jokiel PA, Kuehne ME, Fleck MW (May 2004). "Novel iboga alkaloid congeners block nicotinic receptors and reduce drug self-administration".European Journal of Pharmacology.492 (2–3):159–67.doi:10.1016/j.ejphar.2004.03.062.PMID 15178360.
  8. ^Glick SD, Kuehne ME, Maisonneuve IM, Bandarage UK, Molinari HH (May 1996). "18-Methoxycoronaridine, a non-toxic iboga alkaloid congener: effects on morphine and cocaine self-administration and on mesolimbic dopamine release in rats".Brain Research.719 (1–2):29–35.doi:10.1016/0006-8993(96)00056-X.PMID 8782860.S2CID 6178161.
  9. ^Glick SD, Sell EM, Maisonneuve IM (December 2008)."Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on methamphetamine and sucrose self-administration".European Journal of Pharmacology.599 (1–3):91–5.doi:10.1016/j.ejphar.2008.09.038.PMC 2600595.PMID 18930043.
  10. ^Cameron, Lindsay P.; Tombari, Robert J.; Lu, Ju; Pell, Alexander J.; Hurley, Zefan Q.; Ehinger, Yann; Vargas, Maxemiliano V.; McCarroll, Matthew N.; Taylor, Jack C.; Myers-Turnbull, Douglas; Liu, Taohui; Yaghoobi, Bianca; Laskowski, Lauren J.; Anderson, Emilie I.; Zhang, Guoliang (January 2021)."A non-hallucinogenic psychedelic analogue with therapeutic potential".Nature.589 (7842):474–479.Bibcode:2021Natur.589..474C.doi:10.1038/s41586-020-3008-z.ISSN 1476-4687.PMC 7874389.PMID 33299186.
Psychedelics
(5-HT2AR agonists)
  • For a full list of serotonergic psychedelics, see the navboxhere and the listhere instead.
Dissociatives
(NMDARantagonists)
Arylcyclo‐
hexylamines
Adamantanes
Diarylethylamines
Morphinans
Others
Deliriants
(mAChRantagonists)
Cannabinoids
(CB1R agonists)
Natural
Synthetic
AM-x
CPx
HU-x
JWH-x
Misc.
  •  For a full list of cannabinoids, see the navboxhere and the listhere instead.
κORagonists
GABAARagonists
Inhalants
(mixedMoATooltip mechanism of action)
Others
Tryptamines
4-Hydroxytryptamines
andesters/ethers
5-Hydroxy- and
5-methoxytryptamines
N-Acetyltryptamines
α-Alkyltryptamines
Cyclized tryptamines
Isotryptamines
Related compounds
Stimulants
Depressants
Hallucinogens
Entactogens
Psychiatric drugs
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=Iboga-type_alkaloid&oldid=1316565063"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp