Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

IEEE 802.11ac-2013

From Wikipedia, the free encyclopedia
(Redirected fromIEEE 802.11ac)
Wireless networking standard in the 802.11 family
Wi-Fi generations
Gen.[1]IEEE
standard
Adopt.Link rate
(Mbit/s)
RF (GHz)
2.456
802.1119971–2Yes
802.11b19991–11Yes
802.11a6–54Yes
802.11g2003Yes
Wi-Fi 4802.11n20096.5–600YesYes
Wi-Fi 5802.11ac20136.5–6,933[a]Yes
Wi-Fi 6802.11ax20210.49,608YesYes
Wi-Fi 6EYesYesYes
Wi-Fi 7802.11be20240.423,059YesYesYes
Wi-Fi 8[2][3]802.11bnTBAYesYesYes

IEEE 802.11ac-2013 or802.11ac is awireless networking standard in theIEEE 802.11 set of protocols (which is part of theWi-Fi networking family), providing high-throughputwireless local area networks (WLANs) on the5 GHz band.[b] The standard has been retroactively labelled asWi-Fi 5 byWi-Fi Alliance.[4][5]

The specification has multi-station throughput of at least 1.1gigabit per second (1.1 Gbit/s) and single-link throughput of at least 500 megabits per second (0.5 Gbit/s).[6] This is accomplished by extending the air-interface concepts embraced by802.11n: wider RF bandwidth (up to 160 MHz), moreMIMOspatial streams (up to eight), downlinkmulti-user MIMO (up to four clients), and high-density modulation (up to256-QAM).[7][8]

The Wi-Fi Alliance separated the introduction of 802.11ac wireless products into two phases ("waves"), named "Wave 1" and "Wave 2".[9][10] From mid-2013, the alliance started certifyingWave 1 802.11ac products shipped by manufacturers, based on the IEEE 802.11ac Draft 3.0 (the IEEE standard was not finalized until later that year).[11] Subsequently in 2016, Wi-Fi Alliance introduced theWave 2 certification, which includes additional features likeMU-MIMO (downlink only), 160 MHz channel width support, support for more 5 GHz channels, and four spatial streams (with four antennas; compared to three in Wave 1 and 802.11n, and eight in IEEE's802.11ax specification).[12] It meant Wave 2 products would have higher bandwidth and capacity than Wave 1 products.[13]

New technologies

[edit]

New technologies introduced with 802.11ac include the following:[8][14]

  • Extended channel binding
    • Optional 160 MHz and mandatory 80 MHz channel bandwidth for stations; cf. 40 MHz maximum in 802.11n.
  • More MIMO spatial streams
    • Support for up to eight spatial streams (vs. four in 802.11n)
  • Downlink multi-user MIMO (MU-MIMO, allows up to four simultaneous downlink MU-MIMO clients)
    • MultipleSTAs, each with one or more antennas, transmit or receive independent data streams simultaneously.
    • Downlink MU-MIMO (one transmitting device, multiple receiving devices) included as an optional mode.
  • Modulation
    • 256-QAM, rate 3/4 and 5/6, added as optional modes (vs. 64-QAM, rate 5/6 maximum in 802.11n).
    • Some vendors offer a non-standard 1024-QAM mode, providing 25% higher data rate compared to 256-QAM
  • Other elements/features
    • Beamforming with standardized sounding and feedback for compatibility between vendors (non-standard in 802.11n made it hard for beamforming to work effectively between different vendor products)
    • MAC modifications (mostly to support above changes)
    • Coexistence mechanisms for 20, 40, 80, and 160 MHz channels, 11ac and 11a/n devices
    • Adds four new fields to the PPDU header identifying the frame as a very high throughput (VHT) frame as opposed to 802.11n's high throughput (HT) or earlier. The first three fields in the header are readable by legacy devices to allow coexistence
    • DFS was mandated between channels 52 and 144 for 5 GHz to reduce interference withweather radar systems using the same frequency band.

Features

[edit]

Mandatory

[edit]

Optional

[edit]
  • Borrowed from the802.11n specification:
  • Newly introduced by the 802.11ac specification:
    • five to eight spatial streams
    • 160 MHz channel bandwidths (contiguous 80+80)
    • 80+80 MHz channel bonding (discontiguous 80+80)
    • MCS 8/9 (256-QAM)

New scenarios and configurations

[edit]

The single-link and multi-station enhancements supported by 802.11ac enable several new WLAN usage scenarios, such as simultaneous streaming of HD video to multiple clients throughout the home, rapid synchronization and backup of large data files, wireless display, large campus/auditorium deployments, and manufacturing floor automation.[15]

To fully utilize their WLAN capacities, 802.11ac access points and routers have sufficient throughput to require the inclusion of aUSB 3.0 interface to provide various services such as video streaming,FTP servers, and personalcloud services.[16] With storage locally attached throughUSB 2.0, filling the bandwidth made available by 802.11ac was not easily accomplished.

Example configurations

[edit]

All rates assume 256-QAM, rate 5/6:

ScenarioTypical client
form factor
PHY link rateAggregate
capacity
(speed)
One-antennaAP, one-antennaSTA, 80 MHzHandheld433 Mbit/s433 Mbit/s
Two-antenna AP, two-antenna STA, 80 MHzTablet, laptop867 Mbit/s867 Mbit/s
One-antenna AP, one-antenna STA, 160 MHzHandheld867 Mbit/s867 Mbit/s
Three-antenna AP, three-antenna STA, 80 MHzLaptop, PC1.30 Gbit/s1.30 Gbit/s
Two-antenna AP, two-antenna STA, 160 MHzTablet, laptop1.73 Gbit/s1.73 Gbit/s
Four-antenna AP, four one-antenna STAs, 160 MHz
(MU-MIMO)
Handheld867 Mbit/s to each STA3.39 Gbit/s
Eight-antenna AP, 160 MHz (MU-MIMO)
  • one four-antenna STA
  • one two-antenna STA
  • two one-antenna STAs
Digital TV, set-top box,
tablet, laptop, PC, handheld
  • 3.47 Gbit/s to four-antenna STA
  • 1.73 Gbit/s to two-antenna STA
  • 867 Mbit/s to each one-antenna STA
6.93 Gbit/s
Eight-antenna AP, four 2-antenna STAs, 160 MHz
(MU-MIMO)
Digital TV, tablet, laptop, PC1.73 Gbit/s to each STA6.93 Gbit/s

Wave 1 vs. Wave 2

[edit]

Wave 2, referring to products introduced in 2016, offers a higher throughput than legacy Wave 1 products, those introduced starting in 2013. The maximumphysical layer theoretical rate for Wave 1 is 1.3 Gbit/s, while Wave 2 can reach 2.34 Gbit/s. Wave 2 can therefore achieve 1 Gbit/s even if the real world throughput turns out to be only 50% of the theoretical rate. Wave 2 also supports a higher number of connected devices.[13]

Data rates and speed

[edit]
Modulation and coding schemes
MCS
index[c]
Spatial
Streams
Modulation
type
Coding
rate
Data rate (Mbit/s)[17]
20 MHz channels40 MHz channels80 MHz channels160 MHz channels
800 nsGI400 ns GI800 ns GI400 ns GI800 ns GI400 ns GI800 ns GI400 ns GI
01BPSK1/26.57.213.51529.332.558.565
11QPSK1/21314.4273058.565117130
21QPSK3/419.521.740.54587.897.5175.5195
3116-QAM1/22628.95460117130234260
4116-QAM3/43943.38190175.5195351390
5164-QAM2/35257.8108120234260468520
6164-QAM3/458.565121.5135263.3292.5526.5585
7164-QAM5/66572.2135150292.5325585650
81256-QAM3/47886.7162180351390702780
91256-QAM5/6180200390433.3780866.7
02BPSK1/21314.4273058.565117130
12QPSK1/22628.95460117130234260
22QPSK3/43943.38190175.5195351390
3216-QAM1/25257.8108120234260468520
4216-QAM3/47886.7162180351390702780
5264-QAM2/3104115.62162404685209361040
6264-QAM3/4117130.3243270526.558510531170
7264-QAM5/6130144.427030058565011701300
82256-QAM3/4156173.332436070278014041560
92256-QAM5/6360400780866.715601733.3
03BPSK1/219.521.740.54587.897.5175.5195
13QPSK1/23943.38190175.5195351390
23QPSK3/458.565121.5135263.3292.5526.5585
3316-QAM1/27886.7162180351390702780
4316-QAM3/4117130243270526.558510531170
5364-QAM2/3156173.332436070278014041560
6364-QAM3/4175.5195364.54051579.51755
7364-QAM5/6195216.7405450877.597517551950
83256-QAM3/42342604865401053117021062340
93256-QAM5/6260288.95406001170130023402600
04BPSK1/22628.85460117.2130234260
14QPSK1/25257.6108120234260468520
24QPSK3/47886.8162180351.2390702780
3416-QAM1/2104115.62162404685209361040
4416-QAM3/4156173.232436070278014041560
5464-QAM2/3208231.2432480936104018722080
6464-QAM3/42342604865401053.2117021062340
7464-QAM5/6260288.85406001170130023402600
84256-QAM3/4312346.86487201404156028083120
94256-QAM5/672080015601733.331203466.7

Several companies are currently offering 802.11ac chipsets with higher modulation rates: MCS-10 and MCS-11 (1024-QAM), supported by Quantenna and Broadcom. Although technically not part of 802.11ac, these new MCS indices became official in the 802.11ax standard, ratified in 2021.

160 MHz channels are unavailable in some countries due to regulatory issues that allocated some frequencies for other purposes.

Advertised speeds

[edit]

802.11ac-class device wireless speeds are often advertised as AC followed by a number, that number being the highest link rates in Mbit/s of all the simultaneously-usable radios in the device added up. For example, an AC1900 access point might have 600 Mbit/s capability on its 2.4 GHz radio and 1300 Mbit/s capability on its 5 GHz radio. No single client device could connect and achieve 1900 Mbit/s of throughput, but separate devices each connecting to the 2.4 GHz and 5 GHz radios could achieve combined throughput approaching 1900 Mbit/s. Different possible stream configurations can add up to the same AC number.

Type2.4 GHz band[b]
Mbit/s
2.4 GHz band config
[all 40 MHz]
5 GHz band
Mbit/s
5 GHz band config
[all 80 MHz]
AC450[18]--4331 stream @ MCS 9
AC6001501 stream @ MCS 74331 stream @ MCS 9
AC7503002 streams @ MCS 74331 stream @ MCS 9
AC10003002 streams @ MCS 76502 streams @ MCS 7
AC12003002 streams @ MCS 78672 streams @ MCS 9
AC13004002 streams @ 256-QAM8672 streams @ MCS 9
AC1300[19]--1,3003 streams @ MCS 9
AC1350[20]4503 streams @ MCS 78672 streams @ MCS 9
AC14504503 streams @ MCS 79753 streams @ MCS 7
AC16003002 streams @ MCS 71,3003 streams @ MCS 9
AC17008004 streams @ 256-QAM8672 streams @ MCS 9
AC17504503 streams @ MCS 71,3003 streams @ MCS 9
AC1900600[d]3 streams @ 256-QAM1,3003 streams @ MCS 9
AC21008004 streams @ 256-QAM1,3003 streams @ MCS 9
AC22004503 streams @ MCS 71,7334 streams @ MCS 9
AC23006004 streams @ MCS 71,6253 streams @ 1024-QAM
AC24006004 streams @ MCS 71,7334 streams @ MCS 9
AC2600800[d]4 streams @ 256-QAM1,7334 streams @ MCS 9
AC2900750[e]3 streams @ 1024-QAM2,1674 streams @ 1024-QAM
AC30004503 streams @ MCS 71,300 + 1,3003 streams @ MCS 9 x 2
AC31501000[e]4 streams @ 1024-QAM2,1674 streams @ 1024-QAM
AC3200600[d]3 streams @ 256-QAM1,300 + 1,300[f]3 streams @ MCS 9 x 2
AC50006004 streams @ MCS 72,167 + 2,1674 streams @ 1024-QAM x 2
AC5300[23]1000[e]4 streams @ 1024-QAM2,167 + 2,1674 streams @ 1024-QAM x 2

Notes

[edit]
  1. ^802.11ac only specifies operation in the 5 GHz band. Operation in the 2.4 GHz band is specified by 802.11n.
  2. ^ab802.11ac only specifies operation in the 5 GHz band. Operation in the 2.4 GHz band is specified by 802.11n.
  3. ^MCS 9 is not applicable to all channel width/spatial stream combinations.
  4. ^abcWith 802.11n, 600 Mbit/s in the 2.4 GHz band can be achieved by using four spatial streams at 150 Mbit/s each. As of December 2014[update], commercially available devices that achieve 600 Mbit/s in the 2.4 GHz band use 3 spatial streams at 200 Mbit/s each.[21][22] This requires the use of 256-QAM modulation, which is not compliant with 802.11n and can be considered a proprietary extension.[22]
  5. ^abcWith proprietary extension to 802.11n, using 40MHz channel in 2.4GHz, 400ns guard interval, 1024-QAM, and 4 spatial streams.
  6. ^As of December 2014[update], commercially available AC3200 devices use two separate radios with 1,300 Mbit/s each to achieve 2,600 Mbit/s total in the 5 GHz band.

Comparison

[edit]
802.11 network standards
Frequency
range,
or type
PHYProtocolRelease
date[24]
Freq­uency bandChannel widthStream
data rate[25]
Max.
MIMO streams
ModulationApprox. range
In­doorOut­door
(GHz)(MHz)(Mbit/s)
1–7 GHzDSSS[26],FHSS[A]802.11-1997June 19972.4221, 2DSSS,FHSS[A]20 m (66 ft)100 m (330 ft)
HR/DSSS[26]802.11bSeptember 19992.4221, 2, 5.5, 11CCK, DSSS35 m (115 ft)140 m (460 ft)
OFDM802.11aSeptember 199955, 10, 206, 9, 12, 18, 24, 36, 48, 54
(for 20 MHz bandwidth,
divide by 2 and 4 for 10 and 5 MHz)
OFDM35 m (115 ft)120 m (390 ft)
802.11jNovember 20044.9, 5.0
[B][27]
??
802.11yNovember 20083.7[C]?5,000 m (16,000 ft)[C]
802.11pJuly 20105.9200 m1,000 m (3,300 ft)[28]
802.11bdDecember 20225.9, 60500 m1,000 m (3,300 ft)
ERP-OFDM[29]802.11gJune 20032.438 m (125 ft)140 m (460 ft)
HT-OFDM[30]802.11n
(Wi-Fi 4)
October 20092.4, 520Up to 288.8[D]4MIMO-OFDM
(64-QAM)
70 m (230 ft)250 m (820 ft)[31]
40Up to 600[D]
VHT-OFDM[30]802.11ac
(Wi-Fi 5)
December 2013520Up to 693[D]8DL
MU-MIMOOFDM
(256-QAM)
35 m (115 ft)[32]?
40Up to 1,600[D]
80Up to 3,467[D]
160Up to 6,933[D]
HE-OFDMA802.11ax
(Wi-Fi 6,
Wi-Fi 6E)
May 20212.4, 5, 620Up to 1,147[E]8UL/DL
MU-MIMOOFDMA
(1024-QAM)
30 m (98 ft)120 m (390 ft)[F]
40Up to 2,294[E]
80Up to 5,500[E]
80+80Up to 11,000[E]
EHT-OFDMA802.11be
(Wi-Fi 7)
Sep 20242.4, 5, 680Up to 5,764[E]8UL/DL
MU-MIMOOFDMA
(4096-QAM)
30 m (98 ft)120 m (390 ft)[F]
160
(80+80)
Up to 11,500[E]
240
(160+80)
Up to 14,282[E]
320
(160+160)
Up to 23,059[E]
UHR802.11bn
(Wi-Fi 8)
May 2028
(est.)
2.4, 5, 6320Up to
23,059
8Multi-link
MU-MIMOOFDM
(4096-QAM)
??
WUR[G]802.11baOctober 20212.4, 54, 200.0625, 0.25
(62.5 kbit/s, 250 kbit/s)
OOK (multi-carrier OOK)??
mmWave
(WiGig)
DMG[33]802.11adDecember 2012602,160
(2.16 GHz)
Up to 8,085[34]
(8 Gbit/s)
OFDM,[A] single carrier, low-power single carrier[A]3.3 m (11 ft)[35]?
802.11ajApril 201860[H]1,080[36]Up to 3,754
(3.75 Gbit/s)
single carrier, low-power single carrier[A]??
CMMG802.11ajApril 201845[H]540,
1,080
Up to 15,015[37]
(15 Gbit/s)
4[38]OFDM, single carrier??
EDMG[39]802.11ayJuly 202160Up to 8,640
(8.64 GHz)
Up to 303,336[40]
(303 Gbit/s)
8OFDM, single carrier10 m (33 ft)100 m (328 ft)
Sub 1 GHz (IoT)TVHT[41]802.11afFebruary 20140.054–
0.79
6, 7, 8Up to 568.9[42]4MIMO-OFDM??
S1G[41]802.11ahMay 20170.7, 0.8,
0.9
1–16Up to 8.67[43]
(@2 MHz)
4??
Light
(Li-Fi)
LC
(
VLC/OWC)
802.11bbNovember 2023800–1000 nm20Up to 9.6 Gbit/sO-OFDM??
IR[A]
(IrDA)
802.11-1997June 1997850–900 nm?1, 2PPM[A]??
802.11 Standard rollups
 802.11-2007 (802.11ma)March 20072.4, 5Up to 54DSSS,OFDM
802.11-2012 (802.11mb)March 20122.4, 5Up to 150[D]DSSS,OFDM
802.11-2016 (802.11mc)December 20162.4, 5, 60Up to 866.7 or 6,757[D]DSSS,OFDM
802.11-2020 (802.11md)December 20202.4, 5, 60Up to 866.7 or 6,757[D]DSSS,OFDM
802.11-2024 (802.11me)September 20242.4, 5, 6, 60Up to 9,608 or 303,336DSSS,OFDM
  1. ^abcdefgThis is obsolete, and support for this might be subject to removal in a future revision of the standard
  2. ^For Japanese regulation.
  3. ^abIEEE 802.11y-2008 extended operation of 802.11a to the licensed 3.7 GHz band. Increased power limits allow a range up to 5,000 m. As of 2009[update], it is only being licensed in the United States by theFCC.
  4. ^abcdefghiBased on shortguard interval; standard guard interval is ~10% slower. Rates vary widely based on distance, obstructions, and interference.
  5. ^abcdefghFor single-user cases only, based on defaultguard interval which is 0.8 microseconds. Since multi-user viaOFDMA has become available for 802.11ax, these may decrease. Also, these theoretical values depend on the link distance, whether the link is line-of-sight or not, interferences and themulti-path components in the environment.
  6. ^abThe defaultguard interval is 0.8 microseconds. However, 802.11ax extended the maximum availableguard interval to 3.2 microseconds, in order to support Outdoor communications, where the maximum possible propagation delay is larger compared to Indoor environments.
  7. ^Wake-up Radio (WUR) Operation.
  8. ^abFor Chinese regulation.

See also

[edit]

References

[edit]
  1. ^"The Evolution of Wi-Fi Technology and Standards".IEEE. 2023-05-16. Retrieved2025-08-07.
  2. ^Karamyshev, Anton; Levitsky, Ilya; Bankov, Dmitry; Khorov, Evgeny (2025-10-06)."A Tutorial on Wi-Fi 8: The Journey to Ultra High Reliability".Problems of Information Transmission.61 (2).doi:10.1134/S003294602502005X. Retrieved2025-11-07.
  3. ^Giordano, Lorenzo; Geraci, Giovanni; Carrascosa, Marc; Bellalta, Boris (November 21, 2023). "What Will Wi-Fi 8 Be? A Primer on IEEE 802.11bn Ultra High Reliability".IEEE Communications Magazine.62 (8): 126.arXiv:2303.10442.Bibcode:2024IComM..62h.126G.doi:10.1109/MCOM.001.2300728.
  4. ^"Wi-Fi Alliance introduces Wi-Fi 6".
  5. ^Shankland, Stephen (2018-10-03)."Here Come Wi-Fi 4, 5 and 6 in Plan to Simplify 802.11 Networking Names – The Wi-Fi Alliance Wants to Make Wireless Networks Easier to Understand and Recognize".CNET. Retrieved2020-02-13.
  6. ^Van Nee, Richard (2011)."Breaking the Gigabit-per-second barrier with 802.11ac".IEEE Wireless Communications Magazine.
  7. ^Kassner, Michael (2013-06-18)."Cheat Sheet: What You Need to Know about 802.11ac".TechRepublic. Retrieved2013-06-20.
  8. ^ab"802.11ac: A Survival Guide".Chimera.labs.oreilly.com. Archived fromthe original on 2017-07-03. Retrieved2014-04-17.
  9. ^"802.11AC WAVE 2 A XIRRUS WHITE PAPER"(PDF).
  10. ^"802.11ac Wi-Fi Part 2: Wave 1 and Wave 2 Products".
  11. ^"802.11ac: The Fifth Generation of Wi-Fi Technical White Paper"(PDF).Cisco. March 2014. Archived fromthe original(PDF) on 2023-04-18. Retrieved2018-11-29.
  12. ^"Wi-Fi Alliance launches 802.11ac Wave 2 certification".RCR Wireless. 29 June 2016.
  13. ^ab"6 things you need to know about 802.11ac Wave 2".techrepublic.com. 2016-07-13. Retrieved2018-07-26.
  14. ^Bejarano, Oscar; Knightly, Edward; Park, Minyoung (2013-10-08). "IEEE 802.11ac: from channelization to multi-user MIMO".IEEE Communications Magazine.51 (10):84–90.Bibcode:2013IComM..51j..84B.doi:10.1109/MCOM.2013.6619570.S2CID 317094.
  15. ^de Vegt, Rolf (2008-11-10)."802.11ac Usage Models Document".
  16. ^"ASUS RT-AC56U & USB-AC56 802.11AC Review".Hardwarecanucks.com. Archived fromthe original on 2014-04-24. Retrieved2014-04-24.
  17. ^"IEEE Std 802.11ac™-2013 - 22.5 Parameters for VHT-MCSs"(PDF). IEEE. 2013-12-11. pp. 323–339. Archived fromthe original(PDF) on October 21, 2014. Retrieved2015-04-13.
  18. ^"AC580 USB Wireless Adapter Roundup".SmallNetBuilder.com. 2014-11-04. Retrieved2018-01-02.
  19. ^"Linksys WUMC710 Wireless-AC Universal Media Connector Reviewed".SmallNetBuilder.com. 2014-01-28. Retrieved2016-08-08.
  20. ^"Archer C59".TP-LINK.com. 2017-03-19. Retrieved2017-03-19.
  21. ^Ganesh, T S (2014-09-02)."Netgear R7500 Nighthawk X4 Integrates Quantenna 4x4 ac Radio and Qualcomm IPQ8064 SoC".Anandtech.com. Archived fromthe original on September 8, 2014. Retrieved2014-09-08.
  22. ^abHiggins, Tim (2013-10-08)."AC1900: Innovation or 3D Wi-Fi?".Smallnetbuilder.com. Retrieved2014-09-08.
  23. ^Ngo, Dong."Netgear R8500 Nighthawk X8 AC5300 Smart WiFi Router review".CNET.com. Retrieved2016-08-08.
  24. ^"Official IEEE 802.11 working group project timelines". January 26, 2017. Retrieved2017-02-12.
  25. ^"Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks"(PDF).Wi-Fi Alliance. September 2009.
  26. ^abBanerji, Sourangsu; Chowdhury, Rahul Singha (2013). "On IEEE 802.11: Wireless LAN Technology".arXiv:1307.2661 [cs.NI].
  27. ^"The complete family of wireless LAN standards: 802.11 a, b, g, j, n"(PDF).
  28. ^The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges(PDF). World Congress on Engineering and Computer Science. 2014.
  29. ^IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements Part II: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.doi:10.1109/ieeestd.2003.94282.ISBN 0-7381-3701-4.
  30. ^ab"Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice"(PDF).
  31. ^Belanger, Phil; Biba, Ken (2007-05-31)."802.11n Delivers Better Range".Wi-Fi Planet. Archived fromthe original on 2008-11-24.
  32. ^"IEEE 802.11ac: What Does it Mean for Test?"(PDF).LitePoint. October 2013. Archived fromthe original(PDF) on 2014-08-16.
  33. ^"IEEE Standard for Information Technology".IEEE STD 802.11aj-2018. April 2018.doi:10.1109/IEEESTD.2018.8345727.ISBN 978-1-5044-4633-4.
  34. ^"802.11ad – WLAN at 60 GHz: A Technology Introduction"(PDF). Rohde & Schwarz GmbH. November 21, 2013. p. 14.
  35. ^"Connect802 – 802.11ac Discussion".www.connect802.com.
  36. ^"Understanding IEEE 802.11ad Physical Layer and Measurement Challenges"(PDF).
  37. ^"802.11aj Press Release".
  38. ^Hong, Wei; He, Shiwen; Wang, Haiming; Yang, Guangqi; Huang, Yongming; Chen, Jixing; Zhou, Jianyi; Zhu, Xiaowei; Zhang, Nianzhu; Zhai, Jianfeng; Yang, Luxi; Jiang, Zhihao; Yu, Chao (2018)."An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System".IEICE Transactions on Communications. E101.B (2):262–276.Bibcode:2018IEITC.101..262H.doi:10.1587/transcom.2017ISI0004.
  39. ^"IEEE 802.11ay: 1st real standard for Broadband Wireless Access (BWA) via mmWave – Technology Blog".techblog.comsoc.org.
  40. ^"P802.11 Wireless LANs". IEEE. pp. 2, 3. Archived fromthe original on 2017-12-06. RetrievedDec 6, 2017.
  41. ^ab"802.11 Alternate PHYs A whitepaper by Ayman Mukaddam"(PDF).
  42. ^"TGaf PHY proposal". IEEE P802.11. 2012-07-10. Retrieved2013-12-29.
  43. ^Sun, Weiping; Choi, Munhwan; Choi, Sunghyun (July 2013)."IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz"(PDF).Journal of ICT Standardization.1 (1):83–108.doi:10.13052/jicts2245-800X.115.

External links

[edit]
Current
802 series
802
802.1
802.3
(Ethernet)
802.11
(Wi-Fi)
802.15
Proposed
Superseded
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=IEEE_802.11ac-2013&oldid=1321428363"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp