Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hyperkähler manifold

From Wikipedia, the free encyclopedia
Type of Riemannian manifold

Indifferential geometry, ahyperkähler manifold is aRiemannian manifold(M,g){\displaystyle (M,g)} endowed with threeintegrable almost complex structuresI,J,K{\displaystyle I,J,K} that areKähler with respect to theRiemannian metricg{\displaystyle g} and satisfy thequaternionic relationsI2=J2=K2=IJK=1{\displaystyle I^{2}=J^{2}=K^{2}=IJK=-1}. In particular, it is ahypercomplex manifold. All hyperkähler manifolds areRicci-flat and are thusCalabi–Yau manifolds.[a]

Hyperkähler manifolds were first given this name byEugenio Calabi in 1979.[1]

Early history

[edit]

Marcel Berger's 1955 paper[2] on the classification of Riemannian holonomy groups first raised the issue of the existence of non-symmetric manifolds with holonomy Sp(n)·Sp(1). Interesting results were proved in the mid-1960s in pioneering work byEdmond Bonan[3] and Kraines[4] who have independently proven that any such manifold admits a parallel 4-formΩ{\displaystyle \Omega }. Bonan's later results[5] include a Lefschetz-type result: wedging with this powers of this 4-form induces isomorphismsΩnk2kTM=4n2kTM.{\displaystyle \Omega ^{n-k}\wedge \bigwedge ^{2k}T^{*}M=\bigwedge ^{4n-2k}T^{*}M.}

Equivalent definition in terms of holonomy

[edit]

Equivalently, a hyperkähler manifold is a Riemannian manifold(M,g){\displaystyle (M,g)} of dimension4n{\displaystyle 4n} whoseholonomy group is contained in thecompact symplectic groupSp(n).[1]

Indeed, if(M,g,I,J,K){\displaystyle (M,g,I,J,K)} is a hyperkähler manifold, then the tangent spaceTxM is aquaternionic vector space for each pointx ofM, i.e. it is isomorphic toHn{\displaystyle \mathbb {H} ^{n}} for some integern{\displaystyle n}, whereH{\displaystyle \mathbb {H} } is the algebra ofquaternions. Thecompact symplectic groupSp(n) can be considered as the group of orthogonal transformations ofHn{\displaystyle \mathbb {H} ^{n}} which are linear with respect toI,J andK. From this, it follows that theholonomy group of the Riemannian manifold(M,g){\displaystyle (M,g)} is contained inSp(n). Conversely, if the holonomy group of a Riemannian manifold(M,g){\displaystyle (M,g)} of dimension4n{\displaystyle 4n} is contained inSp(n), choose complex structuresIx,Jx andKx onTxM which makeTxM into a quaternionic vector space.Parallel transport of these complex structures gives the required complex structuresI,J,K{\displaystyle I,J,K} onM making(M,g,I,J,K){\displaystyle (M,g,I,J,K)} into a hyperkähler manifold.

Two-sphere of complex structures

[edit]

Every hyperkähler manifold(M,g,I,J,K){\displaystyle (M,g,I,J,K)} has a2-sphere ofcomplex structures with respect to which themetricg{\displaystyle g} isKähler. Indeed, for any real numbersa,b,c{\displaystyle a,b,c} such that

a2+b2+c2=1{\displaystyle a^{2}+b^{2}+c^{2}=1\,}

the linear combination

aI+bJ+cK{\displaystyle aI+bJ+cK\,}

is acomplex structures that is Kähler with respect tog{\displaystyle g}. IfωI,ωJ,ωK{\displaystyle \omega _{I},\omega _{J},\omega _{K}} denotes theKähler forms of(g,I),(g,J),(g,K){\displaystyle (g,I),(g,J),(g,K)}, respectively, then the Kähler form ofaI+bJ+cK{\displaystyle aI+bJ+cK} is

aωI+bωJ+cωK.{\displaystyle a\omega _{I}+b\omega _{J}+c\omega _{K}.}

Holomorphic symplectic form

[edit]

A hyperkähler manifold(M,g,I,J,K){\displaystyle (M,g,I,J,K)}, considered as a complex manifold(M,I){\displaystyle (M,I)}, is holomorphically symplectic (equipped with a holomorphic, non-degenerate, closed 2-form). More precisely, ifωI,ωJ,ωK{\displaystyle \omega _{I},\omega _{J},\omega _{K}} denotes theKähler forms of(g,I),(g,J),(g,K){\displaystyle (g,I),(g,J),(g,K)}, respectively, then

Ω:=ωJ+iωK{\displaystyle \Omega :=\omega _{J}+i\omega _{K}}

is holomorphic symplectic with respect toI{\displaystyle I}.

Conversely,Shing-Tung Yau's proof of theCalabi conjecture implies that acompact,Kähler, holomorphically symplectic manifold(M,I,Ω){\displaystyle (M,I,\Omega )} is always equipped with a compatible hyperkähler metric.[6] Such a metric is unique in a given Kähler class. Compact hyperkähler manifolds have been extensively studied using techniques fromalgebraic geometry, sometimes under the nameholomorphically symplectic manifolds. The holonomy group of any Calabi–Yau metric on a simply connected compact holomorphically symplectic manifold of complex dimension2n{\displaystyle 2n} withH2,0(M)=1{\displaystyle H^{2,0}(M)=1} is exactlySp(n); and if the simply connected Calabi–Yau manifold instead hasH2,0(M)2{\displaystyle H^{2,0}(M)\geq 2}, it is just theRiemannian product of lower-dimensional hyperkähler manifolds. This fact immediately follows from the Bochner formula for holomorphic forms on a Kähler manifold, together theBerger classification of holonomy groups; ironically, it is often attributed to Bogomolov, who incorrectly went on to claim in the same paper that compact hyperkähler manifolds actually do not exist!

Examples

[edit]

For any integern1{\displaystyle n\geq 1}, the spaceHn{\displaystyle \mathbb {H} ^{n}} ofn{\displaystyle n}-tuples ofquaternions endowed with theflat Euclidean metric is a hyperkähler manifold. The first non-trivial example discovered is theEguchi–Hanson metric on the cotangent bundleTS2{\displaystyle T^{*}S^{2}} of thetwo-sphere. It was also independently discovered byEugenio Calabi, who showed the more general statement that cotangent bundleTCPn{\displaystyle T^{*}\mathbb {CP} ^{n}} of anycomplex projective space has acomplete hyperkähler metric.[1] More generally, Birte Feix and Dmitry Kaledin showed that the cotangent bundle of anyKähler manifold has a hyperkähler structure on aneighbourhood of itszero section, although it is generally incomplete.[7][8]

Due toKunihiko Kodaira's classification of complex surfaces, we know that anycompact hyperkähler 4-manifold is either aK3 surface or a compacttorusT4{\displaystyle T^{4}}. (EveryCalabi–Yau manifold in 4 (real) dimensions is a hyperkähler manifold, becauseSU(2) is isomorphic toSp(1).)

As was shown by Beauville, theHilbert scheme ofk points on a compact hyperkähler 4-manifold is a hyperkähler manifold of dimension4k.[6] This gives rise to two series of compact examples: Hilbert schemes of points on a K3 surface andgeneralized Kummer varieties.

Non-compact, complete, hyperkähler 4-manifolds which are asymptotic toH/G, whereH denotes thequaternions andG is a finitesubgroup ofSp(1), are known asasymptotically locally Euclidean, or ALE, spaces. These spaces, and various generalizations involving different asymptotic behaviors, are studied inphysics under the namegravitational instantons. TheGibbons–Hawking ansatz gives examples invariant under a circle action.

Many examples of noncompact hyperkähler manifolds arise as moduli spaces of solutions to certain gauge theory equations which arise from the dimensional reduction of the anti-self dualYang–Mills equations: instanton moduli spaces,[9]monopole moduli spaces,[10] spaces of solutions toNigel Hitchin'sself-duality equations onRiemann surfaces,[11] space of solutions toNahm equations. Another class of examples are theNakajimaquiver varieties,[12] which are of great importance in representation theory.

Cohomology

[edit]

Kurnosov, Soldatenkov & Verbitsky (2019) show that the cohomology of any compact hyperkähler manifold embeds into the cohomology of a torus, in a way that preserves theHodge structure.

Notes

[edit]
  1. ^This can be easily seen by noting thatSp(n) is asubgroup of thespecial unitary groupSU(2n).

See also

[edit]

References

[edit]
  1. ^abcCalabi, Eugenio (1979)."Métriques kählériennes et fibrés holomorphes".Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 12 (2):269–294.doi:10.24033/asens.1367.
  2. ^Berger, Marcel (1955)."Sur les groups d'holonomie des variétés à connexion affine et des variétés riemanniennes"(PDF).Bull. Soc. Math. France.83:279–330.doi:10.24033/bsmf.1464.
  3. ^Bonan, Edmond (1965). "Structure presque quaternale sur une variété differentiable".Comptes Rendus de l'Académie des Sciences.261:5445–8.
  4. ^Kraines, Vivian Yoh (1966)."Topology of quaternionic manifolds"(PDF).Transactions of the American Mathematical Society.122 (2):357–367.doi:10.1090/S0002-9947-1966-0192513-X.JSTOR 1994553.
  5. ^Bonan, Edmond (1982). "Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique".Comptes Rendus de l'Académie des Sciences.295:115–118.
  6. ^abBeauville, A. (1983). "Variétés Kähleriennes dont la première classe de Chern est nulle".J. Differential Geom.18 (4):755–782.
  7. ^Feix, B. (2001). "Hyperkähler metrics on cotangent bundles".J. Reine Angew. Math.532:33–46.doi:10.1515/crll.2001.017.
  8. ^Kaledin, D. (1999). "A canonical hyperkähler metric on the total space of a cotangent bundle".Quaternionic structures in mathematics and physics (Rome, 1999). Rome: Univ. Studi Roma "La Sapienza". pp. 195–230.doi:10.1142/9789812810038_0010.
  9. ^Maciocia, A. (1991). "Metrics on the moduli spaces of instantons over Euclidean 4-space".Comm. Math. Phys.135 (3):467–482.doi:10.1007/BF02104116.
  10. ^Atiyah, M.; Hitchin, N. (1988).The geometry and dynamics of magnetic monopoles. M. B. Porter Lectures. Princeton, NJ: Princeton University Press.ISBN 0-691-08480-7.
  11. ^Hitchin, N. (1987). "The self-duality equations on a Riemann surface".Proc. London Math. Soc. s3.55 (1):59–126.doi:10.1112/plms/s3-55.1.59.
  12. ^Nakajima, H. (1994). "Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras".Duke Math. J.76 (2):365–416.doi:10.1215/S0012-7094-94-07613-8.
Background
Theory
String duality
Particles and fields
Branes
Conformal field theory
Gauge theory
Geometry
Supersymmetry
Holography
M-theory
String theorists
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hyperkähler_manifold&oldid=1313237327"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp